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A systematic method for the construction of nonlinear carrier spaces for a class of nonlinear 
spinor representations of complex and pseudo-orthogonal rotation groups is presented. It is 
shown that Cartan pure spinors, which satisfy quadratic constraints, are special cases of our 
construction. A class of new nonlinear spinor representations is discovered, which is particularly 
interesting in the case of generalized conformal groups SO(v + l,v - 1), v = 3,4, .... The 
nonlinearity condition considerably diminishes the number of independent spinor components 
and therefore the corresponding spinor fields are the most natural building blocks for grand 
unified field theories. The method presented here is universal and can be applied for the 
construction of new nonlinear representations of other higher-symmetry groups. 

I. INTRODUCTION 

There is currently a widespread beliefthat field theories 
in higher-dimensional space-times may play an important 
role in understanding four-dimensional space-time quantum 
field theories. 1 This belief is supported by the fact that for 
field theories in certain space-times, the anomalies of gauge 
or gravitational field theories disappear.2 The many attrac­
tive features of higher-dimensional space-times are dimin­
ished by the fact that in these cases the number of Dirac 
fields-when the theory is finally restricted to the four-di­
mensional space-time-is very high. 3 

In this work we would like to point out that there exist 
nonlinear spinor representations in higher-dimensional 
space-times for which the number of independent spinor 
components is considerably diminished in a natural manner. 
These spinor field theories resemble nonlinear spinorial 0' 

models with covariant quadratic constraints restricting the 
number of independent components.4 

To give a concrete example consider the so-called neu­
tral space-times lIlV'V with the kinematical group SO(v,v), 
v = 2,3, .... Letra,a = 1, ... ,2v, be 2" X2v generalized Dirac 
matrices satisfying the anticommutation relations 

{ra,rb 1 = 2gab 1, a,b = 1, ... ,2v, (1.1) 

where gab is the metric tensor of the KV'V space-time. Let C 
be the matrix satisfying the relations 

cra = ( - 1rr ~C, CC T = 1, C 2 = ( _ l)1'(v+ 1)/2, 

(1.2) 

and let ra, ... a" r = 1, ... ,v, be the completely antisymmetrized 
product of ra matrices. Let", be a spinor for SO(v,v) in the 
carrier space L m+ of dimension 2" - 1 defined by the highest 
weight m+ = (!, ... ,!) (see Ref. 5). Let;p ~ ",T C. A spinor "'p 
in L m+ is said to be pure if it satisfies the following set of 
quadratic constraints6,7: 

¢pra, ... a."'p =0, fork=O,l, ... ,v-1. (1.3) 

It was shown that the constraints (1.3) are covariant and that 
the number d of independent constraints equals 

(1.4) 

Hence the number d." of independent pure spinor com­
ponents is 

(1.5) 

Formula (1.5) for v = 5 gives 11 components for a pure 
spinor instead of 16 for an ordinary (semi-)spinor. However 
for v = 10, formula (1.5) gives 46 independent components 
versus 512 for an ordinary spinor. This demonstrates the 
suppressing mechanism of independent spinor components 
due to the constraints (1.3). 

The constraints (1.3) make the carrier space N"'+ for 
pure spinors nonlinear: in fact, if "'I and "'2 satisfy the con­
straints (1.3) then", = A1"'1 + A2"'2 with AI,A2 e C will not 
satisfy (1.3) in general. 

Notice that if a given "'p satisfies (1.3) then its group 
transform Tg "'p-due to covariance of (1.3)-will also sa­
tisfy (1.3). In fact let Da, ... a,;ai ... a;(g) be the matrix elements of 

the polyvector representation: then, for r < v, 
f'.J 

(Tg"'p)ra, ... a,!Tg"'P) 

= ¢p(T g-lra, ... a,Tg)",p 

= D ,,(g);Ppr, ,"'p = 0. 
QI'·*O,.;al,··a, at,··a, 

(1.6) 

It is remarkable that the property (1.6) allows us to represent 
the intrinsic components "'a' a = 1, ... ,1 + (;) of a pure 
spinor in terms of group parameters of the so-called instabil­
ity group C. In fact let HCSO(v,v) be the stability subgroup 
of "'p, i.e., for he H we have 

Th",p="'p. (1.7) 

Then, due to the Mackey decomposition theorem (see Sec. 
II), there exists a set CCSO(v,v) such that any g e SO(v,v) 
has the representation 

g=ch, ceC, heH. (1.8) 

Then the spinor '" = Tg "'p, which is pure by (1.6), can be 
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written in the form 

(1.9) 

i.e., the elements of the pure spinor space N"'+ can be labeled 
by the group elements C e C. We show in Sec. II that C coin­
cides-up to a set of Haar measure zero-with the solvable 
group 

C= T<iJexTl, (1.10) 

where T'2 is a (ll-dimensional Abelian subgroup ofSO(v,v). 
Consequently the nonlinear spinor space N"'+ of pure spin­
ors can be identified with the group space of the solvable 

group (1.10).The group parameters {Ck I!~T e C may be 
considered as the [ 1 + ('2)] -intrinsic coordinates of the pure 
spinor t/!{e). 

The action of Tgo on pure spinors in this representation 
is determined by the Mackey decomposition (1.8): in fact for 
any go e SO(v,v) we have 

TgotP(c) = Tg.,ctPp = Tc •• JhfloCtPP = t/!{cg.,c)' (1.11) 

where the group element eg.,c is uniquely determined by the 
formula 

(1.12) 

One may introduce in a natural manner a nonlinear co­
variant wave equation for spinor fields transforming accord­
ing to a nonlinear representation.4

,8 In fact following the 
Cartan construction9 one may assume that intrinsic spinor 
components {Ck lee depend on space-time coordinates 
x eRV'V. In this case the most natural Dirac-like covariant 
equation 

ra ~ tP[ {cdxJl] = 0 
aXa 

(1.13) 

is a nonlinear equation since the N"'+ -spinor space to which 
tP[{ Ck (xJl1 belongs is nonlinear. Using the representation 
(1.9) for a pure spinor and (1.10) for the group elements C e C, 
one reduces ( 1.13) to a specific system of nonlinear covariant 
wave equations for Ck (x) functions. The explicit form and the 
properties of these solutions are considered in our separate 
work. 8 In this work we limit ourselves to a presentation of 
the basic results, which allow the reduction of a nonlinear 
carrier space N"' for a nonlinear spinor representation to the 
specific homogeneous space G IH, where H is the stability 
subgroup of a chosen pure spinor tPP' The construction of 
nonlinear N"' spaces underlined above for the SO(v,v) group 
is universal and one carries out this construction for an arbi­
trary rotation group in two steps. 

( 1) Find the stability group (1. 7) for the chosen spinor 
representation. 

(2) Find the coset space G IH, which, by (1.9), gives a 
description of the elements in the nonlinear carrier space N"' 
by means of certain homogeneous space coordinates. It turns 
out that in the most important cases the coset space G I H 
may be represented-up to a set ofHaar measure zero-with 
some group space as, e.g., (1.10). 

In Sec. II we present a general formalism of nonlinear 
group representations and we illustrate it in the case of non­
linear spinor representations of the SO(2v,q groups. In Sec. 
III we extend this analysis to SO(2v + l,q groups. In Sec. 
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IV we present a theory of nonlinear spinor representations 
for the pseudo-orthogonal groups SOl p,q), p>q, p + q = 2v. 
The structure of the nonlinear spaces N"' strongly depends 
on the chosen signature (p,q) of space-time and is rather rich. 
In the neutral (RV,V) and the conformal (RV + l,v- 1 ) cases the 
N"' spaces can be represented as some specific group spaces. 
In all other remaining cases the N"' space coincides with 
specific G IH spaces depending on the space-time signature. 
The stability subgroup H for the SO(2v - h,h ) spinor repre­
sentations has the general form 

H = [SU(v - h )XSL(h,R)] Q<R, (1.14) 

where R is a solvable group whose Lie algebra r has the 
following structure: 

r=t(~)+d2h(v-h), (1.15) 

with t I~) a (~)-dimensional Lie algebra and d 2" (v - h) a 
2h (v - h)-dimensional vector space in the so(2v - h,h ) Lie 
algebra. 

We see that the stability groups H for even-dimensional 
pseudo-orthogonal groups have a rather rich structure and 
run from 

H=SU(v) 

for SO(2v) to 

H = SL(v,R)Q<T<iJ 

for the neutral case SO(v,v). 
The parallel analysis for SO(p,q) groups, p>q, 

p + q = 2v + 1, acting in odd-dimensional space-times R p,q 

is carried out in Sec. V. The stability groups H for the highest 
weight spinor tPm , m = (!,!, ... ,!) ofSO(2v + 1 - h,h ) groups 
have also a rich structure and are of the form 

H = [SU(v - h ) X SL(h,R)] Q<R, (1.16) 

where R is a solvable group whose Lie algebra r has the 
following structure: 

r = t (~) -+- d 2h (v - h ) +II, (1.17) 

with t (~) a (~ I-dimensional Abelian Lie algebra and 
d 2h Iv - h) + h a [2h (v - h ) + h ]-dimensional vector space in 
so(2v + 1 - h,h ) Lie algebra. 

The nonlinear carrier spinor space N"' may be identified 
with the quotient space SO(2v + 1 - h,h )I H, which in tum 
for h = v and h = v-I may be represented-up to a set of 
Haar measure zero-as the group space of a specific solvable 
group. 

Finally, we conclude this work with Sec. VI, where we 
emphasize the importance of nonlinear spinor representa­
tions for the construction of nonlinear relativistic field theor­
ies. 

Let us note that for an arbitrary group G the set C in the 
Mackey decomposition (1.8) is homeomorphic with the ho­
mogeneous space G I H of the left H cosets. In fact by (1.8) we 
have 

gH = cghg = cgH. 

Hence every left coset gH can be uniquely characterized by 
the element cg in C. Conversely-by virtue of (1.8)-every 
element e e C determines uniquely the left coset eH and two 
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different elements C1 and C2 in C determine different cosets 
clH and c2H in G IH. 

We follow in this work the Cartan notation.6 In the com­
pact SO(n) case in Rn we take the anticommutation relations 
of generalized Dirac Y matrices in the form 

I Ya'Ybl =Uabl, a,b=l, ... ,n. (1.18) 

It turns out to be convenient in all proofs to use the H 
basis ofCartan,6 which is given by the set of2[nI2] + 1 ma­
trices IHo~,H/ I,j = 1, ... ,[nI2], satisfying the anticom­
mutation relations 

I Hr,Hs I =2grsl, r,s = O,l, ... ,v,l', ... ,v', 

with v==[nI2], where 

g = II !~v !~v II, for n = 2v, 

and 

° ° !lv 
g= 

° 
, forn = 2v + 1. 

!lv ° 
fora#b, 

(1.19) 

(1.20) 

This basis is connected to the Ya basis by the relations 

Y2j = i(Hj' - ~), (1.21) 

The generators Sab of so(n) for spinor representations are 
defined by the formula 

(1.22) 

and they satisfy the following commutation relations: 

(1.23) 

The Clifford algebra units ra and the corresponding 
generators (1.22) of the so(p,q) Lie algebras are obtained by 
multiplying q - Ya's by i. The metric tensor for the 
so(n - h,h ) Lie algebra is taken in the form 

{

O, 

gab = 1, 

-1, 

fora = b= {
1,2, ... ,2([nI2] - h), 
2/- 1, with 1 = [nI2] - h + 1, ... ,lnI21, 

(1.24) 

fora = b = 2k, with k = [nI2] - h + 1, ... ,[n12], 

and the corresponding ra's satisfy the following anticom­
mutation relations: 

(1.25) 

Introducing the generators of so(n - h,h ) in the form 

Xab = -![ra,rb], 

we have 

(1.26) 

[Xab,xcd] =gacXbd + gbdXac - gadXbc - gbcXad' 

(1.27) 

II. NONLINEAR GROUP REPRESENTATIONS 

We begin our analysis with a precise definition of a non­
linear group representation. Let G be a topological group 
and N a nonlinear topological space. We say that the map 
g_ Tg is a nonlinear representation of G in N if the following 
conditions are satisfied. 

( 1) With each g E G there is associated a transformation 
Tg :n_Tg n of N into N. 

(2) The identity element e of G is the identity transforma­
tion of N. 

(3) The mapping (g,n)-Tgn of G XN into N is contin-
uous. 

(4) For gl,g2 E G and n EN we have 

Tg,g,n = Tg,(Tg,n). 

The novelty of nonlinear representations consists in the 
condition that the carrier space N for the representation is 
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nonlinear. The nonlinearity condition for the carrier space 
makes the analysis and the classification of nonlinear repre­
sentations very difficult. IO For instance, the linear unitary 
irreducible representations of the Poincare group are all 
classified.5 At the same time the classification problem of 
nonlinear representations of the Poincare group is equiva­
l~nt to the classification problem of all possible solutions of 
all possible nonlinear relativistic wave equations, which is 
clearly an unsolvable problem. This is the reason why we 
have so far very few papers on the properties of nonlinear 
representations. 

We shall analyze in this work nonlinear spinor represen­
tations. We begin our analysis with an illustration of how a 
nonlinear carrier space N appears naturally in the case of 
spinor theory. 

Consider first the SO(2v,q complex rotation group in 
the even-dimensional complex "space-time" C2v

• It is well 
known that this group possesses two kinds of irreducible 

I II 

spinor representations given by the semispinors t/J andt/J of 

the first and the second kind, respectively.s The linear car­
rier space L m+ for the linear spinor representation T"+ of 
SO(2v,q has the dimension r- I (see Ref. 5). It was shown, 
however, by Cartan6 that in the carrier space L m+ one can 
introduce the concept of a pure spinor, which provides the 
carrier space ~+ for a nonlinear representation of 
SO(2v,q. In fact, let Ya, a = 1, ... ,2v, be the generators of the 
Clifford algebra for the linear representation T"+ of 
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SO(2v,q and let 

Ya,a, .. oQ, = Yla, Ya, "'Ya,)' r = 0,1, ... ,2v, 

by polyvectors inL. Let e = Y2Y4'''Y2v' Then the pure spin­
ors are defined as the subset of semispinors, say of the first 
kind, which satisfy the conditions (ip=="T e) 

fpya, .. oQ," = 0, r=O,I, ... ,v-1. (2.1) 

Since 

eYa = ( - 1)"y~e, (2.2) 

the constraints (2.1) have covariant form, i.e., they hold in 
any reference frame. It is shown in Ref. 6 that the number d 
of independent constraints given by (2.1) is equal to 

d = 2"-1 - 1 - (;). (2.3) 

Hence the space N of pure spinors has the dimension 

d¢ = 1 + (;), (2.4) 

which, for v> 3, is smaller than the dimension 2" - I of the 
linear spinor representation. Clearly if "I and "2 satisfy (2.1) 
then their linear combination 

,,= al"l + a2"2' a l,a2 E C, 

in general does not satisfy (2.1). Hence the pure spinors form 
in the 2" - I -dimensional carrier space of the linear spinor 
representation a [1 + (i) ] -dimensional nonlinear carrier 
space N"'+ for a nonlinear spinor representation. 

It is instructive to see how the space N"'+ and the non­
linear representation are explicitly realized in the pure 
spinor case. We show this using the concept of the highest 
weight spinor "m+ .As is well known, the linear spinor repre­
sentations of SO(2v,q are characterized by the highest 
weights m ± given by the formulaS 

(2.5) 

m + corresponds to semispinors of the first and m _ of the 
second kind, respectively. We can choose an explicit repre­
sentation for the Clifford algebra C2v given by Eq. (1.1S), 
such that the following lemma holds. 

Lemma 2.1: The highest weight m + semispinor has the 
form 

(2.6) 

° 
Proof: Let us label the 2" rows and columns of the yand 

H matrices a Ja Cartan, i.e., using the completely skew-sym­
metric set of indices 

i l i2 ···ip ' P = O,I, ... ,v, 

i)Ji2, ••• ,ip = 1,2, ... ,v (2.7) 

(where the index "0" means that no index appears). Then we 
use the following explicit realization of the Clifford algebra 
basis [see Ref. 6 Sec. 92(c)]: 
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forj E i l ,i2, ... ,ip ' 

forj EI: i l ,i2 , ... ,ip ' 
(2.Sa) 

forj E i1,i2, ... ,ip ' 

forj EI: i1,i2 , ... ,ip ' 
(H) i,1, ..• i {O, 

J i,1, ... 1,}' = 1, (2.Sb) 

(2.Sc) 

all other matrix elements being zero. 
The Cartan subalgebra ofso(2v,q is given by the v gen­

erators 

S2]_ 1,2]' j = 1,2, ... ,v. (2.9) 

Since only the elements of the first column of S ab count, 
when Sab acts on "m+ ' let us investigate the first column's 
structure of S2]_I,2]' From Eqs. (1.21) and (1.22) we have 

S2]_I,2] =!(H]Hj' +Hj'~' -~H} -Hj'~)' (2.10) 

But Eqs. (2.S) give 

(HH.) .. . 0= (H,H,) .. . 0= (H,H}) .0 = ° 
) J '1'2""p J J '.'2'··'p } i.i2···,p , 

(H]~,);,t, ••• ip 0 = ~pO' 

and then 

(2.11a) 

(2.l1b) 

(S2] _ 1,2] )i,i, ... i, 
0 = !~pO' (2.12) 

which proves the lemma. ... 
Let J + and J - be the vector space of raising and lowering 

operators, respectively, and let h be the Cartan subalgebra of 
so(2v,q. Let 

so(2v,q = 1 + -+- h-+-I - (2.13) 

be the Cartan decomposition of so(2v,q. Then the linear 
envelope of all vectors 

r 

II 1 i-;: "m+' J i-;: E 1-, for r= O,I, ... ,dim T m+, 
k=1 

coincides with the linear carrier space of the linear spinor 
representation 1'"+ (see Ref. 5). This shows the importance 
of the highest weight spinor "m+ for the linear spinor repre­
sentation theory. 

We show now that "m+ is also crucial for the construc­
tion of a nonlinear group representation. First we notice that 
by Eqs. (2.1), (1.21), (2.6), and (2.S) we have 

ipm Ya ... a "m = 0, r = O,I, ... ,v - 1. + I , + 
(2.14) 

Hence "m+ represents a pure spinor belonging to 
N"'+ CLm+. We have the following theorem. 

Theorem 2.2: The stability group H of "m is the con-
nected semidirect product group + 

H = SL(v,qQ<Tm, (2.15) 

where T<2I is an Abelian (i)-dimensional subgroup of 
SO(2v,q. 

Proof: We shall first look for the stability subalgebra h of 
"m+, i.e., for all linearly independent generators Sab in 
so(2v,q, which satisfy the condition 

(2.16) 

In order to investigate the action of the generators of 
so(2v,q on "m+ ' it is necessary (and sufficient) to know all 
the elements of just the first column of the matrices Sab' 
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From Eqs. (2.8) we have 

(~HI };,. .. i
p 

0 = (HJ ,HI };,. .. ip 

0 = 0, 

(HjHI • };""ip 

0 
= /)fIJ/)jl' 

(~,HI' };,. .. i
p 

0 = /)p2 (/)i
1
//)i

2
j - /)i.}/)i

2
/)' 

withj,l = 1, ... ,v, P = O,I, ... ,v, and i ..... ,ip = 1, ... ,v. 

(2. 17a) 

(2. 17b) 

(2.17c) 

Then, taking into account Eqs. (1.19H1.22) and (2.17), 
we have that the (~v) generators S"b of so(2v,q can be divided 
into the two following linearly independent sets: (a) 
(3v - v - 2)/2 matrices having all elements zero in the first 
column, i.e., 

(;) matrices :Tjl 

= - (i/2)[ Hi,HI ] 

= ! (S2j _ 1,21- I - S2j,21 + i(S2j - 1.21 + S2j.2/_ I)}, 
(2. 18a) 

v-I matrices &' jl 
iii v 

= - - [Hj,HI ,] +/)jl-- L [Hk,Hk'] 
2 v 2 k= I 

= ! {S:q _ 1,2/- I + S2j,21 + i(S:q,2/_ I - S2j - 1,2I!} 
i v 

+ - /)jl L S2k - 1,2k; (2. 18b) 
v k=1 

(b) (v - v + 2)/2 matrices having some non-null element in 
the first column, i.e., , 

(;) matrices !l2 jl 

= - (i/2) [Hj',Hd 

=! (S2i-I,2/-1 - S2j,21 - i(S2i_I,21 + S2i,2/-1 )}, 
(2. 19a) 

1 matrix 9) = HHv,Hv'] = S 2v-I,2v' (2. 19b) 

We see that only the first set belongs to the stability 
subalgebra h. The generators (2.18) satisfy the commutation 
relations 

[ :Tj/J:T mn] = 0, (2.20a) 

[&'il'&' mn ] = i(/)jn &' ml - /)Im &'jn)' (2.20b) 

[&'jl,:Tmn ] =i(/)ln:Tjm -/)lm:Tin +(2/v~il:Tmn)' 
(2.2Oc) 

i.e., the generators :Til form an Abelian ideal of h, while the 
generators &' il satisfy the commutation relations of the sim­
ple complex Lie algebra sl (v, q. Furthermore the generators 
&' il generate an automorphism of the Abelian subalgebra. 

Therefore, if we denote by t m the (2)-dimensional Abelian 
subalgebra, we can say that h is given by 

h = sl(v,qe-t m. (2.21) 

Using the general connection between Lie algebras and the 
connected Lie groups given by Theorem 3.3 of Ref. 5 we 
obtain the assertion of Theorem 2.2. T 

The crucial tool in understanding the structure of the 
stability Lie algebra and of the set complementary to it is 
provided by the Levi-Malcev theorem.s Let lbe an arbitrary 
Lie algebra over R or C and let r be its radical, i.e., a maximal 
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solvable ideal. Then the Levi-Malcev theorem statess that 
there exists a semisimple Lie subalgebra s of I such that 

1= se-r. (2.22) 

In the case (2.15) r = t m and s = sl(v,q. 
Now let G be a Lie group and H a closed subgroup of G. 

Then the Mackey decomposition theorem states that there 
exists a Borel set C in G such that every element geG can be 
uniquely represented in the formS 

g = ch, ceC, heH. (2.23) 

In general the set C is not a group. It is, however, very 
interesting that in the case of SO(2v,q and H given by (2.15) 
we have the following theorem. 

Theorem 2.3: Let G = SO(2v,q and let Hbe the stability 
subgroup (2.15) of "'m . Then the complementary set C may 

+ 
be represented-up to a set of Haar measure zero-as the 
connected solvable subgroup 

(2.24) 

Proof The set of generators in so(2v,q complementary to 

sl(v,qe-t m is given by the generators fl2jl and 9) of Eqs. 
(2.19), with the following commutation relations: 

[!l2jl,fl2 mn] = 0, 

[ 9),fl2 jd = /)jv!l2 Iv - /)Iv fl2 ]v. 

We see that c is a solvable Lie algebra 

c = t me-tl. 

(2.25a) 

(2.25b) 

By Theorem 3.3 in Ref. 5 there is a connected solvable 
Lie subgroup C of G with the Lie algebra c and 

dim C = dim G - dimH. 

On the other hand, for the Mackey set C we have 

dim C = dim G - dim H. 

Hence the group space C coincides with the Mackey set 
C up to a set C - C of the Haar measure zero. Since the 
group G acts transitively on C, the group space C may be also 

used for a description of the carrier space N m + for the non­
linear spinor representation. T 

Theorems 2.2 and 2.3 allow us to give the explicit real­

ization for the N m + -nonlinear carrier spinor space. In fact, 
since "'m is a pure spinor, the spinor 

+ 

'" = Tg"'m+ (2.26) 

is also pure. Indeed by (2.2) we have 

ipr", ... ",,,, = D", ... ".;,,; ... ,,~(g)ipm+ r,,; ... ,,~"'m+ = 0, 

r= 1, .... v-l. (2.27) 

Using the Mackey theorem we have Tg = TcTh and by 
Theorem 2.2 we have 

(2.28) 

We see, therefore, that the carrier space N m + can be repre­
sented as the connected group space C generated according 
to Theorem (3.3) of Ref. 5 by the Lie algebra c. By (2.24) the 
dimension of C is 
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(2.29) 

and coincides with the dimension d", of the pure spinor space 
given by (2.4). The action ofSO(2v,q in N m 

+ is given by the 
group action dictated by the Mackey decomposition. In fact, 
by (2.23) 

got: = cgoehgoe · 

Hence 

(2.30) 

(2.31) 

It is evident from this formula that the action of Tg on N m + is 
highly nonlinear. 

Table I gives the dimensions of the linear and the corre­
sponding nonlinear spinor representations for SO(2v,q and 
the number of constraints. 

We see that the dimension of the nonlinear spinor repre­
sentation grows much more slowly than the dimension of the 
corresponding linear representation. This fact may be very 
useful in constructing grand unified theories in higher di­
mensions, where for the time being we have too many spinor 
fields. 3 

III. NONLINEAR SPINOR REPRESENTATION OF 
SO (2v + 1,C) 

The SO(2v + l,q group possesses one kind of linear ir­
reducible fundamental spinor representation Tm, which is 
determined by the highest weight m = (~, ... ,~) and has the 
dimension 2v (see Ref. 5). The pure spinor nonlinear carrier 
space N m is defined as the set of all f/!'s in L m which satisfy 
the quadratic constraints 

'hal ... a.f/!=O, for k<v. (3.1) 

It is shown in Ref. 6 that the number d of independent con­
straints (3.1) is given by the formula 

(3.2) 

Hence the dimension d", of the nonlinear pure spinor space 
N m is given by the formula 

d", = 1 + v+ (;). (3.3) 

Since the constraints (3.1) are quadratic, the space N m is 
evidently nonlinear. Since in addition the constraints (3.1) 
are given in a covariant form, the nonlinear space N m is 
invariant under the action of the group representation 
g -+ Tg(£) = e£··r ••. Consequently the space N m represents 
the carrier space of dimension d", of a nonlinear, 
SO(2v + l,q representation. 

TABLE I. Dimensions of the linear and nonlinear spinor representations 
for S0(2v,C) and the number of corresponding constraints. 

v 2 3 4 5 6 10 

2v - 1 2 4 8 16 32 512 

1 + (;) 2 4 7 11 16 46 

ZV-1_1_ (;) 0 0 5 16 466 
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We now give the explicit realization of N m space as the 
coset space of the SO(2v + l,q group over its distinguished 
subgroup H. We have the following theorem. 

Theorem 3.1: The stability group H of the highest 
weight spinor f/!m is the group 

H = SL(v,q<i<R, (3.4) 

where R is a solvable group whose Lie algebra r has the 
following structure: 

r=t(2)+ev
, 

with t (2) a (i )-dimensional Abelian subalgebra and eVa v­
dimensional vector space in the so(2v + l,q Lie algebra. 

Proof: We show first that the highest-weight spinor f/!m 
has the form 

o 
f/!m = 0 

o 

(3.5) 

In fact the Cartan subalgebra ofso(2v + l,q is given by the 
same v generators (2.9) ofso(v,q. Hence from Lemma 2.1 we 
have that f/!m' being identical to f/!m ofEq. (2.6), still corre­
sponds to the highest weight m = (i, ... ,~). 

Let us then look for the stability subalgebra h of f/! m' In 
addition to Eqs. (2.17) we find 

(~Ho);... ';p 
0 = (H~ k. ';p 

0 = 0, (3.6a) 

(Hj'Hok. ';p 
0 = - (HaRj' k. ';p 

0 = 8pI 8;1)' (3.6b) 

j,l = 1, ... ,v,p = 0,1, ... ,v, and il> ... , ip = 1, ... ,v. Then for 
the so(2v + l,q Lie algebra, in addition to the generators 
(2.18) and (2.19) of the so(2v,q Lie algebra, we find further 

(a) v matrices 'Il} = - (i/2)[ H},Ho] = S2}-1,2v+ 1 

+ iS21,2v+ l' (3.7a) 

having all elements zero in the first column and 

(b) v matrices .'7} = - (i/2)[ Hi' ,Ho] = S2}-1,2V+ 1 

- iS2},2v + 1 , (3.Th) 

having some non-null element in the first column. 
We see that the set (a) given by the (3v + v - 2}/2 ma­

trices {.7"1/,91/,'Il) J ofEqs. (2.18) and (3.7a) form the stabil­
ity subalgebra h. In addition to the commutation relations 
(2.20) we have, in fact, 

['Il},'Ild =2i.7"}/, 

['Il},.7" mm] = 0, 

['Il},9 mm] = i(8}n 'Il m - (1lv)8mn 'Il)}. 

(3.8a) 

(3.8b) 

(3.8c) 

From Eqs. (2.20) and (3.8) we see that the structure of the 
stability subalgebra h is just that one corresponding to Eq. 
(3.4). ~ 

The Mackey decomposition states that there exists a 
Borel set C in SO(2v + l,q such that any g E SO(2v + l,q 
can be represented as c h, C EC, h E H. In the present case we 
have the following theorem. 
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Theorem 3.2: The set C may be represented-up to a set 
of Haar measure zero-as a solvable Lie group whose Lie 
algebra c has the following structure: 

c = t 1a-(t m + f ,,), (3.9) 

with t m a (~) -dimensional Abelian Lie algebra and r a v­
dimensional vector space in so(2v + 1,e). 

ProoF The set c of generators, complementary in 
so(2v + 1,e) to the set of generators giving the stability sub­
algebra h of tP m' is formed by the generators f!2}/ and fP of 
Eqs. (2.19) plus the generators Y j ofEq. (3.7b). They satisfy 
the commutation relations (2.25) plus 

[Yj,Yd = 2if!2j/' 

[Y},f!2 mn ] = 0, 

[Yj'fP] =~jvYv' 

(3. lOa) 

(3. lOb) 

(3.1Oc) 

From Eqs. (2.25) and (3.10) we see that the set c forms a 
solvable Lie algebra, whose structure is given by Eq. (3.9). 
Repeating the argument given at the end of the proof of 
Theorem 2.3 we obtain the assertion of Theorem 3.2. T 

Now, since tPm satisfies the constraints (3.1), it is pure. 
Since the constraints are convariant, the spinor 

(3.11) 

is also pure. Consequently, the nonlinear carrier space of 
pure spinors can be identified with the group space C given 
by Theorem 3.2. By (3.9) the dimension of C is 

de = 1 + v+ (;) 

and coincides with the dimension d", of the N m space given 
by (3.3). Consequently the nonlinear space Nm of pure spin­
ors can be identified with the quotient space G / H, which in 
the present case may be represented as the group space C 
given by Theorem 3.2. 

Table II compares the dimension of the linear spinor 
representation, the dimension of the nonlinear one, and the 
number of independent constraints. We see again that the 
dimension of the nonlinear spinor representation is much 
smaller-especially for the higher space-time dimensions­
than the corresponding dimension of the linear representa­
tion. 

IV. NONLINEAR SPINOR REPRESENTATIONS FOR 
SO( p,q) GROUPS, p + q = 2v 

We shall construct now a class of nonlinear spinor re­
presentations for pseudo-orthogonal groups SOl p,q), 
p + q = 2v, p>q. For the sake of simplicity we shall denote 

TABLE II. Dimensions of the linear and nonlinear spinor representations 
for SO(2v + l,e} and the number of corresponding constraints. 

v 2 3 4 5 6 10 

2· 4 8 16 32 64 1024 

1 +v+ (;) 4 7 II 16 22 56 

2"-I-v- (;) 0 5 16 42 968 
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this class of groups by the symbol SO(2v - h,h ), 
h = 0,1, ... ,v. We also shall analyze first the case of semis­
pinors of the first kind. Guided by the results of Secs. II and 
III we shall construct the nonlinear spinor representations 
for SO(2v - h,h ) in two steps: (1) determination of the stabil­
ity subgroup H of the highest weight spinor tPm+' and (2) 
determination of the Mackey complementary set C. 

Contrary to the results of Sec. II and III it will turn out 
in some geometrically distinguished cases that the set C may 
be represented as the group space of a specific subgroup of 
SO(2v - h,h), but in most cases it is just a homogeneous 
space. Those nonlinear spinor representations for which Cis 
a group space should be-from the geometrical and the 
physical point of view-very interesting. We have the fol­
lowing theorem. 

Theorem 4.1: Let G = SO(2v - h,h ), with h = 0,1, ... ,v. 
Then the stability group H of the highest weight spinor tPm 
is the connected group + 

H = [SU(v - h )XSL(h,R)] Q<R, (4.1) 

where R is a solvable group whose Lie algebra r has the 
following structure: 

r=t(~)+d2h(v-h), (4.2) 

with t m a (~)-dimensional Abelian Lie algebra and 
d 2h (v- h) a 2h (v - h)-dimensional vector space in the 
so(2v - h,h ) Lie algebra. 

ProoF (See Appendix A.) 
Theorem 4.1 shows the rich structure of the highest­

weight spinor stability subgroups, depending on the signa­
ture of the 2v-dimensional space-time R2v-h,h, h = O,l, ... ,v. 
In the case h = ° (i.e., Euclidean space-time R2v) by (4.1) we 
have 

H=SU(v). (4.3) 

In this case the nonlinear carrier spinor space N m+ will co­
incide with the quotient 

C = SO(2v)/SU(v), (4.4) 

which in turn coincides-up to a phase factor-with the so­
called quadric Grassmannians. 11 At the other end, if we set 
h = v (i.e., we consider the so-called neutral space-time 
RV,V), then by (4.1) we have 

H = SL(v,R)<2<T m, (4.5) 

where T (n is an Abelian group of dimension (~ ). The anal­
ysis given below shows then that in this case the space ~ of 
nonlinear spinors may be represented as the group space of 
the solvable group C given by 

(4.6) 

where T m is an Abelian G) -dimensional subgroup of 
SO(v,v). We hope that these two extreme cases illustrate the 
richness of the considered theory. 

Formula (4.1) gives also the dimension of the stability 
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subgroup and the dimension of the Mackey set C, which 
coincides with the dimension of the nonlinear carrier space 
N'" . We present these results in Table III. It follows from 
Table III that the cases h = 0, v are not obtainable as parti­
cular cases of the general h case. 

The following theorem shows that some signatures are 
distinguished. 

Theorem 4.2: Let G = SO(2v-h,h ). Then for h = v and 
v-I the carrier space N m. for the nonlinear spinor repre­
sentation may be represented-up to a set of Haar measure 
zero-as the group space 

(4.7) 

and 

C=R, forh = v-I, 

where R is a solvable group whose Lie algebra r has the 
following structure: 

(4.8) 

with t ('2- ') an Abelian algebra of dimension (V2- I) and d 2v a 
2v-dimensional vector space in g. 

In all remaining cases the carrier space N m. of the non­
linear spinor representation T m. coincides with the homo­
geneous space SO(2v - h,h )I H. 

Proof: (See Appendix B.) 
Theorem 4.2 indicates that the neutral space-time RV'v 

and the conformal space-time RV+ I,v-l are distinguished. 
The neutral case was already discussed in Sec. I. The confor­
mal spaces RV+ l,v-l play the role of a natural generaliza­
tion ofthe conformal space R4,2. It was proven recentlyl2-

using a rather complex extension of the Chevalley the­
ory13-that the conformal spaces admit also a kind of non­
linear pure spinor representation. In our formalism these 
generalized pure spinors appear in an extremely natural 
manner. In fact the passage from the so(v,v) Lie algebra to 
the so(v + 1, v-I) Lie algebra is obtained by multiplying by 
( - I) the element r2 of the Clifford algebra ra , a = 1, ... ,2v 
of the RV'V space. Such an operation will not change the 
constraints (1.3). Since the highest weight spinor rPm. for 

SO(v + l,v - 1) has the same form as for SO(v,v), the spinor 
rPm+ ofSO(v + l,v - 1) will also satisfy (1.3). By covariance 
arguments the spinor Tg rPm+ will also satisfy the constraints 
(1.3). But by Theorems 4.1 and 4.2, 

TgrPm. = TcrPm+ = rP(e), (4.9) 

TABLE III. Dimensions of the stability subgroup Hand of the Mackey set 
C for the group SO(2v - h,h ). 

h dimH dimC 

0 v-I v-v+l 
h v - 2 + h (h - 1)/2 v - v + 2 - h (h - 1)/2 

v-I ~v(v-l)-l 1 + (v; 1) 
v !(3v -v-2) 1 + (;) 
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where e is the element of the solvable group given by (4.7). 
Hence in the conformal case, similarly to the neutral case, 
the nonlinear carrier space N"'. can be represented as the 
group space of the solvable group C. The space N"'+ has the 
dimension 

(v+ 1) 
d", = 1 + 2 . (4.10) 

This dimension equals the dimension of the pure spinor non­
linear representation in the neutral RV+ l,v+ 1 space. 

V. NONLINEAR SPINOR REPRESENTATION OF SO(p,q) 
GROUPS,p+q=2v+ 1 

We shall now construct a class of nonlinear spinor re­
presentations for the pseudo-orthogonal groups SO(p,q), 
p + q = 2v + l,p > q, acting in the odd-dimensional space­
time Rp,q . As is well known, these groups have only one type 
of linear fundamental spinor representations, determined by 
the highest weight m = (~,~, ... ,~) (v components). For the 
sake of simplicity we shall denote this class of groups by the 
symbol SO(2v + 1 - h,h), h = O,I, ... ,v. We shall state the 
main results only, which, however, have a more complicated 
form than in the case of even-dimensional space-times. 

Theorem 5.1: Let G = SO(2v + 1 - h,h ), with 
h = O,I, ... ,v. Then the stability group H of the highest 
weight spinor has the form 

H= [SU(v-h)XSL(h,R)]<i<R, (5.1) 

where R is a solvable group whose Lie algebra r has the 
following structure: 

(5.2) 

with t (~) a (~)-dimensional Abelian Lie algebra and 
d 2h

(v- h) + h a [2h (v - h) + h ]-dimensional vector space 
in the so(2v + I-h,h) Lie algebra. 

Proof: (See Appendix C.) 
Similarly as in the even case, there are distinguished sig­

natures for which the carrier space N'" of nonlinear spinor 
representations coincides with a group space. In fact we have 
the following theorem. 

Theorem 5.2: Let G = SO(2v + 1 - h,h). Then for 
h = v the carrier space N'" of nonlinear spinor representa­
tions may be represented-up to a set of Haar measure 
zero-as the group space 

C=R1<i<R, h=v, (5.3) 
where R is a solvable group whose Lie algebra r has the 
following structure: 

r=t(2)+r (5.4) 

with t (2) a G) -dimensional Abelian Lie algebra andfv a v­
dimensional vector space in the so(2v + 1 - h,h ) Lie alge­
bra. 

For h = v-I, N m coincides with the group space 

C = SO(3)<i<R, (5.5) 

where R is a solvable group with its Lie algebra r given by 
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r=t C2-
1)+PV-2, (5.6) 

with t C2- I) a C2- I ) -dimensional Abelian Lie algebra and 
pV-2 a (3v - 2)-dimensional vector space in the so(2v + 1 
- h,h ) Lie algebra. 

In all remaining cases the carrier space N'" coincides 
with the homogeneous space SO(2v + 1 - h,h )1 H. 

Proof (See Appendix D.) 
Formula (5.1) also determines the dimension of the sta­

bility subgroup and the dimension of the Mackey set C 
which is equal to the dimension of the nonlinear carrier 
space N'" . We present these results in Table IV. 

Note that the cases h = 0 and v are not obtainable as 
particular cases of the general h case. 

The nonlinear spinor representations in the RV+ I.v 

spaces were considered by Chevalley.13 It was shown that in 
the RV + I.v spaces there exist pure spinors tPP that satisfy the 
following quadratic constraints: 

i/Jpra, ... a,tPp = 0, for r = O,l, ... ,v - 1. (5.7) 

It was shown in Ref. 6 that the number of independent 
constraints given by (5.7) equals 

r-1-v-(;). 
Hence the dimension d", of the nonlinear carrier space 

N m is 

d", = 1 + v + (;) . 
Using the previous arguments we conclude that 

tPP = TlltPm = TctPm = tP(c), 
where c is an element of the solvable group C given by (5.3). 
It follows from Table IV that 

de = 1 + v + (;) , 
i.e., it coincides with the dimension d", determined by the 
number of independent quadratic constraints. 

We see therefore that the nonlinear pure spinor space 
N m may be represented as the group space C given by (5.3). 
The action of the nonlinear representation Til ofSO(v + l,v) 
in C is determined by the Mackey decomposition. 

The case h = v-I is distinguished by the fact that the 
Mackey set C coincides-up to a set ofHaar measure zero­
with the solvable group given by (5.5). The construction of 
N'" nonlinear space is carried out as previously and this 

TABLE IV. Dimensions of the stability subgroup H and of the Mackey set 
C for the group S0(2v + 1 - h.h ). 

h dimH dimC 

0 v-I 1 + v+ v 
h v - 2 + h (h + 1)/2 2+v+V-h(h + 1)/2 

v-I !(3V - v-4) 1 + (v; 2) 

v !(3V + v- 2) 1 + (v; 1) 
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space may be represented as the group space of the solvable 
group given by (5.5). 

VI. DISCUSSION 

We conclude this work with the following remarks. 
(1) We have presented a systematic method for the con­

struction of nonlinear spinor representations of complex and 
pseudo-orthogonal rotation groups. This method consists in 
finding the stability subgroup representation Th , h E H, of 
the highest weight spinor tPm and on the realization of the 
nonlinear carrier space N'" essentially as the quotient set G I 
H. 

It should be stressed that the present method will pro­
vide the construction of nonlinear representations of SO(p,q) 
groups also for other types of representations, in particular 
for higher spin representations m = (n I /2, n2/2 ... ,nv/2), 
n; ;;;01, for the tensor representations with m = (m1, ... ,mv ), 

m; ;;;Om; + I , m; -non-negative integers, as well as for spin-ten­
sor representations. In that manner one can associate with 
any linear SO(p,q) representation determined by the highest 
weight m = (ml, ... ,mv ) a nonlinear group representation of 
much smaller (in general) dimension. 

It is also clear that the above construction can be ex­
tended to any representation of any group G. 

(2) The most interesting applications of nonlinear spinor 
representations are in field theory and particle physics. In 
fact, as we showed,8 due to the nonlinear constraints (1.3) or 
(3.1) or effectively due to the nonlinearity of the carrier 
spinor space N'" , the simplest SO(p,q) covariant Dirac-like 
wave equation 

a 
Fa --t/J(x) =0, a= 1, ... ,p+q, 

aXa 
(6.1) 

t/J(x) E N m , represents a nonlinear wave equation. This non­
linearity becomes explicit if we write tP(x) in terms of the 
intrinsic components Ck (x), k = 1,2, ... , dim N'" . In this case 
(6.1) reduces to a specific system of nonlinear field equations 
for the intrinsic components Ck (x),k = 1, ... ,dim N'" . This is 
a new field of research which we present in detail. 8 

(3) The pure spinor field theories are attractive for ele­
mentary particle model builders since these models contain 
usually the smallest number of fundamental fields. 14 From 
the aesthetical point of view the nonlinear spinors that have 
the smallest number of independent components provide the 
smallest "building blocks" for an elementary particle mod­
el. 7,8 It would be very interesting to develop a canonical for­
malism for nonlinear spinors and check what particle spec­
trum for fermions and bosons follows from the nonlinearity 
of the theory. 

From a general quantum field theory point of view non­
linear spinor field theories of the considered kind present a 
kind of field theory of u-model type with covariant con­
straints. Hence one may, in principle, apply a standard Fad­
deev-Senjanovic method of quantization of such field theor­
ies. 15 The only novelty is connected with the fact that 
quadratic constraints are imposed on spinor components. 

(4) The results ofthe present work might find also some 
applications in the theory of spontaneously broken quantum 
gauge field models based on SO(n) or SO(p,q) groups. In fact 
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the basic problem of such models is to find a stability sub­
group of the chosen G-representation for the vacuum. which 
we solved with full generality for the considered class of 
groups. 
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APPENDIX A: PROOF OF THEOREM 4.1 

Let us take as a basis for the Clifford algebra R2v _ h.h the 
2v (rX2V) matrices rm. m = 1 ..... 2v. satisfying the anti­
commutation relations (1.25). given explicitly by the rela­
tions 

r 21 _ 1 =H1 + HI' = r2l- \> 

r 21 = HI - HI' = ir2l' 
l=v-h + l ..... v. 

(Ala) 

(Alb) 

(Alc) 

(AId) 

It is easy to see that the generators Xab(a.b = 1 ..... 2v) 
defined by Eq. (1.26) in terms of the ra's ofEqs. (AI) satisfy 
the commutation relations (1.27) of the so(2v - h.h ) Lie alge­
bra. 

Out of all v(2v - 1) linearly independent generators Xab 
ofso(2v - h.h) we can perform the two following sets of real 
linearly independent combinations: (a) v - 2 + h (h - 1)12 
matrices having all elements zero in the first column. i.e .• 

(v-h) 2 matrices A if 

= - H [HI.H, ] + [Hr.Hj ] J = X2; - 1,2j - I + X2/,2j • 
(A2a) 

(v-h) 2 + v - h - I matrices Bif 

(h2) 

3030 

i =2" {- [H;Ji~,.] + [H,.~]J 

... £ v-h 
~if 

=X2;_I,2j -X2;,2j_1 ---h L X2g_I,2g. 
v- g=1 

matrices Tkl 

= -HHk.Hr] 

(A2b) 

= ! {X2k _ 1,2/- I + X 2k,2I + X 2k - 1,21 + X 2k,21_ I J. 
(A2c) 
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(h 2 - 1) matrices ilkl 

{jkl v 

= -HHk.Hl'] +- L HHm.Hm,] 
h m=v-h+1 

= ! {X2k - 1,21- I - X2k,21 - X2k - 1,21 + X2k,2/- I J 

{jkl v 

+h m=V~h+1 X 2m - I,2m' (A2d) 

h (v - h) matrices ell 
= - H [H;.Hrl + [H,·.Hrl J 

= !(X2/ - 1,21- I + X 21 _ 1,2/)' 

h (v - h ) matrices DII 

(A2e) 

= (iI4){ [H;.Hrl - [Hr.Hrl J 

= !(X2;,2I_ I + X2I,21); (A2f) 

(b) v - v + 2 - h (h - 1)12 matrices having some non-null 
element in the first column. i.e .• 

(
v- h) -

2 matrices Aif 

= -!{ [HI.Hj ] + [H, • .H, ] J = X2/_I,~_1 - X21,~ • 

(A3a) 

(v; h) matrices Bif 

(h2) 

= (i/2){ [ H; .Hj ] - [H,.,H, ] J = Xli _ 1,2j + X21,2j _ \> 

(A3b) 

matrices Qkl 

= - H Hk"HI' ] = HX2k - 1,2I-1 

+ X2k,21 - X2k - 1,21 - X2k,2/- I J, 
h (v - h) matrices Cil 

(A3c) 

= - H [ H;.HI' ] + [Hr.H1' ] J 

= !(X2; _ 1,2/- I - X2; _ 1,21)' (A3d) 

h (v - h) matrices Dil 
= (i/4){ [ H;.HI' ] - [H,·.HrJ J = !(X2/,2/_ I - X2;,2/)' 

(A3e) 

I matrix B 
= - (i/2)[H(v_h).H(v_h)' ] =X2(V_ ")-1,2(v-hP 

(A3f) 

matrixD 

= HHv.Hv'] =X2v _ I,2v' (A3g) 

where i,j = 1, ... ,v - h and k,l = v - h + l, ... ,v. 
From Eqs. (2.11) we see that only the first set (a) gener­

ates the stability subalgebra h. The generators (A2a)+ (A2f) 
satisfy the following commutation relations: 

[Aif,Alg] = {jifAjg + {jjgAif - {j;gAjf - {jjfAig, (A4a) 

[Bif ,Big] = {jif A jg + {jjgAif + {j/gAjf + {jjf A/g, (A4b) 

[Aif ,Big] = {jif B jg - {jjgBif + {jigBjf - {jjf Big' (A4c) 

[ilkl,ilm,,] = {jk"ilml - {jlmilk,,' (A4d) 

(A4e) 
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[llkl,Tmn] = 81n Tkm - 81m Tkn + (28kl /h )Tmn' (A4f) 

[Aij ,llkl] = [Bij ,llkl] 

= [Aij ,Tkd = [Bij ,Tkd = 0, (A4g) 

[Cik,CjI] = 8ij !Tw (A4h) 

[Dik,DjI] = 8ij !Tkl' (A4i) 

[Cik,DjI] = 0, (A4j) 

[Aij,CjI] = 8if CjI - 8if Cil' 

[Aij ,DjI] = 8if Dji - 8if Dil , 

(A4k) 

(A41) 

[Bij ,CjI] =8ifDjI +8ifDil - [28ij/(v-h)]DjI, 

(A4m) 

[Bij,DjI] = -8ifCjl -8ifCii + [28ij/(v-h)]CjI, 

(A4n) 

[Cil,Tkm ] = [Dil,Tkm ] = 0, (A40) 

[Cil,llkm] =8lm Cik -(8km /h)Cil , (A4p) 

[Dil,llkm] = 81mDik - (8km /h )Dil' (A4q) 

We see that the (v - h)2 - 1 generators {Aij ,Bij 1 form a 
su(v - h) Lie algebra, while the (h 2 - 1) generators {llkll 
form a sl(h,H) Lie algebra and altogether {Aij ,Bij ,llkll 
form the semisimple Lie algebra su(v - h ) Ell sl(h,H). The re­
maining generators {Tkl,Cil,Dill give rise to an Abelian 
solvable Lie algebra, whose structure is given just by Eq. 
(4.2). Now using Theorem 3.3 of Ref. 5 we obtain the asser­
tion of Theorem 4.1. .... 

APPENDIX B: PROOF OF THEOREM 4.2 

The set of generators, complementary in so(2v - h,h ) to 
the generators giving rise to the stability subalgebra h of 
t/lm+' is given by the generators ofEqs. (A3a)+(A3g) of Ap­
pendix A. 

Since 

[Aij ,Bij] =Bii +Bjj - 2B(v_h),(v_h) +4B, 

i=l=j = 1, ... ,v - h, 

we see that for 

O..;h..;v - 2 

(B1) 

(B2) 

the complementary set of generators (A3a)+(A3g) does not 
form an algebra. 

Let us explore the remaining cases h = v and h = v-I. 
In the so-called neutral case h = v, the complementary 

set is given by the (;) generators Qkl of Eq. (A3c) and by the 
generator D of Eq. (A3g). Their commutation relations are 
given by 

[Qkl,Qmn] = 0, 

[D,Qkl] = 8kv Qlv - 8lv Qkv' 

with k,l,m,n = 1, ... ,v. 

(B3a) 

(B3b) 

We see that in this case the complementary set forms a 
solvable Lie algebra with the structure given by 

(B4) 

where t m is an Abelian algebra of dimension (;). 
In the so-called conformal case h = v-I, instead, the 

complementary set is given by the 
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( v-21) -generators Qkl of Eq. (A3c), 

v-I generators ClI of Eq. (A3d), 

v-I generators DlI of Eq. (A3e), 

1 generator B of Eq. (A3f), 

1 generator D of Eq. (A3g). 

Their commutation relations are given by 

(B5) 

[D,Qkl] = 8kv Qlv - 8lv Qkv, (B6a) 

[Clk,C II ] = !Qkl' (B6b) 

[D lk ,DlI ] = !Qkl' (B6c) 

[B,ClI ] = D lI , (B6d) 

[B,DlI ] = - ClI , (B6e) 

[D,ClI ] = - 8lv Clv , (B6f) 

[D,DlI ] = - 8lvD lv , (B6g) 

[Qkl,Qmn] = [Clk ,DlI] = [B,Qkd = [B,D] 

= [Qkl'Clm ] = [Qkl,Dlm] = 0, (B6h) 

with k,l,m,n = 2, ... ,v. 
We see that the complementary set forms a solvable Lie 

algebra r whose structure is that one given by Eq. (4.10). 
Repeating the argument given at the end of the proof of 
Theorem 2.3 we obtain the assertion of Theorem 4.2. .... 

APPENDIX C: PROOF OF THEOREM 5.1 

Let us take as a basis for the Clifford algebra H2v + I _ h,h 
the 2v + 1 (rXr) matrices r", n = 1, ... ,2v + 1, satisfy­
ing the anticommutation relations (1.25), given explicitly by 
Eqs. (AI) plus the new relation 

(C1) 

It is easy to see that the generators Xab (a,b 
= 1, ... ,2v + 1) defined by Eq. (1.26) in terms of the r a's of 

Eqs. (A1a)+(A1d) and (C1) satisfy the commutation rela­
tions (1.27) of the so(2v + 1 - h,h) Lie algebra. 

Let us now look for the stability subalgebra h of the 
highest weight spinor t/lm. 

From Eqs. (3.6) we see that for the so(2v + 1 - h,h ) Lie 
algebra, in addition to the generators (A2a) + (A2f) and 
(A3a) +(A3g) of the so(2v - h,h ) Lie algebra, we find further 
real linearly independent combinations of Xab generators, 
giving 

(a) h matrices Ek 

= -! [Hk,Ho] =X2k - I,2v+1 +X2k,2v+I' (C2) 

having all elements zero in the first column, and 

(b) (v - h ) matrices Hi 
= -! {[HoHo] + [Hi"Holl =X2i - I,2v+1> (C3a) 

(v - h ) matrices Ki 
= (i/4){ [HoHo] - [H,.,Holl = X 2i,2v+ I' (C3b) 

h matrices Fk 

= -! [Hk.,Ho] = X 2k - I,2v+ I - X 2k,2v+ I' 

having some non-null element in the first column. 

P. Furlan and R. R~czka 
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We can easily check that the set given by the'? - 2 
+ h (h + 1 )/2 matrices (A2a) -+- (A2i) and (e2) form the stab­

ility subalgebra h we are looking for. In addition to the com­
mutation relations (A4a)-+-(A4q) we have in fact 

[Ek,E1] = 2Tk1 , 

[Ek,lllm] = t3km EI - (t31m lh JEk' 
[Ek,Aij] = [Ek,Bij] = [Ek,T1m ] 

= [Ek,Cj/] = [Ek,Dj/] =0. 

(C4a) 

(C4b) 

(C4c) 

From Eqs. (A4a)-+-(A4q) and (C4) we see that the struc­
ture of the stability subalgebra h is just as that one of the Lie 
algebra of(5.1) group. Now using Theorem 3.3 of Ref. 5 we 
obtain the assertion of Theorem 5.1. ... 

APPENDIX D: PROOF OF THEOREM 5.2 

The set c of generators, complementary in 
so(2v + I - h,h ) to the set of generators giving the stability 
subalgebra h of tPm' is formed by the generators given by Eqs. 
(A3a)-+-(A3g) and (C3). 

Since Eq. (BI) still holds, we see that for 

O<h<v - 2, (01) 

the complementary set c of generators (A3a) -+- (A3g) and (C3) 
does not form an algebra. 

Let us analyze the remaining h = v and h = v - I cases. 
In the h = v case the complementary set is given by the 

(;) generators Qkl ofEq. (A3c), 

v generators Fk of Eq. (C3c), (02) 

1 generator D ofEq. (A3g), 

with k,1 = 1, ... ,v. 
Their commutation relations are given by Eqs. (B3) plus 

[Fk.Fd = 2Qkl' (03a) 

[Fk,D] = t3k"F", (03b) 

[Fk,Qlm] II: 0, (03c) 

with k,l,m = 1, ... ,v. 
We see that in this case the complementary set c forms a 

solvable Lie algebra with the structure given by 

(04) 

where r is a solvable Lie algebra having the structure de­
scribed by Eq. (5.4). 

In the so-called conformal case h = v - 1, instead, the 
complementary set c is given by the generators of Eq. (B5) 
plus 

v-I generators Fk of Eq. (C3c), 

1 generator H. of Eq. (C3a), 

1 generator K. ofEq. (C3b), 

withk=2, ... ,v. 

(05) 

Their commutation relations are given by Eqs.(B6a) 
-+-(B6h) plus 
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[H • .K.] = ii, 
[H.,Fd = 2Clk , 

[K • .Fk] = W.k, 

[Fk,F1] = 2Qkl' 
[ii,ii.] = K., 
[K.,B] = H., 

[H.,Cll ] = -!Fl' 

[K.Jjll] = - !Fl' 

[Fk,D] = t3k"F", 
[H.,Qkd = [K.,Qkd = [H.,D] = [K.,D] 

= [H.,Dll] = [K.,C.d = [Fk,B ] 

= [Fk,Qmn] = [Fk,Cll ] 

= [Fk,Dll] = 0, 

with k,1 = 2, ... ,v. 

(06a) 

(06b) 

(D6c) 

(06d) 

(06e) 

(06i) 

(06g) 

(06h) 

(06i) 

(06j) 

We see from Eqs. (B6a)-+-(B6h) and (06a)-+-(06j) that 
the complementary set c forms an algebra. Precisely the 
three generators {H • .K.,ii J satisfy the commutation rela­
tions of the simple compact Lie algebra so(3), while the re­
maining generators {Qkl' D, Fk, Cll , Dll J form a solvable 
subalgebra. Furthermore the so(3) generators produce an au­
tomorphism of the solvable subalgebra. 

We see therefore that the complementary algebra has 
just the structure dictated by Eqs. (5.4) and (5.6). Repeating 
the argument given at the end of the proof of Theorem 2.3 
we obtain the assertion of Theorem 5.2. ... 
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On the projective representations of finite Abelian groups. II 
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Complete sets of inequivalent irreducible projective representations of e::. = {wl,···,w,,; W'(' = 1, 
i = 1, ... ,n; w/wj = wjw;.i,j = 1, ... ,n I with respectto a class off actor sets a are determined, where 
a(w;,wj) = Oa(wj,w/), 1 <i <j<n and 0 is a fixed mth root of unity. A single irreducible projective 
representation of e::. for each factor set a is constructed and called the basic projective 
representation. The rest of the representations are obtained by tensoring the basic projective 
representations with some ordinary representations of e ::.. Projective representations of e::. are 
thus parametrized in terms of its ordinary representations. 

I. INTRODUCTION 

Applications of representation theory of finite Abelian 
groups in different fields of physics such as solid state phys­
ics is well known. More recently, they have been found use­
ful in statistical mechanics (see Rittenberg l

). Also, projective 
representations of Abelian groups arise naturally in the 
study of energy bands in the presence of a magnetic field (see 
Brown2

). 

II. THEORY 

In this paper, we consider e::., the direct product of n 
copies of a cyclic group em of order m and determine its 
inequivalent irreducible projective representations with re­
spect to a particular class of factor sets. 

e::. is an Abelian group of order m" given by 

e::. = {WI' ... 'W,,:w,(, = 1, 

i = l, ... ,n; w/wj = WjWO i,j = l, ... ,n I. 
Let a be a factor set of e::. (see Morris3 for definitions 

and other properties of factor sets and projective representa­
tions). The factor set a may be chosen (up to equivalence) in 
such a way that a'(w;.wj ) = a(w/>wj)a(wj,w;l-I is an mth 
root of unity. 

Morris4 has determined a-regular classes and inequiva­
lent irreducible projective representations (ipr's) of e::. with 
respect to the factor sets in two special cases, when a'(w;.wj ) 
= a(w/,wj)a(wj,w/)-I = 0(1<i< j<n) and either (i) 0 is a 
primitive mth root of unity, or (ii) 2 divides m and 0 is a 
primitive square root of unity. 

We consider a more general case when 0 is primitive k th 
root of unity where k is any divisor of m and obtain complete 
sets of inequivalent ipr's of e::. with respect to these factor 
sets. The results of Morris4 may be obtained as a particular 
case by taking k = 2 and k = m, respectively. The a-regular 
classes of e::. with respect to these factor sets were consid­
ered by Saeed-ul-Islam.s 

If T is a projective representation of e::. with factor set 
a as above over the field of complex numbers and if T/ 
= T(w/), i = 1, ... ,n, then it is easy to see that TI, ... ,T,. satisfy 
the following equations: 

• Permanent address: Department of Mathematics, Bahauddin Zakariya 
University, Multan. Pakistan. 

T,(,=I, i=l, ... ,n; T/1j=01jT;. 1 <i<j<n. (1) 
Conversely, if TI, ... ,T,. are any given matrices satisfy­

ing Eq. (1) then they generate a projective representation T of 
e::. with factor set a and are given by 

T(w"' ... wan) = Tal'···Tan Inn' 

for all a/ E {O, ... ,m - I I, ; = 1, ... ,n. 
The following theorem which gives the number and de­

grees of the ipr's of e::. is proved in Ref. 5. 
Theorem 1: Let a be a factor set of e::. over e satisfying 

a'(wOwj ) = 0(1<; <j<n), where Ois a primitive kth root of 
unity, k divides m. Let m = kl. 

Then we have the following. 
(i) (n even) e::. has l" number of a-regular elements 

given by w~' ... w:n: a/=O (mod k),; = 1, ... ,n and therefore l" 
number of inequivalent irreducible projective representa­
tions of e::. each of degree (k ) 112,. • 

(ii) (n odd) e::. has kl" number of a-regular elements of 

the form w~'···w:n: al== - a2=a3=···==a" (mod k) and 
therefore has kl" number of inequivalent irreducible projec­
tive representations of degree k 112(" - I) • 

We first construct a set of k Xk matrices, which are 
used in the construction of the required irreducible projec­
tive representations. 

If k is odd, let P and Q be the k X k matrices defined by 

0 
0 0 

P= 
0 0 

0 0 
1 0 

0 0 
0 0 

Q= 
0 0 

0 0 
1 0 

0 0 
1 0 
0 

0 0 
0 0 

0 
0 2 

0 

0 
0 

0 
0 

0 3 

0 
0 

o 
o 

o 

o 
o 
o 

(J'< - I 

o 
If k is even, let P be defined as above and 
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0 ; 0 0 0 
0 0 ;3 0 0 

Q= 
0 0 0 ;5 0 

0 0 0 0 ;2k-3 

;2k-1 0 0 0 0 

where; is the 2k th primitive root of unity such that; 2 = O. 
Then in both cases, it can be readily verified that (see Mor-
ris6

) 

pk=Qk=I, PQ=OQP. 

where I is the identity matrix of order k X k. Further, let 

R _ {Pk-IQ, if k is odd, 
- ;pk-IQ, if k is even. 

It follows easily that in either case, 

R k = I, PR = ORP, QR = ORQ. 

Now let 

E21 _ 1 =R®R®···®R®P®I® .. ·®I, 

E2i =R ®R ® .. ·®R ®Q®I® ... ®I, 

i = 1, ... ,v = [nI2]. If n is odd let 

En =R® .. ·®R®R®R® .. ·®R. 

It follows from the properties of P, Q, and R that 
EI, ... ,En satisfy Eq. (I) and therefore generate a projective 
representation TofC: with factor seta. We call T the basic 
projective representation of C: with factor set a. 

It is further verified that 
(i) E~E 2-rE; ... E~v_IE 2~r = 0 [-rjr+ !)I2lvI, 

r = O,I, ... ,k - 1. 

(ii) No other product of matrices E ~J' ... E;'Jr = AI, for any 
nonzero complex number A, except a reordering of (i) or 
when,uJ, ==0 (mod k) in which case A = 1. 

(iii) E~J' ... E;'Jr has nonzero trace if and only if E~J' ... E;'Jr 
= AI for some nonzero complex number A. 

The following result now follows easily. 
Lemma: If X denotes the projective character of the 

basic projective representation T of C: as defined above 
then 

(i) n even, 

X(w~''''w:·) = (k )1/2n, 

where ai =0 (mod k), i = 1, ... ,n, 
(ii) n odd, 

X(w::, .. ·w:·) = 0 - [rjr + !)I2lv(k )(112)(n - I), 

where 

a I = - a2==a3== .. ·= - a2v =a2v + I ==r (mod k ), 

r = 0, l, .... ,k - 1. X(w) = 0 ifw is not of the above two types. 
If n is even, the number of a-regular classes of C: is 

equal to r (see Saeed-ul-Islam5
) and X has value (k )(1/2)n on 

each of these elements. Therefore, 

< X,X> = _1_ L X(w)X(w) = _1_1 n.k (1I2)n.k (1I2)n = 1, 
mn wee:. mn 
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and hence X is irreducible in this case. Similarly it can be 
shown that X is irreducible if n is odd. 

Definition: Let 5 be a primitive mth root of unity such 

that 51 = O. Define O(b" .... b.):C: -C· by O(b, ..... b.) (w~, ... w:·) 
£- b,a, + ... + b.a. ti 11 b { j . = ~ , or a i>ai E O,I, ... ,m - 1 , 1= 1, ... ,n. 

Then O(a, ..... a.) is an ordinary irreducible representation of 
C: and by giving different values to bi> i = 1, ... ,n, we get a 
complete set of inequivalent ordinary irreducible representa­
tions ofC:. 

We consider a subcollection of these representations 
given by 

{O(b, ..... b.) :bi E {O, 1, ... ,1- 1 j, i = 1, ... ,n j 

and define 

1(b, ..... b.) = O(b, ..... b.) T, 

for all bi E {O,I, ... ,I- 1, i = I, ... ,nj. Clearly, 1(b, ..... b.) are ir­
reducible projective representations of C: with factor set 
equal to the factor set of T. If we denote the character of 
1(b, ..... b.) by X(b, ..... b.) then X(b, ..... b.) (w) = O(b, ..... b.) (w)'X(w) for all 
WE C:. Now assume that X(b, ..... b.) = X(b i ..... b~)" where bi>b ; 
E {0,1, ... ,1- I j, i = I, ... ,n. Then we have, in particular, 

X(b, ..... b.) (w7) = X(bi ..... b~)(w7), i = I, ... ,n, 

i.e., 

i.e., 

i.e., 

which implies that k (bi - b ; )=0 (mod m), i.e., bi - b ;==0 
(mod I). Since bi,b ; < I, therefore bi = b;, i = 1, ... ,n. Thus 
1(b" .... b.) :bi E {O, 1, ... ,1- 1 j, i = 1, ... ,n are all inequivalent. 

If n is odd, define 

TIJ) (w) - £- K~a,)T. (w) (b, ..... b.) - ~ (b, ..... b.)' 

forallbl, ... ,bn E {O,I, ... ,I-l},i= 1, ... ,n,j=O,l, ... ,(k-l)l, 

w = w~,,,,w:· E C: and also let X!b~ ..... b.) denote the projective 
h f T (J) C'd . - I C aracter 0 (b, ..... b.). onSI enng w = WIW2 W3"'" 
W2~ IW2v + I , we get 

X!b~ ..... b.) (w) = X!f! .... b.) (w) 
->..£- j(~a,) () £- j '(l:a,) ( ) 
~ X(b, ..... b.) W = ~ X(b, ..... b.) W 

~(j - j ')=0 (mod mI. 
~ j j (mod m) ~ j = j', becausej,j' <om - 1. 

Thus if n is odd then T!t:.. ... b.) are inequivalent for distinct 
values of j. It is now clear that if n is even, the number of 
1(b, ..... b.) is r and if n is odd, the number of T!t:.. ... b.)'S is equal 
to kr which are equal to the number of a-regular classes in 
the respective cases. 

We summarize the above results in the following. 
Theorem 2: A complete set of inequivalent ipr's of C::. 

with factor set a is given by (i) n even, 
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{1(b, ..... b.' :b/ E {O, 1, ... ,1- ll, i = 1, ... ,n l, 
(ii) n odd, 

{Tit~ ..... b.,:b/ E {0,1, ... ,1-l}, i = l, ... ,n, 

j E {O,I, ... ,(k - I )/ll. 

Each of the above representation is of degree kV, v 
= [(n/2)]. 

Corollary 1: (Theorem 1, Ref. 4) If 1= 1, i.e., () is primi­
tive mth root of unity then (i) n even, C::' has only one ipr of 
degree m, and (ii) n odd, C::' has n inequivalent ipr's each of 
degree nV. 

Corollary 2: (Theorem 2, Ref. 4) If () = - 1, i.e., I = ml 
2, k = 2, then (i) n even, C::' has (m/2)" inequivalent ipr's 
each of degree r, and (ii) n odd, C::' has 2 (m/2)" inequiva­
lent ipr's each of degree r. 

Remarks: (i) The above lemma and the theorem give an 
alternative proof of the results proved in Ref. 5. 

(ii) The problem of constructing ipr's in the case when 
a'(w/ ,w}) does not take equal values for different pairs ofi,j's 
will be considered in a subsequent paper. The case n = 3 has 
been discussed by Backhouse and Bradley.7 
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The group of gauge transformations of a smooth principal bundle P (M,G ) over a not necessarily 
compact manifold M and with a not necessarily compact structure group G is proved to be a 
Schwartz-Lie group. Its Lie algebra and exponential map are discussed. 

I. INTRODUCTION 

In recent years physicists have paid growing attention to 
"infinite continuous" groups (as they sometimes are called) 
such as the current group, the group of gauge transforma­
tions, the group of volume preserving diffeomorphisms of an 
oriented manifold X, and the group of symplectic transfor­
mations of a symplectic manifold X. Obviously enough, this 
does not stem from the fact that physicists only recently have 
recognized the importance of this kind of group for funda­
mental physics, 1 but from the fact that mathematicians have 
made progress in endowing them with "smoothness struc­
tures," which allow us to treat them to some extent as the 
usual Lie groups. Frequently these structures are relativized 
from similar ones for Map(X,Y), the space of maps from the 
manifold X to the manifold Y, an object of fundamental rel­
evance in global analysis.2 However, in the treatment of 
Map(X,Y) the compactness of the manifold X, at least, is 
currently assumed. In application to physics this assumption 
may be well suited for specific problems but, generally 
speaking, is clearly reductive. This is particularly evident for 
the "continuous infinite" groups quoted above since the 
manifold X is the space-time or the phase space. Many phys­
ical objects live in space-time: eventually depending on the 
mathematical category they are thought to belong to, for 
some of them to be bounded to live in a compactified space­
time does not result in an essential modification of their 
properties, but for others it results in an artificial enlarge­
ment or reduction of their properties. As things are we can­
not help but remember the ancient mythological story of 
Procustes' bed. 3 

Furthermore, often Sobolev space techniques are used 
jointly with the compactness assumption; these techniques 
offer the well-known advantages of the Hilbertian struc­
tures, but must be paid for with hard limitations and techni­
cal complications. And then, the whole setting becomes very 
unnatural if one tries to remove the compactness assump­
tion. 

For these reasons we consider the recent proposal of 
Michor4.5 very interesting. He endows Coo (X,Y) (the set of 
Coo mapsfromX to Y) with a natural differentiable manifold 
structure working in a very natural and simple setting and 
without assuming compactness for X. Michor's treatment 
gives Coo (X, Y) a topology that is finer than the widely used 
Whitney Coo topology,6 avoids projective limits7•8 and 
r-differentiability,9 and, last, but not least, is meaningful 
from the physical point of view. 

As applications of his treatment, Michor himself has 
discussed some "infinite continuous" groups of relevant in­
terest for physics, for instance, the group Diff X and the 
group of canonical transformations.4(c).4(d).5 In this paper we 
want to apply Michor's treatment to the current group GX 

and to the group Y of gauge transformations. We will show 
that these groups can be given a differentiable structure by 
which they become Schwartz-Lie groups with associated 
Schwartz-Lie algebras; we will also prove the existence of a 
nice exponential map for these groups. 

In Sec. II we introduce, with a short and simple exposi­
tion, Michor's method to give Coo (X,Y) a differentiable 
structure. In Sec. III we study the current group and the 
group of gauge transformations, viewing them as groups of 
sections of smooth group fiber bundles. In Sec. IV we discuss 
the associated Lie algebra and give the exponential map. 

II. Coo ex, Y) AS A SCHWARTZ MANIFOLD 

In this section we endow the set Coo (X, Y) of a smooth 
differentiable structure assuming that X and Yare ordinary 
smooth manifolds, that is Hausdorff, second-countable, and 
locally compact Coo manifolds (hence finite dimensional, 
paracompact, and metrizable). We follow a procedure that is 
clearly equivalent to the Michor procedure,4.5 but, in our 
opinion, more suitable for physicists' taste. According to this 
attitude we start with the discussion of the locally convex 
space, which will play the role oflocal model of the manifold. 

Let t = (E,M,1T;Rm 
) be an ordinary smooth vector bun­

dle over M. We denote by Seco t the real linear space of 
smooth sections with compact support of t. We want to en­
dow Seco t of a locally convex topology suitable from the 
point of view of differential calculus. 

Given an open subset U of Rn we denote by ~ (U,Rm ) 

the real linear space of smooth am -valued maps on U with 
compact support [if m = 1 we shortly write, as usual, ~ (U) 
instead of ~(U,R)]. As is well known,lO in this space a local­
ly convex topology, usually called the Schwartz topology, is 
induced by the family of seminorms 

{q~} We0), 

where 0 is the collection of all the families {} == { {}p} (peNn) 
of continuous real functions {}p on U such that the family 
{ supp {} p} (peNn) is locally finite and 

q~(u): = max maxi Wp(x).DPu(x)1 IRn, oe~(U,Rm). 
peN" xeU 

It is well known from the usual distribution theory that 
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i!} (U,Rm), endowed by the Schwartz topology induced by 
the above family of seminorms, is a complete locally convex 
nuclear space, strict inductive limit of a countable family of 
separable Frechet spaces (even dually nuclear and Lindelof, 
hence paracompact and normal). Locally convex spaces of 
this kind are called (NLF)-spaces by Michor4

(d) ; we will call 
them simply Schwartz spaces. 

If X is an ordinary smooth manifold we can analogously 
consider the linear space i!}(x,Rm). With a nearly obvious 
generalization also this space can be made a Schwartz space. 
Actually, we can take a countable and locally finite atlas 

d = {(Uk,CPk,Rn)} (kEN) 

for X and introduce the family of seminorms 

{qk.U} (kEN, t1E®), 

where ® is the collection of all the families t1 = {t1p } (pENn) 
of continuous real functions t1p on X such that the family 
{ supp t1 p} (pENn) is locally finite and 

qk.U(U) = q::uk)(ud, uei!}(X,Rm), 

where Uk is the local expression of u and t1 k the "local 
expression" of t1. 

Now suppose t = (E,M,1T;Rm) is an ordinary vector 
bundle over M. A family of seminorms 

{qk.U} (kEN, t1E®) 

can be introduced in the linear space Seco t in an analogous 
way considering now a countable locally finite fibered atlas 
for t, that is, a pair (d,td), where 

d=={(Uk,CPk,RnlJ (kEN) 

is an atlas for M, and 

t d = {(1T- I( Uk), Rm + Rn
, (CPk X idRm )o¢'d) (kEN) 

is an atlas for E, such that (Uk ,¢'k) (kEN) is locally finite 
locally trivializing system for t. 

A simple way to see that Seco t endowed with the topol­
ogy induced by this family of seminorms is a Schwartz space 
is the following. 

First suppose that t is trivial over M, that is, 
t = (M X Rm ,M,prM); then Seco t ~ i!} (M,Rm). If t is not 
trivial over M, by a very well-known structural theorem 11 

there exists a vector bundle 11 = (E',M,1T';Rr
) over M such 

that the Whitney sum t e 11 = (E e E' ,M, 1T e 1T' ;Rm + r) is tri­
vial over M, that is E e E' = M X Rm + r. Therefore 
Seco(t e 11) can be given the structure of a Schwartz space as 
above. Moreover, the decomposition Seco(t e 11) = Seco t 
e Seco 11 is also topological, that is, Seco t is a topological 
direct summand of Seco(t e 11). Hence Seco t inherits from 
Seco(t e 11) the structure of Schwartz space together with the 
properties given above. 12 

The nice topological properties of the Schwartz spaces 
are very suitable also from the point of view of differential 
calculus since nearly all the good definitions of smoothness 
are equivalent. 13 For the sake of convenience we choose the 
C;' smoothness, which can be defined as follows: Let V and 
Wbe locally convex vector spaces and U an open subset of V. 
A map f U---+ W is said to be C! on U if for every XEU there 
exists a linear operator D fIx): V---+W such that 
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(1) lim{fI(x+ty)-f(x)]It} = Df(xlY, 
,--+0 

(2) the map D f U X V---+W, 
(x,y)-D f(x,y): = D f(xlY 

is continuous. 

A mapfU---+Wis said to be C~+ Ion U(k>l) iffis C~ on U 
and Dkj, where Dkf =D(Dk-If), is C! on U. A map 
fU---+W is said to be C;' on U if it is C~ on U for every 
k= 1,2 .... 

By a Schwartz manifold we will mean a manifold in the 
C;' sense modeled on a Schwartz space. 

The locally convex space candidate for the role of local 
modelatfofthemanifoldCoo (X,Y)isSeco t f , wheretf is the 
pullbackf·(Ty ) of the tangent bundle Ty = (TY,Y,py) by 
fECoo (X,Y). Obviously Seco tf will be understood as a 
Schwartz space, as discussed above, endowed with the just 
defined C;' smoothness. 

An important tool for the definition of charts on 
Coo (X, Y) is the notion oflocal addition on an ordinary mani­
fold. 

Given an ordinary smooth manifold M, let 
T M = (TM,M,p M ) be its tangent bundle. A local addition on 
Mis a mapping 1': TM---+M satisfying (1) (PM ,1'): TM---+M XM 
is a diffeomorphism with an open neighborhood of the diag­
onal in M XM, and (2) r(Ox) = x, VxEM, where Ox is the 
zero of TxM. 

The most important property of a local addition l' on M 
is that, for every x EM, its restriction rx :TxM---+M is a dif­
feomorphism with an open neighborhood of x in M. Every 
ordinary smooth manifold M admits local additions (see Sec. 
10.1 of Ref. 5). 

Now we are able to introduce an atlas for Coo (X, Y). We 
choose a local addition l' on Y and define, for every fixed 
fECoo (X, Y), 

U;:= {gECOO(X,Y)!g-j, g(x)E"Tf(x)(Tf(x)Y)' VxEX}, 

whereg-fmeans that the set {x EX !g(x)=lf(x)} is relatively 
compact, and 

cP;: Uf---+Seco t, 
g.-q; fIg), (cp ;(g))(x): = rj(x:g(x). 

It is easy to see that cP; is a bijection; its inverse is 

¢';: Seco t---+Uf , 

s.-¢,;(s): = rOs. 

Therefore (U;,cp;, Seco t f ) is a chart atfon Coo (X,Y). 

Now we can show that 

d T
: = {(U;, cP;, Secotf )} flECoo (X,Y)] 

is a smooth atlas for Coo (X, Y). To do this we must prove that 
whenever UfnUg =10, 

(a) cP ;( U ~Ug) is open in Seco t, 

(b) cP ;.Xo(cp ;)-I:cp ;(U~Ug)---+CP ;(U~Ug) 

is a diffeomorphism. 
To prove (a) we just recall that the convergence of a 

sequence {sn } in Seco tf tosESeco tf implies that there exists 
a compact subset K of X such that all but a finite number of 
the Sn 's equal s off K and Sn (x)---+s(x) uniformly on K; by a 
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standard argument this implies that the complement of 
fP J( U /'lUg) in Seco :, is closed. 

The proof of (b) is a simple application of the Oolemma 
8.7 of Michor.' 

So we can conclude that, for every local addition Ton Y, 
.!1fT is a smooth atlas for C.., (X,Y). 

Again by a simple application of the Oolemma it can be 
shown that the atlases .!1fT and.!lf'" are equivalent for every 
local addition T and r' on Y. Therefore the C;' -manifold 
structure introduced in C'· (X,Y) does not depend on the 
choice of the local addition on Y. 

We emphasize that, as shown by Michor, C.., (X,Y) en­
dowed with this manifold structure is a Hausdorff, paracom­
pact, and normal manifold and admits C;' partitions ofuni­
ty. An important point to remark about the tangent space 
TC'" (X,Y)isthat,foreveryjeC'" (X,Y), T,C'" (X,Y)iscanon­
ically isomorphic to the local model Seco:, as is shown in 
Theorem 10.13 of Ref. S. The map, which identifies 
T,C'" (X,Y) with Seco:" can be worked out from Lemma 
10.15 of Michor and is given by 

T,C "(X,Y) 3 [c]-ev[c]eSeco:" 

where [c] is the equivalence class of paths in Coo (X,Y) 
through/, that is c(O) = /, and 

ev[c](x): = [evxOc], VxeX, 

with ev x :C" (X, Y I-Y the evaluation at x. 
In the following we will be particularly interested in 

Sec :, the set of all smooth sections of a given (ordinary) fiber 
bundle: = (E,M,1T). It is shown in Michor,' Proposition 
10.10, that Sec: is a splitting submanifold of C.., (M,E ) 
whose local model at s is Seco(s*(Ver( W.)), where 
p. : W_s(M) is a tubular neighborhood of s(M) in E such that 
p. =S01T t w. and Veris the functor which to every smooth 
fiber bundle associates its vertical bundle. We can substitute 
s*(Ver(E)) for s*(Ver( W.)) if we take into account that 

T.s(x) W. = Ts{x)E, VxeM, 

obviously and that 

T.s(x)W. = T.s(x,(W.).s(X) e(Txs)(TxM), VxeM, 

since s is transversal to the fibers of p. : Ws -s(M). In fact 
from these two relations we have 

Vers{X) Ws = Ver.s(x)E, VxeM. 

Therefore the local model at s for Sec: can be identified with 
Seco(s*(Ver E)). Since Sec: is a splitting submanifold of 
COO (M,E), we also obtain that the map ev introduced above 
gives the canonical identification 

T. Sec: ~Seco(s*(Ver E )). 

III. SCHWARTZ-LIE GROUP OF SECTIONS OF A GROUP 
FIBER BUNDLE 

In this section we use the treatment of Sec. II to endow 
the current group and the group of gauge transformations 
with the structure of the Schwartz-Lie group. 

The (smooth) current group GM is the group of smooth 
maps! M_G from an ordinary smooth manifold M to an 
ordinary Lie group G (see Ref. 14). From Sec. II we have 
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immediately that GM =C." (M,G) is a Schwartz manifold. 
We have to show that the group structure and the manifold 
structure are compatible so that we are allowed to say that 
GM is a Schwartz-Lie group (that is, loosely speaking, a 
smooth group modeled on a Schwartz space). 

Note that GM can be identified with the group of 
(smooth) sections of the trivial principal bundle 
(M XG,M,prM;G). 

The group [1 of gauge transformations of a principal 
bundle P (M,G) over M with structure group G is the set 
Sec P [G] of (smooth) sections of P [G] with the pointwise de­
fined composition low. Here P[G] means the fiber bundle 
associated to P (M,G ) with typical fiber G and action of G on 
G given by the adjoint action b-aba -1. It is well known that 
[1 can be identified with the group of those diffeomorphisms 
f of the total space P of P (M,G ) such that 

/01T = 1T, f(pa) = flp)a, VpeP, VaeG, 

where 1T:P-M is the projection of P (M,G) (see Ref. 15). 
Again from Sec. II we know that Sec P [G] is a Schwartz 

manifold and again we are faced with the problem of the 
compatibility of the two structures. 

We can treat the problem in a more general setting that 
covers both cases. We consider a smooth group fiber bundle 
r=(E,M,rr,G) with the ordinary Lie group G as typical fiber 
and make Sec y into a group with pointwise defined compo­
sition law. We emphasize that we only assume that M and G 
are ordinary manifolds; in particular we do not assume that 
M and (or) G are compact as is usually assumed in this con­
text. 

Theorem 3.1: Let y = (E,M,1T;G ) be a smooth group fiber 
bundle with the ordinary Lie group G as typical fiber. Then 
Sec y, with the pointwise defined composition law, is a 
Schwartz-Lie group. 

Proof: To prove the smoothness of the composition law 

0: Sec yxSec y-Sec y 

(s,s')--0(s,s') = ss', 

we first introduce the pullback of the Cartesian product 
yxyby the diagonal map a: M_M xM and we denote it 
by yx M y. The fiber bundle yx M y is called thefibered pro­
duct of y by itself and its total space may canonically be 
identified withE X ME: = ((u,u')E XE l1T{u) = 1T(u') J andits 
fiber over x eM with the Cartesian product Ex XEx. Then 
we define 

{J: EXME-E, 

(x,(u,u'))-{) (x,(u,u')): = (x,uu'), 

that is, f} is a map which on each fiber Ex XEx is the group 
composition for Ex. Using local triviality it is easy to see that 
{J is a smooth map. 

The map 0 is the composition of the canonical identifi­
cation of Sec yXSec ywith Sec(yxMy) and the map 

Comp,,: Sec(YXMY)-Sec y, 
(s,s')-{}o(s,s'), {Jo(s,s')(x) = s(x)s'(x). 

Now, by Ref. 5, Propositions 10.5 and 10.10, the canoni­
cal identification is a C;' map and by Corollary 10.14.1 of 
Ref. 5, Comp" too is C ;'. Therefore 0 is a C;' map. 

To prove the smoothness of the inverse map Inv on 
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Sec r we proceed in an analogous way. We introduce the 
map 

inv: E-+E, 
(x,u)~inv(x,u) = (x,u- 1

), 

which, using local triviality, is immediately seen to be 
smooth. Since Inv is the composition with inv, again by Cor­
ollary 10.14.1 of Ref. 5 we obtain that Inv is a C ;' map. / / / 

With essentially similar arguments we can prove the fol­
lowing theorem. 

Theorem 3.2: LetA =(E,M,1T;L )beasmoothLiealgebra 
fiber bundle with the ordinary Lie algebra L as typical fiber. 
Then Seco A, with pointwise defined composition laws, is a 
Schwartz-Lie algebra. 

It must be remarked that the requirement of compact­
ness for the supports of the sections of A cannot be removed if 
we want to obtain a topological vector space; in fact, Sec A is 
an Abelian Schwartz-Lie group, but the scalar multiplica­
tion is not continuous at 0; actually, for oeSec A, 
(l/n)O'-o iff oeSecoA, so that the open subset SecoA is 
clearly the maximal subset of Sec A, which is a topological 
vector space. 

Theorem 3.2 suggests a setting for a natural realization 
of the Lie algebra of the group Sec r, which is very useful and 
suitable in applications as, for instance, the possibility of de­
fining an exponential map will show. 

We discuss these matters in the following section. 

IV. THE LIE ALGEBRA OF THE GROUP Sec r 
Given a C;' manifold JI modeled on locally convex 

spaces Ea , let 2"(JI) be the Y(JI) module of the vector 
fields on JI [Y(JI) is the ring of the real-valued C;' func­
tions on JI]. We introduce in this module a Lie bracket in 
the following way: If A and B are vector fields on JI with 
local expressions Aa and Ba the Lie bracket [A,B] is the 
vector field on JI whose local expression is 
- A ~ (v)Ba (v) + B ~ (v}Aa (v), where A ~ (v) and B ~ (v) are the 

derivatives of Aa and Ba at v E Ea . 
To check that the so-defined [A,B] is actually a vector 

field on JI is simply a matter of checking transition relations 
for vector fields. 

Analogously we can define the Lie derivative on Y(JI): 
Iffis a real-valued C;' function with local expressionfa and 
A a vector field on JI with local expression Aa , then the Lie 
derivative !L' Afis the C;' function whose local expression is 
f~ (v}Aa (v). 

It is immediate that the just-defined Lie bracket and Lie 
derivative satisfy the familiar relations 
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[A,B + C] = [A,B] + [A,C], 

[fA,B] = f[A,B] - (!L' J}A, 

[A,B] = - [B, A], 
[A,[B,C)] + [B,[C,A)] + [C,[A,B)] = 0, 

!L' A (f + g) = !L' Af + !L' Ag, 

!L' A (fg) = (!L' Af)g + f(!L' Ag), 

!L' A + J = !L' Af + !L' J, 
!L' kAf = k!L' AJ, kER, 

!L' [A,B] = [!L' A ,!L' B]' 

J. Math. Phys., Vol. 26, No. 12, December 1985 

From these relations we see that the introduction of the 
Lie bracket [ , ] endows 2"(JI) with the structure of Lie 
module over Y(JI). 

If the C;' manifold JI is a C;' group f1 , the invariant 
(under left translations) vector fields are of paramount im­
portance; they constitute a Lie algebra over R, since they are 
exactly those vector fields which are self-related by every 
(left) translation. This Lie algebra over R is called the Lie 
algebra of f1. We will denote it with L[§ . As in the case of 
ordinary Lie groups the map 

eVe: L[§-+Te f1 , 

A~veA: =A (e), 

where e is the unit element of f1, gives a natural isomor­
phism of L [§ as linear space with Te f1. This linear isomor­
phism becomes a Lie algebra isomorphism if we define on 
T. f1 the Lie bracket 

[A (e),B (e)): = [A,B ](e). 

As in the case of ordinary Lie groups, it can be easily 
seen thatifa(t) isa path on f1 throughe belongingtoA (e) and 
b (t) a path through e belonging to B (e), the so-defined 
[A (e),B (e)] is indeed the equivalence class of paths through e 
which the path 

a(1')b (1')a- 1(1')b -1(1'), l' = (sgn t )vitT, 
belongs to. 

Let now f1 be the Schwartz-Lie group Sec r introduced 
in Sec. III. The result remarked at the end of Sec. II, i.e., that 
the tangent space atf to C'" (X, Y) can be canonically identi­
fied with the local model at J, enables us to give a simple 
realization of the Lie algebra L Sec y of Sec r. 

Theorem 4.1: Let Sec r be the Schwartz-Lie group of 
smooth sections of the smooth group fiber bundle 
r = (E,M,1T;G) with the ordinary Lie group G as the typical 
fiber; let Seco A be the Schwartz-Lie algebra of smooth sec­
tions with compact support of the smooth Lie algebra fiber 
bundle A = (F,M ,p;L ) with the ordinary Lie algebra L as the 
typical fiber. If A is defined by L = LG and a local trivializ­
ing system derived in an obvious way by the one of r, then 
the Lie algebra L Sec y is canonically isomorphic with Seco A. 

Proof: Since, for every x EM, 

(e*(Ver E))x~(Ver E)e(x) = Te(x)Etrl.e(x)) 

= Te(x)Ex=Te(x)Gx~Gx' 

by the hypothesis L = LG and local triviality the vector bun­
dles e*(Ver E) and A. are naturally M isomorphic. Calling I 
this M isomorphism we must just show that the composition 

I. oev: Te Sec r-+Seco(e*(Ver E ))-+Seco A 

preserves the Lie bracket. Now, if a(O)ET. Sec r, b (0) 
ET. Sec r, and C(O) = [a(O),b (0)), we have . 

((/.oev)C(O))(x) 

but 

= (I. (ev c(O)))(x) = (/oevc(O))(x) 

= I ((evc(O))(x)) = I ((ev x oc)'(O)); 
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(ev x oe)' (0) = (ev x oa(1')b (1')a-l(1')b -1(1'))' (0) 

= ((evx oa)(1')(evx ob )(1')(evx oa- l )(1') 

X (evx ob -1)(1'))"{O) 

= [(ev x oa)' (O),(ev x ob ). (0)], 

and therefore 

((I. oev)C(O))(x) = I ([ (ev x oa) . (0), (ev x ob ). (0)] ) 

= [/((evxoa)'(O)), l((evxob)'(O))] 

= [(/oev a(O))(x), (/oev b (O))(x)] 

= [(I. (ev a(O))(x), (I. (ev b (O)))(x)] 

= [I. (ev 0(0)), I. (ev b (0))] (x), 

that is, 

(I. oev) [0(0), b (0)] = [(I. oev)a(O), (I. oev)b (0)] . / / / 

Coming to the exponential map, one must expect that 
the possibility of defining a nice exponential map for 
Schwartz-Lie groups in general will meet with serious diffi­
culties. For instance, for the group Diff(M) there exists an 
exponential map whose image generates a dense subgroup of 
the connected component of the identity, 4(d) but it is well 
known that, even in the case of compact M, this exponential 
map, in general, cannot be subjective on any open neighbor­
hood of the identity. For our Schwartz-Lie groups, 
Theorem 4.1 enables us to introduce a nice exponential map. 
In fact, identifying by Theorem 4.1 the Lie algebra of Sec y 
with Seco A we can define 

Exp: LSec y a! Seco A-Sec y, 

q--Exp(q), 

where 

(Exp q)(x): = exp(u(x)) 

and 

exp: F_E 

is defined by 

exp(v) = expp(v) (v), v E F. 

By local triviality the map exp is smooth and therefore Exp 
= Compexp is smooth. 

It can be seen very easily that Exp has the familiar prop­
erties. The only not evident property is that it is a local dif­
feomorphism, but this can be established directly in the fol­
lowing way. 

We know that, for every x EM, there exists an open 
neighborhood Vox in Lox such that on it expx is a diffeomor­
phism with an open neighborhood Uex of ex in Gx • By the 
local triviality it is immediately seen that the union of all the 
U

ex 
is an open neighborhood ofthe image of the unit section 

e. Therefore 

U e : = {sESec yls-e, S(X)EUe(xl' 'dx€M 1 
is an open neighborhood of e in Sec y and we can define 

Log: Ue-Seco A 
s __ Log s: = logos, 

where log is defined in an obvious way. Since Log 
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= COmplog we obtain that Log is a smooth map and since 

(ExpoLog)(s) = expologos = S, SEUe , 

and similarly for LogoExp, we can conclude that Exp is a 
local diffeomorphism. 

v. CONCLUDING REMARKS 

The group of gauge transformations has been studied by 
Mitterand Viallet16 (see also Refs. 17-19 and 15) using Sobo­
lev space techniques and assuming the base space M of the 
principal bundle to be compact. As we have said in the Intro­
duction, in Michor's method Sobolev space techniques are 
not expected. Though to not dispose of Hilbert space meth­
ods may at present cause some trouble (mainly in connection 
with the lack of an inverse function theorem) we can hope 
that in the near future hard implicit function theorems in the 
setting of Schwartz spaces become available. For instance, a 
workable inverse function theorem on Frechet spaces admit­
ting smoothing operators, which applies very well to 
C"" (X, Y), even if only when X is compact, is now available. 20 
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The structure of the local Lie groups of symmetries of some partial differential equations of the 
Fokker-Planck type in one space dimension is investigated. A connection between these groups 
and the group SL2(JR) is established in the sense that they are all shown to be locally isomorphic to 
SL2(JR)A, whereA is the radical. It is conjectured that the groups of Lie symmetries of all Fokker­
Planck equations in one space dimension have this structure. The notion of partial invariance, due 
to Ovsiannikov, is applied to the equations studied. It appears plausible that the class of partially 
invariant solutions of these equations is larger than the class of invariant solutions although no 
explicit demonstration of this claim is available at present. 

I. INTRODUCTION 

The Fokker-Planck equation first arose in kinetic the­
ory,I.2 where it describes the evolution of the one-particle 
distribution function of a dilute gas with long-range colli­
sions, such as a Coulomb gas. It can, for instance, be derived3 

from the Boltzmann equation in the limit of large impact 
parameters. Besides kinetic theory, it occurs in a variety of 
areas4-1O such as engineering and biology. In probabilistic 
literature, it is also called the Kolmogorov forward equa­
tion, II and describes the evolution of the transition probabil­
ity density for a diffusion process. In the case of one space 
variable, to which we shall restrict ourselves here for the sake 
of simplicity, it can be written in the form 

au a 2u au 
-at =a-+b-+cu, (1) 

ax2 ax 
where u is the unknown function, x and t are the space and 
time coordinates respectively, and a, b, and c are smooth 
functions of x and t, assumed to be given. We shall further 
suppose that the processes are homogeneous, which means 
that a, b, andcdepend only onx. While much of what will be 
said here applies to Eq. (1), three special cases, studied earlier 
by BIuman and Cole12 and by Nariboli,13 among others, will 
be discussed in some detail: (i) a = 1, b = c = 0, 

au a 2u 
at ax2; (2) 

(ii) a = {3x, b = 2{3 - ax, c = - a (a, {3 constants), 

au a 2 a at = {3 ax2 (xu) - a ax (xu); (3) 

and (iii) a=!x l -2p, b=(1-4p}x-2P /4, C=p2X-(2p
+l) 

(p a constant such that 2n:=2p + 1 #0), 

au _ 1 a ( I - 2p au 2 - 2p .) 
---- X --:px u. 
at 4ax ax 

(4) 

Equation (2) describes Brownian motion without drift 
and Eq. (3) was first introduced by Feller6 in the study of a 
problem in population genetics. Equation (4) arises in plasma 
physics.9

•
13 Equation (2) has the same structure as the well­

known heat equation, except that in that case u stands for the 
temperature of a solid. From now on, we shall refer to Eqs. 
(2), (3), and (4) as the heat equation, the genetics equation, 

and the plasma physics equation, respectively. 
BIuman and Cole12.14 used the method of Lie symme­

tries to find the invariant solutions (also called similarity 
solutions) of the heat equation and Blumanls did the same 
thing for a special case of Eq. (1). Nariboli 13 considered sev­
eral special cases ofEq. (1) including the genetics and plasma 
physics equations and found the similarity solutions. More­
over, BIumanl6 has shown that every one-dimensional 
Fokker-Plank equation with a six-dimensional group of Lie 
symmetries can be transformed into the heat equation and 
vice versa. In other words, all Fokker-Planck equations with 
a six-dimensional Lie group of symmetries form an equiv­
alence class of which the heat equation is the "canonical" 
member. In view of this result of Bluman's, three ofthe five 
special cases of the Fokker-Planck equation considered by 
Nariboli l3-the well-known Ornstein-Uhlenbeck equation 
is one of them-which tum out to have six-dimensional 
groups of Lie symmetries, belong to the same equivalence 
class as the heat equation. The remaining two examples­
the genetics equation and the plasma physics equation­
each have a four-dimensional group of Lie symmetries, 
which have the same structure. Two natural questions arise 
at this point. (1) Is there an analog of BIuman's result for 
Fokker-Planck equations in one space dimension which 
have groups of Lie symmetries of dimension other than 6, 
and if so, what is the "canonical" equation for each dimen­
sion? (2) What happens to equations in higher dimensions? 
On the basis of our experience with several cases, it appears 
very likely that the answer to the first part of the first ques­
tion is affirmative. Work is still in progress on both ques­
tions, and we shall return to them in a later publication. For 
the present, we shall confine ourselves to identifying the 
structure of the groups ofthe equations considered and mak­
ing some remarks about partially invariant solutions for 
them. 

The heat equation in particular and, in general, second­
order linear partial differential equations in two variables 
have been considered by Ovsiannikov,17,18 who has revived 
the group-theoretical study of differential equations in the 
past two decades and who, specifically, introduced the no­
tion of partial invariance. However, to our knowledge, 
neither Ovsiannikov nor any of the other authors mentioned 
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so far has identified the structure of the groups the way we 
do, i.e., give the Levi decomposition. The remarkable fact is 
that in each case, the semisimple part is isomorphic to 
SL2(R). 

The analysis is carried out mainly, but not entirely, by 
using the methods expounded by Ovsiannikov. 17

,18 In doing 
so, we observe that the basic difference between the method 
used by Ovsiannikov and that used in Refs. 12-15 (it is the 
same method in all cases) is the following: Blurnan, Cole, and 
Nariboli consider Eq. (1) (or special cases of it) and look for 
the infinitesimal generator of the group of transformations 
acting on the (t,x, u) space which are such thatif(t,x, uHt', 
x', u'), then u' satisfies Eq. (1) in t' and x'. Ovsiannikov's 
method does the same thing, except that instead of working 
with Eq. (1) he would work with the equivalent first-order 
system of equations 

v = u,,' Ut = OV" + bv + cu. (5) 

So now one looks for the group acting on the (t, x, u, v) space 
which leaves (5) invariant. Since Eq. (1) and the system (5) are 
equivalent, one would expect the groups to be the same, and 
indeed they are. The point, however, is that if one is interest­
ed in just the invariant solutions one need consider only the 
group acting on the (t, x, u) space, while if one is interested in 
invariant as well as partially invariant solutions, one must 
consider the group acting on the (t, x, u, v) space. The pres­
ence of the extra variable v, the "superftuous" variable in 
Ovsiannikov's terminology, turns out to be essential. 

II. LIE SYMMETRIES 

Since the technique of Lie symmetries is well described 
in the literature, 14,17,18,19 we shall skip the details ofthe con-
struction of the infinitesimal generators of the groups. Our 
notation and terminology are those of Refs. 17 and 18 with 
very slight modifications which are self-explanatory. 

The infinitesimal generator of the system (5) is of the 
form 

a a a a x = S - + TJ - + u- + 7-, 
at ax au av (6) 

where S, TJ, u, and 7 are all functions of t, x, u, and v, which 
can be determined using the techniques described in Refs. 17 
and 18. It follows from the discussion there that for a linear 
system such as (5), S is a function of t alone, and TJ a function 
of t and x only. Moreover, u = ju + g and 7 = u(aj I 
ax) + (aglax) + v(f - (aTJlax) ), where j and g are func­
tions of t and x alone such that 

aj _ c dS _ TJ de _ 0 a 2j _ b aj = 0, (7) 
at dt dt ax2 ax 

andg satisfies the system (5). Thus the problem of finding the 
full group of Lie symmetries of (5) involves finding the gen­
eral solution of(5), which is an impossible task. Like previous 
authors, we simplify the problem by setting g = o. 

A. Heat equation 

We get 

S=OI +02t +03t2, 

TJ = 04 + ost + (xI2) (02 + 2a3t ), 
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(8) 

(9) 

and 

7 = - (uI2) (02 + o~) 
+ V[06 - (02/4) - (303t 12) - (osXI2) - (0~2/4)], 

(11) 

where 0 I' 02' 03' 04, OS' and 06 are arbitrary constants. Let f1 
denote the Lie algebra and G the group. A basis {Xj }, 1 <i<6 
for f1 can be obtained by setting OJ = 1 for a fixed i and 
OJ = 0 for allj#i. One obtains 

and 

a 
XI = at' 

a x a v a 
X2=t-+-----, 

at 2 ax 2 av 
x =t2~+tx~- (..!....+ X2)U~ 

3 at ax 2 4 au 
_ (~+ 3tv + X2V) ~ 

2 2 4 av' 

a a 
X6=u-+v-. au av 

The table of commutators is as follows: 

X4 
XI 0 XI 2X2 -!X6 0 

X2 0 X3 -!X4 

X3 0 -Xs 
X4 0 

Xs 
X6 

X4 0 

!Xs 0 

0 0 

-!X6 0 

0 0 
O. 

Here, XI and X4 correspond to translation in t and x, respec­
tively, whileX6 describes stretching in u and v. The center !I 
of f1 is the span of X6• The radical of f1 is d, the span of X4, 

Xs, and X6• If f!iJ denotes the quotient algebra f1 I d, the 
Levi decomposition of f1 gives 

f1~f!iJed. (12) 

It can be shown that f!iJ is isomorphic to .14 (R), the algebra 
of real, 2x2 matrices of trace zero. Let ZI = - XI' 
Z2 = 2X2, and Z3 = X3. Then {ZI' Z2' Z3} is a basis for f!iJ, 
and 

[ZI,z2] = 2Z1, [ZI,Z3] = - Z2' [Z2,Z3] = 2Z3· 

On the other hand, if 

WI = (~ ~), W2 = (~ ~ 1)' W3 = (~ ~). 
then { WI' W2, W3 } is a basis for .14 (R) and 

[WI ,W2] =2WI, [WI ,W3] = - W2, [W2,W3] =2W3· 

Hence f!iJ S!!.14 (R). So if A denotes the Lie group of d, 
GS!!S~(R)A, where SL2(R) is the special linear group. 
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[Strictly speaking,)8 ~ is a quotient algebra of the full Lie 
algebra of the heat equation. Recall that we constructed ~ 
by setting g = 0; if g is taken to be any solution of the system 
(5), the full Lie algebra is the span of (Xi J, l<i<6, and 
X7 =g(alau) + (aglax)(alau);X7 corresponds toatransla­
tion in u by a solution of(2); and ~ is the quotient of the full 
algebra by the span of X7 , which is an infinite-dimensional 
idea!.] 

B. Genetics equation 

We obtain 

5 = a)eat + a2e- at + a3, 

7J = ax(a)eat - a2e- at ), 

u = [a4 - a(a)eat - a2e-at) - (a2xl/3)a2e- at ]u, 

and 

'T' = - (a2//3 )a2e - atu 

+ [ - 2aa)eat + 2aa2e- at 

+ a4 - (a2xl/3 )a2e - at ] u, 

(13a) 

(13b) 

(13c) 

(14) 

where a), a2,a3, anda4 are arbitrary. Again, let ~ denote the 
Lie algebra and G the group. A basis (Xi J, 1 <i < 4, for ~ can 
be obtained as before: 

a a a a X) = eat_ + axeat _ _ aueat _ _ 2aeat_, 
at ax au au 

and 

a a 
X4=u-+u-. 

au au 

The table of commutators is as follows: 

x) X2 X3 X4 
X) 0 - 2aX3 -aX) 0 

X2 0 aX2 0 

X3 0 0 

X4 O. 
Here X3 corresponds to translation in t while X4 represents 
stretching in u and u. The center !¥ of G is the span of X 4 , 

which is also the radical of ~. If gJ denotes the quotient 
algebra ~ I!¥, the Levi decomposition gives ~ ~ gJ Ell !¥. 
Again, gJ is isomorphic to .?t;(R). Let Z) = (l/a)X), 
Z2 = - (2Ia)X3' and Z3 = - (l/a)X2' (These transforma­
tions are valid only if a#-0; but that is a reasonable assump­
tion.6

) Then (Z), Z2, Z3J is a basis for gJ, and [Z), 
Z2] = 2Z), [Z), Z3] = - Z2' and [Z2' Z3] = 2Z3• Thus 
G~SL2(R)Z, where Z is the Lie group of!¥. 

C. Plasma physics equation 

We obtain 

5=a) +a2t +a3t
2, (15) 
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7J = (a3t In + a2/2n)x, 

u = [a4 + (n - l)a3t In - (a~2n In2)]u, 

and 

(16) 

(17) 

(18) 

where a), a2, a3, and a4 are arbitrary constants. As before, 
one can obtain a basis (Xi J, 1 <i<4, for the Lie algebra ~: 

a 
X)= at' 

a x a u a 
X2=t-+-----, 

at 2n ax 2n au 
2 a tx a [(n - 1) x2n] a 

X3=t -+--+ ---t-- u-
at n ax n n2 au 

_ {2x2n
-) U _ u[(n - 2) t _ x2n ]}~, 

n n n2 au 

and 

a a 
X4=u-+u-. 

au au 

The table of commutators is as follows: 

X) X2 X3 X4 

X) 0 X) 2X2 + (n - l)X4 0 
n 

X 2 0 X3 o· 
X3 0 0 

X 4 0 

As in the case of the genetics equation, if ~ is the Lie algebra 
and!¥ the span of X 4 , !¥ is the center of ~ . If gJ denotes the 
quotient algebra ~ I!¥, then ~ ~ gJ Ell !¥. As before, gJ is 
isomorphic to .?t;(R). Let Z) =X), Z2 = 2X2 , and 
Z3 = -X3' Then [Z), Z2] = 2Z), [Z), Z3] = Z2' and [Z2' 
Z3] = 2Z3, as required. 

Remark' As indicated earlier, the symmetry groups of 
Eq. (1) and the system (5) are the same. For instance, if the 
terms depending on 'T' and u are ignored, our X reduces to 
that of Refs. 12-15. The tables of commutators are the same 
and hence the groups are the same. 

III. CONCLUSIONS 

The structure of the groups of Lie symmetries of some 
Fokker-Planck equations has been studied. While the impli­
cations of the connection between Fokker-Planck equations 
and the group SL2(R) have yet to be investigated, it is clear 
that a BIuman-type resultI6 would yield a classification of 
Fokker-Planck equations based on the dimension of the 
group of Lie symmetries. The examples presented here, as 
well as some work in progress, strongly indicate the exis­
tence of such a result. They also lead us to the conjecture that 
the group of Lie symmetries of every Fokker-Planck equa­
tion in one space dimension has the structure SL2(R)A. 

The examples considered here have been studied earlier 
by BIuman and Cole and by Nariboli, who found the infinite­
simal generators and hence the similarity solutions. One 
might ask what the advantage is in studying the same equa-
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tions by the Ovsiannikov method. The answer is that the 
presence of the extra variable v---the "superfluous variable" 
is Ovsiannikov's terminology 17 -enables one to look for par­
tially invariant solutions,17.18 while it is impossible to do so 
without it. To see this, some notation and terminology are 
needed, which will be developed here. The reader is referred 
to the work ofOvsiannikovl7.18 for a detailed discussion. 

LetHbe a subgroup of G, the group of Lie symmetries of 
the system (5); H acts on the (t, x, u, v) space. If primes denote 
transformed quantities (under the action of H), a function I 
oft, x, u, and v is said to be an invariant ofH if I' = I, i.e., if 
I (t I, x', u' , v') = I (t, x, u, v). A set offunctionally independent 
invariants II, 1 2

, ••• , I~ of H is said to be complete if every 
invariant I of H can be expressed as a function of I 1,/2, ... ,/ \ 
A manifold in the (t, x, u, v) space is said to be invariant under 
H if it is invariant under each element of H. Let Y = (~) and 
U = (:). Then U = ~(Y), where ~ is a vector function, is 
called an invariant solution (with respect to H) of the system 
(5) if the manifold U = ~(Y) is invariant under H. If, on the 
other hand, the manifold U = ~(Y) is contained in some 
manifold invariant under H, U is called a partially invariant 
solution (with respect to H) of (5). Clearly, invariant solu­
tions are partially invariant, but the converse is not always 
true. 

Let H be generated by the set of infinitesimal operators 
{XI, ' Xi, , ... , XIK J, 1 <K <r, where r is the dimension of G. A 
complete set of invariants of H can be found by solving the 

first-order, linear partial differential equation allXi I = 0, 
1 

where the Einstein summation convention has been used and 

where aileR (14<K). Now, in general, there may be more 
than one invariant manifold containing the manifold 
U = ~(Y). Consider the smallest such manifold. It can be 
describedl7 by means of some equations, say q of them, in­
volving 1 1,12

, ... , Ie: 

(19) 

Let s denote the rank of the matrix (ap lacy), where 
1<./3<t', l<r<2, and U= (g~)= (:).Letp = I'-q. Ovsian­
nikov callsp the rank of the solution U = ~(Y). A dimension­
ality argument showsl7.18 that a necessary condition for par­
tially invariant solutions of rank p to exist is 

min{I'-I,n -mJ>p>l'-s, 

where n is the dimension of the space on which H acts and m 
the number of dependent variables. In our case, n = 4 and 
m = 2. One other condition that must be satisfied for partial­
ly invariant solutions to exist is q < m. In Ref. 12-15, m = 1, 
so that this is impossible. Before proceeding to give an exam­
ple, we observe that our computations show only that it is 
plausible that the special cases of the Fokker-Planck equa­
tion considered in this paper have partially invariant solu­
tions that are not invariant. [One reason for seeking such 
solutions is that in many specific problems,20 invariant solu­
tions may not have any meaning (i.e., are not admissible) in 
the context of the problems; in such cases, one could try 
partially invariant solutions.] Regrettably, we have so far 
been unable to find an explicit case in which a solution is 
partially invariant under a subgroup H but not invariant 
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under H or any other subgroup of G. Nevertheless, in the 
expectation that the clue to such a construction might lie in 
the plausibility argument, it is presented here. It should be 
observed, however, that our remark about the necessity of m 
being greater than 1 for partially invariant solutions to exist 
is valid, no matter whether the partial differential equation 
considered is a Fokker-Planck equation or some other equa­
tion. 

Since the computations are lengthy, though straightfor­
ward, we shall consider only one example in detail. This 
concerns the heat equation. 

Consider the subgroup generated by XI and X 6• To com­
pare our work with that of Refs. 12-15, let us suppress the 
terms depending on 'T or v, so that the group acts on the (t, x, 
u) space. 

Then XI = a lat and X6 = u(a lau). Let H denote the 
subgroup generated by XI and X 6• Let HI denote the sub­
group generated by XI alone and H2 that generated by X6 
alone. Let H I be the subgroup of H whose generator is 
aXl + PX6, with a, peR. A complete set of invariants for HI 
is I I = x, 12 = u. The solutions invariant under HI are such 
that f/!{x, u) = 0, or u = fIx), where f must satisfy a differ­
ential equation obtained by substituting u in Eq. (2): 

f"(x) =0. (20) 

This gives u = ax + b, where a and b are arbitrary. A com­
plete set of invariants for H2 is I I = t, 12 = x; there are no 
invariant solutions. Now consider H'. Invariants can be ob­
tained by solving 

(aXl + PX6 )I = 0 (a, peR). (21) 

A complete setisI 1= x,I 2 = ue- Pt1a
• Thesolutionsinvar­

iant under H' are of the form u = ePtla fIx), where 

f"(x) -1fJ la)f(x) = O. (22) 

Observe that if 13 = 0, H' reduces to HI and the solutions 
given by Eq. (22) coincide with those given by Eq. (20). Ob­
serve also that there are no invariant solutions if a = 0, since 
H'would thenreducetoH2• Ifa;i:Oandp ;i:O,Eq. (22) leads 
to the solutions 

u = ePt/a(ae,fffTcix + be - ,fffTciX), (23) 

where a and b are arbitrary. Now let us come back to the (t, x, 
u, v) space. Invariants for H are obtained by solving 
(aXl + PX6)I = 0, i.e., 

a-+pu-+pv- 1=0. ( a a a) 
at au au 

(24) 

A complete set isI I = x, 12 = ue- Pt1a , and 1 3 = ve- Pt1a • 

Solutions of two ranks are possible. Those of rank one are the 
ones invariant17

•
18 under H: 

t/11(X, ue- Pt1a, ve- Pt1a) = 0 

and (25) 

t/12(x,ue- Pt1a, ve- Pt1a) = 0, 

where t/11 and t/12 are some functions. Assuming that the im­
plicit function theorem can be applied, we get 
ue- pt1a = fIx), i.e., 

u = ePtla fIx). 
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The solutions of rank two are those partially invariant under 
H: 

t/J(x,ue- fJt1a, ve- Pt1a) = O. (26) 

Again assuming that the implicit function theorem can be 
applied, we get 

u = ePtla I(AoIl), (27) 

where A = x and I' = ve - Pt la . Ovsiannikov's algorithm for 
constructing the partially invariant solutions now consists in 
deriving a dilferential equation for I(AoIl) by using the sys­
tem of equations (5) and the compatibility conditions 
v'" = Vxt and lAp = I pA as well as the relations Ax = I, 
At = O,p,x = vxe-Ptla ,andp,t = (VI -{3vla)e- Ptla . (Here 
v is what Ovsiannikov calls a superfluous variable.) The com­
putations are straightforward but a little tedious. One ob­
tains (assuming thatll' #0) 

1'211'#' + 2p,1J;.1' - 2p,IJI'#' - 2IJJJ.1' 
+ Iii I'#' + I! 1M + tp I a)p,/! - tp I allf! = o. 

(28) 

As observed by BIuman and Colel2 in a similar context, this 
is not much ofa reduction of the problem of solving Eq. (2). 
Still one can, in principle, obtain solutions partially invariant 
under Hby solving Eq. (28) first and then using that solution, 
along with the equations A = x, and I' = ve - Pt la, to solve 
either of the equations 

Let us consider some special cases now. Let IJ. = O. 
Then Eq. (28) reduces to 

p,2j""(p,) + tp la)p,f'3(p,) -tp lallf'2(p,) = O. (31) 

Ifwe further assume thatp = 0, we obtain a subclass of solu­
tions partially invariant under HI: 

p,l"(p,) = 0, (32) 

i.e., 

I(p,) = ap, + b, (33) 

where a and b are arbitrary. 

Equation (29) now gives Vx = via, which leads to the 
solution v = ~/a g(t ). It can be shown that this, together with 
Eq. (33), gives the three-parameter family of solutions 

u(t,x) = ace(ax + t)la' + b, (34) 

where a, b, and c are arbitrary. Observe that these solutions, 
while not invariant under HI since u is a function oft as well 
as of x, are actually invariant under the transformations 

t'=t+k1, 

x' = x + k2' (35) 
u' = ue(k, + ak,)/a' + b (1 _ elk, + ak,)/a'), 

where kl and k2 are arbitrary. These transformations de­
scribe simultaneous translations in t, x, and u and stretching 
in u. It is easy to check that they form a group. However, that 
group is not a subgroup of the six-dimensional group G 
found earlier unless b = O. This is because b #= 0 implies a 
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translation in u, which is represented by the operator 
X7 =g(t,x)(a lau);andX7, together with {Xi },l<i<6,spans 
an infinite-dimensional Lie algebra. Thus, if b #=0, the solu­
tions given by Eq. (34) are partially invariant under HI but 
invariant under the subgroup (of the full group) generated by 
X It X4, X6 , and X7• If b = 0, they are invariant under the 
subgroup generated by XI' X4, andX6, which is a subgroup of 
G. It is plausible, though difficult to show explicitly, that the 
general solution of Eq. (28) would lead to solutions of the 
heat equation which are not invariant under any subgroup of 
the full, infinite-dimensional group of Lie symmetries ofEq. 
(2). 

The analysis given for the subgroup generated by XI and 
X6 applies to some other subgroups of G as well, for instance 
the subgroup generated by X2 and X6• Similar things can be 
done for the genetics and plasma physics equations also. 

Note added in proof: The condition that I satisfies Eq. 
(28) is necessary but not sufficient for Eq. (2) to have solu­
tions of the type (27). This point, which will be pursued 
further in a later publication, was made by Professor 
D. R. K. S. Rao, to whom we are grateful. 
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The infinite coupling limit of perturbative expansions from a variational 
extrapolation method 
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A method for extrapolating perturbative power series to infinity is described. It is a Borel partial 
resummation stabilized by a variational parameter. Two kinds of series relative to the anharmonic 
oscillators Ix I k , k> 0, are extrapolated in order to illustrate the effectiveness of the method: the 
Rayleigh-Schrodinger series, on the one hand, which, after extrapolation, provides the strong 
coupling expansion of the energy levels, and their lattice expansion, on the other hand, from 
which is extracted the continuum limit. 

I. INTRODUCTION 

The extrapolation of a physical quantity to its value at 
infinite argument from the knowledge of its perturbative se­
ries at the origin is needed in various circumstances, espe­
cially in computing the continuum limit of lattice strong 
coupling expansions. The problem can be generally stated as 
follows. 

One considers a physical quantity I (z) as a function of 
some variable z, which may be, for example, a coupling con­
stant or an inverse lattice spacing. When this variable goes to 
infinity, the behavior of I (z) is assumed to be of the form 

I(z)~z-a LApz- (Jp, p>O, (1.1) 
p 

where the coefficients Ap are unknown: it is the aim of the 
extrapolation to obtain their value in terms of the perturba­
tive expansion of I (z) at the origin 

(1.2) 

" 
To be precise, the leading asymptotic index a is assumed also 
to be known, since it is always provided by dimensional or 
scaling arguments. As for the remaining p, it mayor may 
not be given a priori, and in the latter case it has to be fixed by 
self-consistency. In most situations these indices fall in the 
ranges - l<a<l, 0< P<2. 

There exists a rigorous approach to such a standard 
problem, generally restricted to quantum mechanics, and 
various practical solutions, such as the well-established Pade 
analysis. We shall adopt here the practitioner's point of view 
and in order to enlarge the panoply of numerical tools we 
present a simple method, which we have found to be particu­
larly efficient in various cases, some of which are given be­
low. As usual, the efficiency criteria are the consistency of 
the full available sequence of extrapolated values (i), which 
have to appear precociously (ii), and this pattern must re­
main true where other approaches fail (iii). 

Our method is, roughly speaking, a Borel-like resumma­
tion stabilized by a variational parameter. It is described in 

-I Stagiaire de Recherche du Gouvernement Algerien. 
hi Unite de Recherche associee au Centre National de Ia Recherche Scienti· 

fique. 

Sec. II, and applied in Secs. III and IV to two very different 
extrapolations, although both concern the energy levels of 
the Hamiltonian H (k): 

H(k)==!p2+ g lx l\ k>O. (1.3) 

This has provided for a long time a canonical testing 
ground. I In Sec. III, the (true) strong coupling expansion of 
the levels is derived from their weak coupling expansion 
(thusz g, the coupling constant). By itself this result i~ use­
ful, since generally the extrapolants work only at finite cou­
pling, the main difficulty being to resum the Rayleigh­
Schrooinger (asymptotic) series. In Sec. IV we derive the 
continuum limit of the strong coupling expansion of the 
ground state. In this case the variable z is the inverse lattice 
coupling and the limit we seek is given by A p' P = 0, in the 
expansion (1.1). 

All these examples are considered according to various 
values of the anharmonicity parameter k in the range k > 0, 
and some of the associated series are known to be very diffi­
cult,2.3 even "impossible, .. 2 to extrapolate. We feel that the 
present method greatly improves the situation in this parti­
cular framework and, as it is not restricted to quantum me­
chanics, our hope is that it can facilitate the analysis of var­
ious lattice expansions in field theory. 

II. CONSTRUCTION OF THE EXTRAPOLANTS 

Taking into account the set of input parameters pre­
viously defined, i.e., (a", O<n<N, a, P}, we first construct 
N + I polynomials P" (A ) according to 

P,,(A) = Lalr-I(n -I + l)F-I((a + 1)/ P)A. "-I, 
I 

O<I<n<N. , (2.1) 

It will be clear in the following that A, which we treat for the 
moment as a variable, is for the extrapolation a variational 
parameter and as such, it will be fixed at some positive value 
in terms of the input parameters. It is useful to observe that 

dP"2 I(a+n) dA (A)=P,,_dA), p,,(O)=r- p a", (2.2) 

(2.3) 
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The relation (2.3), whereA 7 denotes the ith root of P" (A ), has 
a simple geometrical interpretation: the first root A ~ is the 
common barycenter of all the n-polygons constructed with 
the n roots of P" (A ). 

As a next step we consider the one-dimensional integrals 
I/(z, A) involving the indices a and /3 previously defined: 

I/(z, A ) = /3z1 l'" ua + /- Ie -..tz" - "II du, 1>0. (2.4) 

From this definition it is obvious that 

I/(z = 0+, A) = iF ((a + 1)/ /3) + O(z1+ I, A), (2.5) 

I/(z, A = 0) = iF ((a + /)/ /3 )), 
aI/ 
- (z, A) = - 1/+ dz, A). (2.6) 
aA 
On the other hand, the change of variable v = AZU in defini­
tion (2.4) gives an equivalent representation, 

I/(z, A) = /3z- aA -a -/ l'" va + /- Ie - v- (vl..tz) 11 dv, (2.7) 

which displays the z = + 00 behavior of 1/ (z, A ) for A > 0 

I/(Z,A) =z-a LW ~(A )z-PP, p>O, (2.8) 
P 

with 

W ~(A) = ( - t)P /3A -a-/-PPF -'tIp + I)F(a + 1+ /3 pl. 
(2.9) 

Thus, comparing the relations (1.1) and (1.2) and (2.8) 
and (2.5) shows that I (z)and/dz,A ),1>0, have the same kind 
of formal expansions at z = + 00 and z = 0+. Our method 
of extrapolation can be interpreted as choosing these inte­
grals as a "basis" in which to expand I (z). The coefficients of 
this expansion are fixed from the knowledge of the z = 0 
perturbation series IN (z) and, as we shall see, tum out to be 
the polynomials P,,(A). Our nth-order extrapolant u,,(z, A) 
then takes the form 

u,,(z, A ) = ~PM )//(Z,A), O<.I<.n<.N. (2.10) 

In order to prove that u" (Z,A ) andI(z) matchatz = 0+, we 
observe that, from relations (2.2) and (2.6), 

au" , , -(Z,A) =P,,(A )/"+I(Z,A), 
aA 

(2.11) 

in such a way that 

U,,(Z,A) =u,,(z, 0) + f' P"(p,)/,,+dz,p,)dp,, (2.12) 

for all z allowing the p, integration (which excludes z = + 00 

due to the end point singularity p, = 0). Since, from relations 
(2.2) and (2.6), 

U,,(z, 0) = ~ o/z1, O<.I<.n, (2.13) 

the representation (2.12) indicates that u" (z, A ) andI (z) have 
the same expansion (1.2) at z = 0+ up to order n, O<.n<.N, 
independently of A (A > 0). The z = + 00 extrapolation is 
then provided by definition (2.10), where 1/ (z, A ) is replaced 
by its asymptotic expansion [(2.8) and (2.9)]. Identifying the 
result with the form ( 1.1 ) gives the extrapolated values of A P : 
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A; = ~ W~(A ),p/ (A) O<.I<.n<.N. (2.14) 

We must now comment on the A dependence of the ex­
trapolants A ;, which follows from Eq. (2.11): 

dA" 
dAP =W;+I(A)P,,(A). (2.15) 

It indicates that for any p>O [or any z> 0 in relation (2.11)] 
the roots A 7 of P" (A ) stabilize the nth-order extrapolantsA ;. 
As n increases, these roots (or their real parts) spread over a 
region R" increasing in magnitude but always containing 
A ~, as indicated by relation (2.3). Moreover, at least in the 
examples we have investigated, the variation of A ; (A ), when 
A describes R", is limited to small oscillations: this can be 
interpreted as an indication of convergence towards a A-in­
dependent value, as it should. Yet at each order of the extra­
polation an optimal value:I" can be chosen inside R" , as an 
illustration of "Stevenson's principle."4 However, taking ad­
vantage of the central position of A ~ , which we have already 
emphasized (and as A : > 0,) we make in what follows the 
simple choice A = A :, independent of the order. This com­
pletes the definition of our sequence of extrapolants in terms 
of the input parameters. 

It is clear from the above derivation that we remain at 
the level of formal series manipulations. Some comments 
can be made, however, in order to justify our choice for the 
"basis" I/(z, A). First, these functions (with A = 1) already 
appear in perturbative expansions of multidimensional func­
tional integrals.s Second, and this gives some hints about the 
convergence of the extrapolation, they realize a particular 
Borel resummation of I N (z), which can be seen in the follow­
ing way. The Borel transform p(u) of IN(Z) with indices (a, 
/3 ) is defined as 

p(u) = + o"u"F _I(a; n). n>O, 

in such a way that 

I (z) = /3 l'" e - yll ya - I p(zy)dy. 

(2.16) 

(2.17) 

On the other hand, it can be checked from their definition 
that the polynomials P" (A) are generated by fI" p(u), i.e., 

eA"p(u) = L U"P,,(A) U~O. (2.18) 
" .. 0 

Thus, if A is such that the relation (2.18) extends to u>O, the 
continuation it implies for p(u) can be put into the integral 
(2.17), which is then at order n nothing else than U" (z, A ) 
[from definition (2.10) with 1/ (z, A ) given in definition (2.4)]. 

III. FROM WEAK TO STRONG COUPLING: THE 
ANHARMONIC OSCILLATOR EXAMPLE 

As a typical illustration of the previous method we con­
sider the strong coupling regime (g ~ + 00) oftheL th ener­
gy level EL (g), L>O, of the quantum mechanical Hamilton­
ian Hk given in definition (1.3). It is known from scaling I 
that they behave according to a convergent expansion ofthe 
form (1.1), where 
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TABLE I. First-order approximant A ~ of the leading coefficient Ao of the strong coupling expansion for the ground state of the Hamiltonian H k, for various 
values of k. The exact results Ao are taken from Ref. 2. 

k 

A' 0 0.91822 0.87418 0.806 88 0.74354 

Ao 0.92245 0.87894 0.80861 0.74388 

a= -21(2+k), p= -2a, (3.1) 

i.e., 

Edg) =g2/(2+ k) IA pg- 4p/(2+k), p>O. (3.2) 
P 

Our aim is to express the coefficients A p p>O, in terms of (a, 
P) and the perturbative expansion of E L (g) at g = 0+: 

EL(g) = I 0 pgP, O<p<N. (3.3) 
P 

This approach is thus an improvement of earlier ones6 un­
dertaken in the same spirit, since it seems there does not exist 
a specific algorithm to generate the coefficients A p • 

We first consider the ground state Eo(g), whose Ray­
leigh-Schrooinger series (3.3) begins with 

oo=~' 01=21- kr(k)F-I(kI2). (3.4) 

This allows us to compute the root A ~ defined in Eq. (2.3), 

A ~ = 23 - k.{iir(k)F -1(k!2)F -I(k 14), (3.5) 

which is positive, as required (but unbounded as k goes to 
infinity). It is instructive to write explicitly the first-order 
approximant A! of A p from Eq. (2.14), i.e., 

A I = ( - 1)P + I (A ~ ) (2 - 4 p)/(2+ k) 

p .{ii(2 + k) 

xr-I(p + 1)F( 4[ ':k2) , 

which gives, for the first values ofp (p = 0, 1,2) 

A ~ = (1I2.{ii)t..1. ~ )21(2 +k)r (k I(k + 2)), 

(3.6) 

A~ = [1I.{ii(k+2)] (..1.D-2/(2+k)r(21(k+2)), (3.7) 

A ~ = [ - lI.{ii(k + 2)] (A ~) -6/(k+2)r(6/(k + 2)). 

It can be verified in the sohible example of the harmonic 
oscillator k = 2 that these expressions are then the exact 
ones. In this case the approximants are independent of the 
order n since..1. ~ turns out to be the multiple common root of 
all the polynomials Pn (A ). We give in Table I some values of 
the leading coefficient A ~ as a function of the anharmonicity 
parameter k and later in Table III (first line) the values of A ~ 
and A ~ when k<4. Since A ~ is exponentially divergent as 
k -+ + 00, the agreement of the values implied by Eqs. (3.7) 
with the true ones, which is perfect at k = 2, must be lost 
when k increases. Despite the fact that only 0 0 and 0 I were 
used as input, the agreement is seen to be rather good over a 
large range of anharmonicity. 

This feature persists for higher levels, as we show now in 
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4 6 8 10 

0.66673 0.68030 0.70790 0.73998 
0.66798 0.68070 0.70405 0.72848 

<Ao 
<0.72960 

the case ofthex4 anharmonic oscillator, as a standard exam­
ple. The first terms ofthe series (3.3) in such a case are 

0 0 = L + ~, 0 1 = ~ o~ + i, (3.8) 

and at first order the leading behavior of E L (g) for 
g -+ + 00 is found to be 

EL(g)-gI/3(L + ~)4/3C(L), (3.9) 

with 

C(L) = (3/1T)1/3rH)[1 + (2L + 1)-2]. (3.10) 

The numerical variations of C (L ) with L, up to L - + 00, 

shown in Table II, indicate a general agreement with the 
exact values within 3% at most. 

We tum now to th~ investigation of the higher-order 
corrections. From the last comment at the end of the pre­
vious section, these are expected to be small, even conver­
gent, at fixed A = A ~, when the asymptotic indices (a, P) 
ensure Borel resummation of the Rayleigh-Schrodinger se­
ries. We thus compare these indices with the leading expo­
nential behavior of the coefficients an , when n goes to infin­
ity, which is known to be7 

an -(-I)nr(n(kI2-1)+!), L=O. (3.11) 

The convergence can be expected when 

11 P>k 12 - 1, i.e, k<3. (3.12) 

We have not studied examples ruled out by the criteria (3.12) 
but we think that a higher order can be stabilized by relaxing 
the constraint A = A ~, as is obviously necessary when 
k _ + 00. As the typical anharmonic oscillator X4 lays in 
the admissible range (3.12), we have computed the sequence 
of approximants to Ao, A I' and A2 for its ground state. These 
are listed in Table III up to the order N -15 and the results 
obviously support our conjecture. It is also interesting from a 
practical point of view to observe that high precision is 
reached within the first few orders. 

We thus think that the method, at least when the anhar­
monicity is not too strong, provides us with a systematic, 

TABLE II. First-order approximant C (L ) oftheL th level of the anharmonic 
oscillator H., as given by Eq. (3.10), for various values of L. The exact values 
are taken from Ref. 9. 

L o 2 3 4 5 +00 

C(L) 1.6800 1.38l1 1.3510 1.3425 1.3389 1.3371 1.3345 
Exact 1.6832 1.3940 1.3842 1.3804 1.3789 1.3781 1.3765 
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TABLE III. Numerical values at increasing order n of the extrapolants of 
the three first coefficients Ao. A I' and A2 of the strong coupling expansion 
(1.1) in the case of the ground state of the anharmonic oscillator H 4 • The 
values for Ao and AI are taken from Ref. 9. and from Ref. 10 for A2· 

n An 
0 

An I - I(t!XA ~ 

1 0.666 730450 0.144 323 759 0.884194 
2 0.667449 228 0.144012579 0.875615 
3 0.667 883 970 0.143749081 0.866275 
4 0.667 962 767 0.143689382 0.863736 
5 0.667986291 0.143668319 0.862702 
6 0.667987601 0.143669783 0.862628 
7 0.667 987 692 0.143666874 0.862621 
8 0.667 986 823 0.143667968 0.862695 
9 0.667 986 578 0.143668303 0.862718 

10 0.667 986 335 0.143668660 0.862746 
11 0.667 986 304 0.143668709 0.862750 
12 0.667 986 253 0.143668794 0.862758 
13 0.667 986264 0.143668776 0.862756 
14 0.667 986 250 0.143668800 0.862758 

Exact value 0.667 986 259 0.14367 -0.863 

simple, and analytic algorithm for going from weak to strong 
coupling expansions. 

IV. EXTRAPOLATION OF LATTICE SERIES 

As a different kind of application of our method, we 
compute the continuum limit of a family of lattice strong 
coupling expansions. The series we have chosen gives in that 
limit the ground state Eo(g) of the Hamiltonians Hk pre­
viously considered, according to 

Eo(g) =g2l(2+k)E(k), (4.1) 

E(k) = [(k + 2)12k] lim {t kl(k + 2) .I (t)} . (4.2) 
t= + 00 

In the relation (4.2),.I (t ) denotes a perturbative series corre­
sponding to the expansion in the inverse coupling of the 
functional integral associated to H k , within the regulariza­
tion provided by a one-dimensional lattice of spacing a. This 
expansion reads 

.IN(/)=.Ia"I", ao=l, al= -2F(3/klF- 1(l/k), 
(4.3) 

where I is a dimensionless variable 

I = a - (2 + k lIkg - 2/k, i.e., a _ 0 ~I _ + 00. (4.4) 

A detailed derivation of these relations can be found in Refs. 
2 and 3. 

Our objective here is to compute E(k ) from the knowl­
edge of .IN (I ),n<N -20, since the limit (4.2) implies that.I (I) 
behaves at 1= + 00 according to the form (1,1) where the 
index a is 

a =k/(k+ 2). (4.5) 

As a first technical difficulty, absent in the previous exam­
ple, it thus appears that the remaining index {3 is unspecified. 
The other difficulty is that .IN (I ) extrapolates badly, accord­
ing to previous analyses, for some specific values of the an­
harmonicity. In fact the behavior of the input series .IN (I ) 
presents the following characteristics.3

•
8 

(i) For k < 1 the series is asymptotic: 

a,,-(-1)"r(n(2/k-1)) asn-+oo. (4.6) 

It is Borel summable in the interval i<k < 1 and when k < i 
there is no successful extrapolation of the series (the Pade 
approximants converge to a wrong answer). 

TABLE IV. Range of values found for fJ and EN by applying the criteria (4.8) at order N for various choices of the anharmonicity parameter k. Here. EN is the 
Nth-order approximant of E{k) defined in Eq. (4.2) for the ground state of H k • The exact values are taken from Ref. 2. 
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N 

5 
10 
15 
20 

5 
10 

15 
20 

5 
10 
15 
20 

5 
10 
15 
20 

5 
10 
15 
20 

k 

4 

00 

fJ 

0.34 - 0.41 
0.32-0.37 
0.31-0.35 
0.30-0.34 

0.47 - 0.51 
0.45 -0.50 

0.40-0.47 
0.41-0.46 

0.63-0.68 
0.62-0.69 
0.55 -0.68 
0.60-0.63 

1.0 - 1.5 
1.0 - 1.5 
1.0 - 1.5 
1.28 - 1.33 

0.75 -4.8 
0.75 -2.7 
0.9 -1.85 
0.95 - 1.65 
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EN Exact value 

0.857 -0.912 
0.882 -0.949 0.92245 
0.890 -0.916 
0.928 -0.949 

0.846 -0.865 
0.865 -0.872 0.87894 

0.863 -0.892 
0.875 -0.886 

0.795 -0.805 
0.799 -0.809 0.80861 
0.803 -0.816 
0.808 - 0.811 

0.653 -0.676 
0.663 -0.680 0.66798 
0.651 - 0.671 
0.6680 - 0.6685 

0.70 -0.95 
0.78 -1.3 1.2337 
0.83 -0.96 
0.91 -1.2 

Bonnier, Hontebeyrie, and Ticembal 3051 



                                                                                                                                    

(ii) For 1 <k < 2 the series remain asymptotic, the large 
orders being unknown. Various extrapolations work. 

(iii) For k>2 the series has a finite radius of convergence. 
As k increases it becomes more difficult to extract the con­
tinuum limit, especially at k = + 00 (the square well). 

Taking these facts into account, we want to apply our 
method to some characteristic values of k, i.e., k = !, j, 1,4, 
+ 00. We want also to stick to our simplifying choice 

A = A 1 , which is admissible, since here 

A I =~r(~)r-I(~)r( k ) 
12k k .o(k + 2) 

xr-I(~(1 + k:2)). (4.7) 

i.e., A 1 is positive (.0> 0) and bounded for all k. The results 
E p we obtain in that way for E(k) at order p are thus .0 
dependent and this freedom has been restricted by self-con­
sistency, as we look for the minimum in .0 of the function 
.d n ( .0 ) defined by 

.dn(.o) = L (E p - E p-I )2, sup (I, n - 1O)<p<n. 
p Ep 

(4.8) 

In fact we allow for .d n ( .B) a variation of one order of magni­
tude around its minimum: this gives an "admissible" range 
of values for .0, and the corresponding extrapolants E p' 

These results are listed in Table IV for the chosen values of k, 
and they display a significant improvement over previous 
approaches,2,3 especially as k -+ O. We emphasize that the 
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harmonic oscillator case is exactly treated with the value 
.0 = 1, and that our estimate of .0 from the criteria (4.8) is 
consistent with the large-order behavior given in Eq. (4.6), 
which indicates that 

1/ .o>2Ik - 1, 

i.e., (4.9) 

.0< .oe(k) = k /(2 - k), k < 1, .oem = i. 
Our main conclusion is to observe that satisfactory results 
are obtained with a reasonable amount of perturbative terms 
(N -10) on the whole range of values of k, in spite of the very 
different kinds of behavior of the extrapolated series. This 
indicates that such a method may be successfully applied to 
lattice expansions in field theory. 

lB. Simon in Cargese Lectures in Physics (Gordon and Breach, New York, 
1970), p. 383; A. Martin, ibid., p. 415 . 

2e. M. Bender, L. R. Mead, and L. M. Simmons, Jr., Phys. Rev. 024,2674 
(1981). 

3B. Bonnier, Nucl. Phys. B 243,253 (1984). 
4p. M. Stevenson, Phys. Rev. 023,2916 (1981). 
sB. S.Shaverdyan and A. G. Ushveridze, Phys. Lett. B 123, 316 (1982). 
6G. Parisi, Phys. Lett. B. 69,329 (1977); B. Bonnier, Phys. Lett. B 78, 107 
(1978). 

7E. Brezin, J. e. Le Guillou, and J. Zinn-Justin, Phys. Rev. 0 15, 1544 
(1977). 

8e. M. Bender, L. R. Mead, and L. M. Simmons, Jr., Phys. Rev. 028, 936 
(1983). 

9p. T. Hioeand E. W. Montroll, J. Math. Phys.16, 1945 (1975). 
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An algorithm for constructing a Hamiltonian from the generators of a dynamical group G, which 
is invariant under the operations of a symmetry group H C G, is presented. In practice, this 
algorithm is subject to a large number of simplifications. It is sufficient to construct an integrity 
basis of H scalars in terms of which all H scalars can be expressed as polynomial functions. In 
many instances the integrity basis exists in 1-1 correspondence with the Casimir operators for a 
group-subgroup lattice based on the pair H C G. When this is so the theory embodies natural 
symmetry limits and analytic results for observables can be given. Examples of the application of 
the algorithm are given for the dynamical group SU(2) with symmetry subgroups C3 and U( 1) and 
for SU(N) ::J SO(3), N = 3,4, and 6. 

I. INTRODUCTION 

The physical properties of many systems are determined 
by a dynamical group G. Often G is a finite-dimensional Lie 
group, whose Lie algebra G is spanned by a set of operators 
Xo i = 1,2, ... ,n = dim(G), the infinitesimal generators of G. 
The dynamical properties of the system are then defined by 
specifying a Hamiltonian. The Hamiltonian is a function of 
the basis vectors of G, H = H(X). This function can be ex­
pressed as a graded and symmetrized power series in the Xi' 

H(X) = A (0)1 + A II) Xi + (1/2!) A I~Xi Xj 

+ (1/31) A g~ Xi XjXk + .... (Ll) 

The terms homogeneous of degree d in the Xi may be taken 
as symmetric under permutation of the operators. If they are 
not symmetric, they may be written as the sum of a symmet­
ric part and an antisymmetric part. The degree of the anti­
symmetric part can be reduced by one using the commuta­
tion relations ofG, [Xo Xj ] = C ~j Xk • As a result, there are 
(n + d - 1 )!/(n - 1 )!d ! operators which are homogeneous of 
degree d in the n generators Xi and fully symmetric under 
the action of the permutation group Pd' These operators 
span a linear vector space of operators, Ud (G). The direct 
sum of these operator spaces is called the universal envelop­
ing algebra ofG, U(G) = l:d=O Ell Ud(G) (see Ref. 1). 

If the physical system possesses a symmetry group 
H C G, then the Hamiltonian must be invariant under the 
action of H. This severely restricts the form of the expansion 
(Ll), since the Hamiltonian must now be a sum of the H 
scalars of U(G); that is, operators which transform under the 
identity representation re(H) of H. The determination of the 
H scalars in U(G) is a classic group theory problem resolved 
by a simple algorithm. 

Algorithm: 
(1) Determine pi (G ), the representation of G carried by 

Ud(G). 
(2) Determine the number of times r(H) occurs in 

r d (G) under the restriction of G to H. 
(3) The basis operators for each r(H) are the H scalars 

in Ud(G). 

If, in addition, the Hamiltonian is to display time reversal 
invariance and be Hermitian, the expansion (1.1) must be 
further restricted to accommodate the requirements of these 
order-2 discrete operations. 

If Gi is a subgroup of the dynamical group G containing 
the symmetry group (H ~ Gi ~ G), the invariant operators 
of Gi (Casimir invariants) are H scalars in U(G). If a set of 
subgroups Gi (including H and G) exists with the property 
that the number of H scalars of degree d is equal to the num­
ber of distinct products of degree d of the Casimir operators 
of the Go then the search for H scalars can be resolved by the 
construction of a group-subgroup lattice. When this is possi­
ble, major simplifications follow since the Casimir operators 
and their spectra are known for the simple Lie groups. In 
particular, the existence of such group-subgroup chains pro­
duces a theory that embodies natural symmetry limits and 
has analytic expressions for observables. 

II. GUIDELINES AND SIMPLIFICATIONS 

The algorithm presented above is much easier to state 
than to implement. However, in many cases of physical in­
terest (e.g., restriction to boson Hilbert spaces) a number of 
simplifications occur, making it unnecessary to deal with the 
full group theoretical machinery implicit in steps (1)-(3). For 
this reason we devote this section to a number of guidelines 
for using the algorithm, to the conditions under which sim­
plifications occur, and to methods available for implement­
ing the simplifications in an economical way. 

(1) The representation rd(G) ofG on Ud(G) is generally 
reducible. It is then useful to carry out the reduction 

rd(G) = l: Ell r"(G) (2.1) 

into a direct sum of irreducible representations r" (G ), since 
a great deal is known about the irreducible representations of 
Lie groups. In particular, standard tools can be invoked to 
effect the reduction of r" (G) to r e(H). 

(2) The Xi span the adjoint representation of G. The 
symmetric tensor product Xi ® Xj ® ••• ® X k can then be 
computed, and its irreducible content deduced by applying a 
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symmetric plethysm to the adjoint representation of G (see 
Ref. 2). 

(3) When U(G) acts in an invariant Hilbert space, which 
carries an irreducible representation rl'(G), the number of 
inequivalent irreducible tensors oftype (A ) [i.e., tensors that 
transform irreducibly under rA(G)] that occur in U(G) is 
equal to the number of times ( p) occurs in the decomposition 
of(A) ® (p) (see Ref. 3). 

(4) If two sets T AI and T A2 of irreducible tensor opera­
tors of degrees d t and d2 > d t are equivalent within each in­
variant Hilbert space, then At = A2 and T A2 can be obtained 
by multiplying T AI by a function of the Casimir operators of 
Gofdegreed2 -dt , TA2 = F(C)T AI. 

(5) When U(G) acts on an invariant Hilbert space which 
carries an irreducible representation rl'(G), where p is a 
Young pattern of arbitrary size and row lengths (generic or 
nondegenerate case), the number of inequivalent tensors of 
type (A) that occur in U(G) is equal to the number of zero 
weights that occur in the representation r A (G) [e.g., 2, 3, 5 
for the adjoint representations ofSU(3), SU(4), SU(6), respec­
tively].4 

(6) Under restriction of the action ofU(G) from generic 
to degenerate classes of representations, characterized by 
having one or more Young partition row lengths equal to 0 
or more than one of equal length (i.e., [k] or [1 k], for boson 
or fermion representations ofSU(N), N> 2), the inequivalent 
tensor content ofU(G) can be reduced in three ways: (i) some 
operators may have only zero matrix elements within the 
restricted class of Hilbert spaces under consideration; (ii) in­
equivalent tensors of the same type in U(G) may become 
linearly dependent on restriction to a special class of Hilbert 
spaces; and (iii) functionally independent operators (e.g., the 
Casimir operators) may exhibit functional dependences on 
restriction to degenerate Hilbert spaces. 

(7) When U(G) acts on nongeneric or degenerate repre­
sentations of type rl'(G), the number of inequivalent irredu­
cible tensors of type (A ) that occur can be determined by 
using a simple algorithm. 

(i) Determine the highest weight in (p). 
(ii) Determine the largest subgroup KeG which 

leaves this highest weight invariant up to a phase factor. 
(iii) Determine the number of times the identity repre­

sentation of K, re(K), is contained in the restriction of 
r(A)(G) toK. 

This number is equal to the number of inequivalent tensors 
oftype (A ) which occur in U(G), and these operators are the 
basis vectors on which the r e(K) act. This algorithm is an 
implementation of remark (3), above, for degenerate repre­
sentations. For generic representations, K is equal to the 
Cartan subgroup, so remark (5) is a special case of this result. 

(8) As d increases, the number of G tensors in Ud (G) 
increases rapidly. It then becomes useful to apply the same 
methods to the description of irreducible tensor operators as 
have been applied to a description of irreducible representa­
tions. In the latter case, a complete set of fundamental irre­
ducible representations is introduced, with the property that 
every irreducible representation can be obtained as a 
"stretched" (fully symmetric) product formed from 
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members of this fundamental set.3 A semisimple group or 
algebra of rank I has exactly I fundamental irreducible repre­
sentations. Similarly, in the case of tensor operators, a com­
plete set of fundamental irreducible tensor operators is intro­
duced, with the property that every irreducible tensor 
operator can be obtained as a "stretched" tensor product 
formed from members of this set. S The set of fundamental 
tensor operators is finite; a folk theorem says that the num­
ber of non-Casimir fundamentalH-scalar tensors is twice the 
number of missing labels in the reduction of representations 
of the dynamical group G to the symmetry subgroup H (see 
Ref. 6). The number of missing labels depends on the class of 
representations of G under consideration and decreases as 
the degeneracy increases. The complete set of fundamental 
tensor operators is called an integrity basis for U(G). 

(9) It is possible to construct generating functions for the 
irreducible tensor content ofUd(G) in terms of the integrity 
basis for U(G). 

(10) The simplifications brought about by the introduc­
tion of generating functions in the integrity basis encounters 
a minor problem; namely, not all possible products of ten­
sors in the intregity basis may be independent. The generat­
ing function must take account of this. 

(11) The generating function for the irreducible G-tensor 
content of Ud (G) can be transformed into a generating func­
tion for the H-scalar content in Ud (G) using the known 
branching rules of G ~H. 

(12) The generating functions and branching rules for 
Lie subgroups of Lie groups generally do not incorporate the 
discrete operations under which the Hamiltonian must re­
main invariant. The two most important discrete transfor­
mations for our purposes are space reflection P and time 
reversal T. Both of these discrete operations are of order two. 
As a result, under each discrete operation the Lie algebra of 
G splits into two parts corresponding to the positive and 
negative eigenvalues ( + 1 and - 1) of these discrete trans­
formations. Only H scalars that are positive eigenvectors of 
P and T can occur in the expansion (1.1). 

(13) Hermitian conjunction is an operation on represen­
tations of an algebra G rather than on G itself. The Hamil­
tonian must be invariant under Hermitian conjugation. 
When G is compact, the adjoint representation [see remark 
(2)] of the algebra G is Hermitian. The H-scalar operators 
that occur in Ud (G) are then either self-adjoint or occur in 
Hermitian adjoint pairs, since Ud (G) is a symmetric d th-or­
der tensor product of self-adjoint operators. Each self-ad­
joint operator in U(G) introduces one real parameter while 
each Hermitian adjoint pair of operators introduces one 
complex parameter. 

In the following four sections we illustrate the use of the 
algorithm presented in Sec. I as well as the mechanisms and 
procedures listed in this section, for four dynamical groups 
of physical importance. These are SU(2) (point group tensor 
harmonics, Morse oscillator, and isospin), SU(3) (Elliott 
model), SU(4) (vibron model), and SU(6) (interacting boson 
model). 

III. DYNAMICAL GROUP SU(2) 
In this section we consider SU(2) as a dynamical group 

in three manifestations. In the first case the symmetry sub-
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group H is taken to be the discrete group C3• This makes 
contact with previous work in ligand field theory. In the 
second case the symmetry subgroup is taken to be U(l). The 
SU(2) ::::> U( 1) structure is the simplest case in which G and H 
are both Lie groups. This situation is encountered, for exam­
ple, with the Morse oscillatoe,8 and in isospin theories.9 In 
the third case the dynamical group G is taken to be the direct 
product group SU(2) ® SU(2) with the symmetry subgroup 
H again taken to be U( 1). This example serves as a prototype 
for semisimple Lie groups containing a common Lie sub­
group. 

A. SU(2) ::::>C3 

The Lie algebra SU(2) of the Lie group SU(2) is spanned 
by the three basis operators J i , which may be taken in either 
the Cartesian (i = x, y,z) or spherical (i = + ,3, - ) basis. 
The universal enveloping algebra U [SU(2)] has the form 

F(J) =A (0)/ +A \1)Ji + (l/2!) A \~ JiJj 

(3.1) 

The series coefficients A \~\ are invariant under permuta­
tion of the indices. There are !(d + l)(d + 2) independent 
homogeneous symmetric polynomials of degree d in the gen­
erators J i . These polynomials carry a representation r d of 
SU(2), which is reducible for d> 1 [cf. Sec. II, remark (1)]. 
The irreducible constant of r d is D L, L = d,d - 2, ... ,1 or ° 
[cf. Sec. II, remark (2)]. For any rank L, only one inequiva­
lent tensor ofrankL occurs, Yi.,(J) [cf. Sec. II, remark (3)]. 
The terms in Ud [SU(2)] homogeneous of degree d in the J i 
can be written [cf. Sec. II, remark (4)] as follows: 

A (d). J. J .... J. = ~ A N(dL)M (J.J)N y M
L (J), (3.2) 

'I""d '}'2 'd ~ 

where the sum extends over all non-negative values of Nand 
L such that 2N + L =d and - L<M< + L. The spherical 
tensor operators Y i.,(J) are obtained from the corresponding 
spherical functions Yi.,(O,I,6) by the substitutions 
(sin 0) e±ill-.J ± and cos 0-+J3. 

The spherical tensor operator Yi.,(J) can be constructed 
as a stretched, or symmetrized, L th-order tensor product 
based on Y 1(J). The integrity basis for U[SU(2)] therefore 
consists of the two operators, J.J and Y I(J) [cf. Sec. II, re­
mark (8)]. The generating function for the irreducible SU(2) 
tensor content ofthe SU(2) enveloping algebra is 

1 
G [D;SU(2)] = -( 1-_-

D
---C2:-J

.-
J

)-( 1---D-J-) (3.3a) 

(3.3b) 

Here m~l is the multiplicity of occurrence of the term 
(J.J)N Y L (J) in thed th-order symmetrized tensor product of 
the basis operators J i with themselves [cf. Sec. II, remark 
(9)]. 

The generating function (3.3) may be converted to a gen­
erating function for scalars in the symmetry subgroup as 
follows [cf. Sec. II, remark (11)]. The generating function is 
first expanded as a power series in D, the C3 invariant opera­
tors in the expansion are retained while all other tensor oper-
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ators are projected to zero, and the expansion is then finally 
resummed. The only C3 scalar operators in U[SU(2)] are J.J 
and Yi.,(J), withMa multiple of3 andL>IM I. An integrity 
basis for this set of operators is J.J, Y~(J)-J3' and y3± 3 (J). 
The latter operators may be replaced by J~ . The generating 
function for C3 scalar operators in U[SU(2)] is thus 

G (D;SU(2) ::::> e3) 

= L m~~3" +" _ D d (J.J)N J;3(J3+ )" + (J3_ )" - . (3.4b) 

Products of the form J3+ J3_ are not functionally indepen­
dent of the other members of the integrity basis. This pro­
duct can be expressed in terms of J.J and J~ . The structure of 
the terms within the curly brackets ( J in (3.4a) ensures that 
only functionally independent terms are retained in the se­
ries expansion of the generating function [cf. Sec. II, remark 
(10)]. 

From (3.3) it follows that the Hamiltonian for a system 
with dynamical group SU(2) and symmetry subgroup C3 has 
the form 

(3.5) 

with J + for M > 0, J _ for M < 0, and M a multiple of 3. The 
Hermiticity requirement on the Hamiltonian places the fol-
lowing reality restrictions on the coefficients: 
A (d) =A (d)· • 

N'"3,M N'"3' - M 

Point group tensor harmonics have been used to con-
struct Hamiltonians for systems with crystal and ligand field 
symmetries,1O but such constructions have not been coupled 
with the use of integrity bases and generating functions. 

B. SU(2) ::::>U(1) 

In this case the enveloping algebra remains unchanged. 
However, the subgroup scalar operators change because the 
symmetry subgroup is different. So whereas results (3.1)­
(3.3) still apply, (3.4) and (3.5) must be replaced by 

G [D'SU(2) ::::> U(l)] = 1 (3.6a) 
, (1-D 2J·J)(l-DJ3) 

(3.6b) 

(3.7) 

with all coefficients in (3.7) real. The integrity basis for U(l) 
scalars is smaller than that for C3 scalars since U( 1) is larger 
than C3 : U(l) ::::> C3. As a result the generating function (3.6) 
and expansion (3.7) are simpler than (3.4) and (3.5). 

Quite often the Hamiltonian is computed within a single 
invariant subspace of G. In such a space the values of the 
dynamical group Casimir operators are fixed and can be ne­
glected. For example, in a fixed-J space the Hamiltonian for 
SU(2) ::::> U(l) systems assumes the simple form 
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H(J) = L AL Y~(J). (3.8) 

Such a Hamiltonian has been used to describe the Morse 
oscillator.7 Up to terms of degree 2, the Hamiltonian is 

H Morse =Ao+AI Y~(J)+A2Y~(J) 

(3.9) 

c. SU(2) ® SU(2) ::::> U(1) 

The Lie algebra for this direct product group is the di­
rect sum algebra spanned by the six generators Ji(a), 
a = 1,2; i = + ,3, -. The generators of the two SU(2) sub­
groups (a = 1,2) commute. The symmetry subgroup U(I) is 
generated by J 3(1) + J 3(2). 

The generating function for the irreducible tensor con­
tent of the SU(2) ® SU(2) enveloping algebra is 

G [D;SU(2) ® SU(2)] 

= ([I-D 2J(I)·J(I)][I-D 2J(2)·J(2)] 

x[1-D(J(I)+J(2))]}-1 

= L m't!N,L,L, D d [J(I)'J(I)]N, [J(2)'J(2)]N
, 

X [J(I)]L'[J(2)]L" (3.10) 

where d = 2NI + 2N2 + LI + L 2. From this, the generating 
function for U(I) scalars in U[SU(2) ® SU(2)] can be con­
structed. The result is 

G [D;SU(2) ® SU(2) ::::> U(I)] 
2 

= II Ga [D;SU(2)::::> U(I)] 
a=1 

X GI2[D;SU(2) ® SU(2) ::::> U(I)], (3.11) 

where each Ga [D;SU(2) ::::>U(I)] has the form (3.6a) and 

G12[D;SU(2) ® SU(2) ::::> U(I)] 

_ {I D 2J_(I)J+(2) } 
- 1 -D 2J+(I)J_(2) + I-D 2J_(1)J+(2) . 

(3.12) 

The integrity basis for U( I) scalars in the enveloping algebra 
of SU(2) ® SU(2) consists of J(a)·J(a), J 3(a) (a = 1,2), 
J+(I)J_(2) and J_(I)J+(2), with the understanding that 
cross terms involving the last two terms J+(I)J_(2) and 
J _(1)J +(2) are not functionally independent of the remain­
ing terms. 

The most general Hamiltonian for a system with dyna­
mical group-symmetry subgroup structures SU(2) 
® SU(2) ::::> U(I) is 

H[J(I),J(2)] 

= ~ A (d) , ,[J(I)'J(I)]N, [J(2).J(2)]N, 
~ N,N

'
''3''3k3k 3 

X J 3(1)"3J3(2)"3[J+(I)J _(2)] k3[J _(I)J +(2)]k 3, (3.13) 

where either k3 = 0 or k i = O. The reality conditions re­
quired by the Hermiticity of Hare 

(3.14) 

In an effort to reduce the number of parameters in the 
Hamiltonian (3.13), a unitary transformation may be ap-
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plied. The most general suitable transformation is 
exp{i[;IJ3(1) + ;2J3(2)]J. At best this can transform two 
complex parameters to real values. Since the number of com­
plex parameters in (3.13) of degree d = 1,2,3,4, ... is 
0,1,2,6, ... , only Hamiltonians of maximum degree 2 can be 
expressed in terms of the operators J(a)·J(a), J3(a), and 
J+(I)J_(2) + J_(I)J+(2) = 2[J(I)·J(2) - J 3(I)J3(2)]. These 
five operators exist in I-I correspondence with the invariant 
operators in the following chains of dynamical subgroups: 

(3.15) 

As a result, the integrity basis in (3.13) can be replaced by 
invariant operators from dynamical group chains only for 
Hamiltonians of maximum degree 2 and then only because 
of the possibility of performing a unitary transformation. 
These group chains have been used to describe the spectra of 
triatomic molecules. II 

IV. SU(3) ::::> SO(3) 

In this section we consider SU(3) as the dynamical group 
and SO(3) as its symmetry subgroup. This is the underlying 
structure of the Elliott model. 12.13 It also occurs as a subalge­
bra in the vibron and interacting boson models (Sees. V and 
VI, ahead). The embedding ofSO(3) in SU(3) is defined by the 
irreducibility of the defining three-dimensional representa­
tion of SU(3) on restriction to the subgroup. Two cases are 
considered, the generic case in which U[SU(3)] acts on an 
invariant Hilbert space of arbitrary symmetry type, and the 
degenerate case in which only symmetric (bosonlike) Hilbert 
spaces are considered. 

A. Generic case 

The tensor content of the enveloping algebra ofSU(3) is 
obtained by reducing the symmetric tensor product of the 
adjoint (octet) representation, [f] = [21] = (1,1). This has 
been done for low degree by using the method of S functions, 
or plethysms. 14 The number of inequivalent tensors of type 
(p,q), of dimensions M p + I)(q + 1)( p + q + 2). that occur 
in U[SU(3)] is equal to 1+ min(p,q) if p + 2q = O(mod 3) 
and zero otherwise [cf. Sec. II, remark (5)]. Thus there are 
two inequivalent octets, three 27-plets (2,2), one each of the 
decouplets (3,0) and (0,3), etc. 

In describing tensor types, we adopt the Cartan notation 
(p) rather than the Young partition notation [fl. In this 
notation 

Pi =/; -/;+1 = 2(ai .M
h )/(ai , a;). (4.1) 

Here /; is the length of the ith row in the Young partition 
and Pi is the overhang between the ith and (i + I)st row. 
Further, M h is the highest weight in the representation space 
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[M' = f forU(N),SO(N), USp(N)],andthea i are the highest 
weights of the 1 fundamental irreducible representations of 
the simple Lie group. The integer iJl is the number of times 
the ith fundamental irreducible representation occurs in the 
stretched tensor product from which the representation with 
highest weight M h is constructed. By adopting this notation, 
we bring the construction of representations and of irreduci­
ble tensorial sets into close analogy with one another [cf. Sec. 
II, remark (8)]. 

The generating function for the irreducible tensor con­
tent in the SU(3) enveloping algebra isS 

G[D;SU(3)] 

= [(1_D 2C2)(1_D 3C3
) 

X(I-DUIU2)(I-D2UIU2)]-1 

(4.2) 

(4.3) 

where m~' is the multiplicity of occurrence of tensors of type 
(p,q) in if [SU(3)]. Here C2 and C3 are the second and third 
Casimir operators of SU(3), D U 1 U2 represents symbolically 
the adjoint representation, D 2U 1 U 2 represents the octet, 
which occurs in the symmetrized square of the adjoint repre­
sentation (Gell-Mann's d couplingIS), and D 3U~ and D Ui 

represent the 10 and 10, or (3,0) and (0,3), representations. 
Only five of these tensor operators are functionally indepen­
dent; in particular, the cube of D 2U 1 U2 is a polynomial in the 
remaining operators. 5 

The SO(3) scalar content ofU[SU(3)] can be obtained as 
described in Sec. III. The generating function (4.2) is expand­
ed, the SO(3) scalar operators within each SU(3) tensor are 
projected out, and the expansion iuesummed. A SU(3) ten­
sor of type (p,q) contains a SO(3) scalar exactly once if p and 
q are both even, zero otherwise. The operators C2,~ are 
SO(3) scalars. The representations (2,2) obtained from the 
two octets each contain one SO(3) scalar 

(DUIU2)X(DUIU2l-D2U~U~ :::) JoJ, 

(D U 1 U2) X (D 2U 1 U2l-D 3U~ U~ :::) X3, 

(D2UIU2)X(D2UIU2)_D4U~U~ :::) X4. (4.4) 

An additional independent SO(3) scalar can be formed from 

the square ofthe 10 or the 10 

(D3U~)2_D6U~ 

(4.5) 

(D 3Ui f-D 6U~ 

The generating function for SO(3) scalars in U[SU(3)] is l6 

G [D;SU(3) :::) SO(3)] 

= [(I-D2C2)(I-D3C3)(I_D2JoJ)]-1 

(4.6) 

The square of the operator X6 is a polynomial in the remain­
ing five members of the integrity basis. 
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The effect of discrete transformations [cf. Sec. II, re­
mark (12)] on the Hamiltonian H [SU(3) :::) SO(3)] is deter­
mined by considering the effect of P and T on the generators 
Xi of SU(3). All eight generators are invariant under P, 
which therefore imposes no additional constraints on the 
Hamiltonian. The effect of the time reversal operator T is 
nontrivial. The generators of SU(3) can be written as an 
L = 1 spherical tensor (L) and anL = 2 spherical tensor (Q), 
with eigenvalues ( - I)L under T: 

T 

SU(3) = L + Q-( - I)L + ( + 1 )Q. (4.7) 

The six operators which appear in (4.6) can be expressed in 
terms ofthese spherical tensor operators as follows l6: 

C2 = W2(LoL + 2QoQ), 

C3 = LoQoL - t QoQoQ, 

JoJ = LoL, 

X3 = LoQoL, 

X4 = La Qab QbcLc' 

X6 = t:abcQbdQceQe,LaLd L,. 

(4.8) 

Of these, only the operator X6 goes into its negative under 
time reversal (TX6T -I = - X6). As a result, ifit appears in 
the Hamiltonian it must be multiplied by an imaginary num­
ber. The remaining five operators are positive under time 
reversal and so each must be multiplied by a real parameter 
when appearing in a time reversal invariant Hamiltonian. 

The Hermiticity requirement imposes no additional rea­
lity conditions on the coefficients A \;!'id in the Hamiltonian. 
The first five SO(3) scalars in (4.8) are self-adjoint and X6 is 
anti-Hermitian. As a result, any term in the Hamiltonian 

containing the operator (X6)"6 must be multiplied by a real or 
imaginary coefficient, depending on whether n6 is zero or 
one. No other values of n6 are possible by (4.6). 

A generating function for the number of SO(3) scalars, 
n(d" of degree d is 

To terms of degree d = 4 a SU(3) Hamiltonian with SO(3) 
symmetry contains 2 + 2 + 4 = 8 terms: J2, C2; X3, C3; (J2)2, 
J 2C2, (C2)2, X4. Acting within a single SU(3) representation, 
four of these terms become redundant. The resulting four­
parameter Hamiltonian has been studied extensively over a 
wide class of rotational nuclei. 17-20 

Less the operator X6 and the Casimir invariants for the 
dynamical group SU(3) and the symmetry subgroup SO(3), 
there are two SO(3) scalars. This is twice the number of miss­
ing labels in the reduction of SU(3) to SO(3), in agreement 
with the missing label folk theorem. 

Bo Degenerate representations 

Degenerate representations are constructed from fewer 
than the full complement of fundamental representations 
possessed by a semisimple Lie group of rank 1. As a result, 
one or more of their Cartan representation labels iJi vanish. 
For SU(3) the degenerate representations have labels (p,O) or 
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(O,q). They are symmetric representations based on the 3 or 3 
fundamental irreducible representation. 

Under reduction from generic to degenerate representa­
tions, simplifications occur in the enveloping algebra. These 
simplifications are ofthree types [cf. Sec. II, remark (6)].4 

(i) The Casimir operators are no longer independent. In 
the present case C3 is a function of C2. 

(ii) Some tensor operators have only vanishing matrix 
elements within degenerate representations. For example, 
tensor operators of type (p,O) or (O,q) have only vanishing 
matrix eleIl}ents within degenerate representations [cf. Sec. 
II, remark (3)]. 

(iii) Linear dependences occur among formerly indepen­
dent operators of the same tensor type when restricted to 
particular classes of degenerate representations. For exam­
ple, the two octetsD U 1 U2 andD 2U 1 U2 become proportional 
within the representation (p,O) or (O,q). This can be seen, for 
example, by computing their expectation values within the 
coherent state representation.21 .22 

The generating function for SU(3) tensors in U[SU(3)] 
acting on degenerate representations is4 

G(D;U1U2) = [(1-D 2C2)(1-DU1U2)]-I. (4.10) 

From this, the generating function for SO(3) scalars is easily 
derived as 

G[D;SU(3):J SO(3)] = [(1_D2~)(1_D2J2)]-I. (4.11) 

Within a single representation C2 can be neglected. The Ha­
miltonian then becomes simply a function of the total angu­
lar momentum operator J 2. Invariance under time reversal 
and Hermitian conjugation requires that the Hamiltonian be 
a real function of J2. The absence of additional SO(3) scalars 
besides the Casimir operators of SU(3) and SO(3) is consis­
tent with the missing label folk theorem.6 

The problem of replacing an integrity basis by the invar­
iant operators of a group-subgroup lattice has a clear-cut 
solution when the dynamical group is SU(3) and the symme­
try group is SO(3). In this case there is only one lattice, 

su (3) 

t (4.12) 

SO(3) 

In the generic case, this replacement is possible only for 
terms up to degree d = 2. For d = 3 the group lattice pro­
vides three scalars while the integrity basis requires four. For 
d = 4 the group lattice fails to provide yet another scalar 
(X4). In the case of degenerate representations, the Casimir 
operators ofSU(3) and SO(3) coincide precisely with the in­
tegrity basis. As a result, the integrity basis can be replaced 
by the group-subgroup lattice. 

v. 5U(4) ::J 50(3) 

Diatomic23 and triatomic24 molecules have recently 
been described in terms of the dynamical group SU(4). The 
basic bond excitations that are important are assumed to 
have quantum numbers J1T = 1-, 0+. These are created by 
operators b ,t = (11'';; ,u+), m = + 1,0, - 1. The dynamical 
group associated with each bond is generated by the bilinear 
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number conserving operator products b ,t bv ' These 16 
opeators generate U(4). Removing the first-order Casimir 
invariant ~Jt b Jt+ bJt yields 15 generators of the simple Lie 
group SU(4). This group acts in a Hilbert space, which car­
ries a completely symmetric, or boson, representation of 
SU(4) with representation labels (N,O,O). 

In the event that several (covalent) bonds are present in a 
molecule, the dynamical group is assumed to be a direct pro­
duct of SU(4) dynamial groups, one for each bond. That is, 
G = SU1(4) ® SU2(4) ® ... ® SUk (4), wherekis the number 
of bonds. The 15k generators of G are b Jt+ (i)bv(l) 
-! [~y b:(i)by(I)]8Jtv , where 1<Jl,v<4,and l<i<k. The 

dynamical subgroup for the ith bond, SU;(4), acts in a bo­
sonic Hilbert space, which carries a completely symmetric 
representation (N; ,0,0) of SU(4). The total Hilbert space is 
the direct product of each of these completely symmetric 
subspaces, one for each bond. 

The semisimple direct product dynamical group G con­
tains a "collective" or "diagonal" subgroup SUD (4), with 
generators B Jt+ Bv - ! [~y B: By ]8Jtv, where B Jt+ is the 
collective operator B Jt+ = ~7 = 1 b Jt+ (I). Under restriction of 
G to SUD (4), the Hilbert space on which G acts reduces to a 
direct sum over SU(4) invariant subspaces with Young parti­
tions containing N D = ~ N; boxes and no more than k or 
four rows, whichever is smaller. 

The transformation properties of the generators ofU(4) 
under the proper rotation group SO(3), the order-2 group 
symmetries P (space reflection), T (time reversal), and Her­
mitian conjugation, are determined as follows. The U(4) gen­
erators are expressed as spherical tensor operators, using 
vector coupling coefficients where necessary: 

T'fi) = (11'+n-)'fi) = L (l,m;l,m'IL,M) 11'';; n-m·, 
m,(m') 

S=u+17, (5.1) 

P + = 11'+17 + u+n-, P _ = i(11'+17 - u+n-). 

The operators n-,17 are related to 11',U by 

n-m =(_)m11'_m' 17=u. (5.2) 

The operators n-, rather than 11', transform under D I[SO(3)]. 
The operators T(O) and S are rotational scalars, T(l) and P ± 

are vectors, and T(2) is a spherical tensor of rank 2. Since 
P (11',uJP -1 = ( - 11', + u), T(L) and S are even and P ± are 
odd under space inversion. And because T(11',u)T -1 = (n-,17), 
T(l) and P _ are odd under time reversal and the remaining 
operators are even. All irreducible tensorial sets are Hermi­
tian in the sense they obey O~+ = (- l)M O~M' Notice 
that the choice (5.2) for the transformation properties of the 
11' operators under time reversal differs from the standard 
transformation Ot. = (- l)L- MOL_M for operators based 
on angular momentum (odd under time reversal). This 
choice was made because the 11' operators are associated with 
dipole displacements, which are even under time reversal. 

The effect of the order-2 discrete operations, P, Tis sum­
marized in Table I. They effect a decomposition of the Lie 
algebra G into two subspaces 

G = Se + So, (5.3) 

where Se is even and So is odd under the discrete operation. 
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TABLE I. Effect of discrete operations on generators of U(4). 

P--+Space inversion 
T --. Time reversal 

S.:Even 

T(O),T(I),T(2),S 

T(O),T(2),P +,S 

So:Odd 

For the parity operation, Se forms a subalgebra in G, while 
for time reversal the odd subspace So forms a subalgebra in 
G. The reason is as follows: The group elements in U(4) are of 
the form exp(iX), where X E G. Under time reversal 

T[exp(IX)]T- 1 = exp[T(IX)T- 1
] = exp[ - i(TXT- 1

)]. 

(5.4) 

The operation T leaves invariant the subset of elements in G 
generated by the X's, which obey TXT -I = - X. A similar 
argument holds for Hermitian conjugation. 

A. Diatomic molecules 

For molecules with a single bond, the dynamical group 
SU(4) acts only within fully symmetric representations. This 
is a very degenerate class of representations. Accordingly, 
the generating function for the SU(4) irreducible tensor con­
tent ofU[SU(4)] is relatively simple,4 

G[D;SU(4)] = [(I-D 2C2)(I-DU1U3)]-1 . (5.5) 

Here D U 1 U3 represents the adjoint representation of SU(4) 
[i.e., the generators of SU(4)] and D 2~ represents the sec­
ond-order Casimir operator of SU(4). Since this is constant 
within any representation and only one representation is 
considered for diatomic systems, this part of the generating 
function will be ignored in the remainder of this subsection. 

Next, it is necessary to determine the SO(3) content of 
the SU(4) irreducible tensors in the enveloping algebra. This 
can be obtained by determining the U(3) content of the SU(4) 
tensors (J-L I' J-L2' J-L3) that occur and then determining the 
SO(3) scalars (excluding pseudoscalars) in these U(3) repre­
sentations. As the U(3) subalgebra (T(O), T(J), T(2)) is even un­
der space inversion, each U(3) irreducible representation in 
(J-LI' J-L2, J-L3) ofSU(4) carries a good parity label. We are inter­
ested in the SO(3) scalars in positive parity representations of 
SU(3). 

The adjoint representation (1,0,1) of SU(4) carries one 
0+ representation of SO(3), with basis operator n1T 
= (1T+-iT)(0). The representation (2,0,2) of SU(4) [i.e., 
(D U 1 U3f] contains five positive parity representations of 
U(3). Four of these contain SO(3) scalars. Two of these sca­
lars are self-adjoint and there is one Hermitian adjoint pair. 
The two self-adjoint representations of SU(3) are (0,0) and 
(2,2); they contain SO(3) scalars (n1T)2 and 
[(1T+-iT)(2)(1T+17P)](0). The Hermitian adjoint pair (2,0) and 
(0,2) contain the SO(3) scalars [(1T+q)(1T+q)](O) and 
[(u+ -iT)(u+ -iT)](0). 

More generally, when N = 2K or 2K + 1 the represen­
tation (N,O,N) ofSU(4) contains K + 1 positive parity self­
adjoint SO(3) scalars andK (K + 1)12 pairs of Hermitian ad­
joint operators. The generating function for SO(3) scalars in 
U[SU(4)] is 
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Subgroup 

U(3) ® U(l) 
SO(4) 

G [D;SU(4) ::> SO(3)] 

Quotient 

SU(4)!U(3) 
U(4)1S0(4) 

= ((1 - Dn1T )[ 1 - D 2 [(1T+-iT)(2)(1T+ -iT)(2)](0)J)-1 

X { 1 
1 - D 2 [(1T+ q)(1T+ q)] (0) 

D2[(U+-iT)(u+-iT)](0) } 
+ I _D2[(U+-iT)(u+-iT)](0) . 

(5.6) 

The integrity basis for SO(3) scalars in the SU(4) enveloping 
algebra consists of the four operators n1T , [(1T+ -iT)(2)(1T+ -iT)(2)](0), 
[(1T+ q)(1T+ q)](O), and [(u+ -iT)(u+ -iT)](0). 

The operators n1T and [(1T+-iT)(2)(1T+-iT)(21(0) are invariant 
under the three discrete operations: P, T, and t (Hermitian 
conjugation). The remaining two operators are even under P. 
The effect of time reversal and Hermitian conjugation is 

T {a[(1T+q)(1T+q)](O) + P [(u+-iT)(u+-iT)](O)J T- 1 

= a*[(1T+ q)(1T+ q)(O)] + P * [(u+-iT)(u+ -iT)](0), (5.7a) 

{a[(1T+ q)(1T+ q)] + P [(u+ -iT)(u+ -iT)]oJ t 

=P* [(1T+q)(1T+q)](O) + a*[(u+-iT)(u+-iT)](O). (5.7b) 

The effect of these two operations is to impose additional 
reality restrictions on the coefficients that appear in an ex­
pansion of the form (1.1). In particular, the coefficients of 
[(1T+q)(1T+q)](O) and [(u+-iT)(u+-iT)](O) must be real and equal. 
This condition causes modification of the generating func­
tion (5.6): 

G [D;SU(4) ::> SO(3) ® P ® T ® t] 
= ((I - Dn1T )[ I - D 2[(1T+-iT)(2)(1T+-iT)(21(0)J)-1 

X(I _D 2{[(1T+q)(1T+q)](0) + [(u+-iT)(u+-iT)](O)J)-I. 
(5.8) 

The integrity basis contains one first-degree operator and 
two second-degree operators. To second order, the Hamil­
tonian is a linear combination of the four operators T(O), 
[T(L) T(L)](O)withL = ° and 2, and [P +P +]<0) with real coeffi­
cients. 

These three operators may be replaced by Casimir oper­
ators for the group lattice 

(5.9) 

The generators for the subgroups are 
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U(3): T(O) T(J) T(2) 

SO(4): T(J) P + . 

SO(3): T(J) 

The generators for SO(4) are chosen as T(J) and P + rather 
than T(J) andP _ (which generate the time-reversed subgroup 
SOT(4), see Table I) in order to yield wave functions that are 
real. The operator ntr is the first-order Casimir operator for 
U(3). Only two of the three operators [(1T+iT)(L) (1T+iT)(L)](O), 
L = 0,1,2, are independent within fully symmetric represen­
tations. This is a consequence of the existence of only K + 1 
independent self-adjoint operators of degree d = 2K. The 
operator n1T = CI [U(3)](L = O---+n;') is already included as 
an element in an integrity basis of Casimir operators. We 
may choose either ofthe other two operators (L = 1,2) as an 
additional member of the integrity basis. The operator with 
L = 1 is the second-order Casimir operator of the rotational 
subgroup SO(3) with generators (1T+ iT)~. Finally, we may 
make the identification 

C2[SO(4)] - C2[SO(3)] 

=P+P+ 

= [(1T+ iT)(1T+ iT)] (0) + [(u+iT)(u+iT)](O) + 2nqntr + 4. 
(5.10) 

The generating function for even parity, time reversal invar­
iant, Hermitian SO(3) scalars in the SU(4) enveloping alge­
bra, in terms of the integrity basis of Casimir operators, is 
therefore 

G [D;SU(4) ::::> SO(3) ® P ® T ® t] 

= (1 - D 2C2[SU(4)])-1 

X {(I - DC I [U(3)])(1 - D 2C2 [SO(4)]) 

X(1 - D 2C2 [SO(3)])} -1. (5.11) 

Thus, in the case offully symmetric representations ofSU(4), 
the Casimir operators for a group lattice are sufficient to 
construct all rotational scalars of any order. 

B. Triatomic molecules 

For molecules with two bonds, the dynamical group is 
SU1(4) ® SU2(4). The SUa (4), a = 1,2, act in Hilbert spaces 
HI and H 2, which carry fully symmetric representations 
(NI,O,O) and (N2,0,0) respectively. The direct product Hilbert 
space is reducible with respect to the diagonal subgroup 
SUD (4). The irreducible content of this Hilbert space con­
sists of representations with Young partitions 
[11 =NI +N2 -K, 12 =K, h = 0], K=0,1,2, ... , 
min(Nl,N2 )· 

The'irreducible tensor content in U[SU1(4) ® SU2(4)] is 
constructed from the generating function for the SUD (4) ir­
reducible tensor content in U[SU D (4)] acting on the degen­
erate representations in the class [/1,.1;,0]. This generating 
function is4 
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Two of these factors (underlined) occur in the generating 
function introduced in (5.5). The SO(3) scalars, which are 
derived from those two terms have a structure which has 
already been determined. The remaining terms in (5.12) give 
rise to SO(3) scalars not previously considered. 

For concreteness, suppose one of the SO(3) scalars 
of degree d = 2 constructed in Sec. V A above for 
SU(4) ::::> SO(3) has the structure BijXiXj' Then a set ofsca­
lars for SU1(4) ® SU2(4) ::::> SO(3) is 

Bij [Xi(l) + Xi(2l] [Xj(l) + Xj (2)] 

= BijXi(I)Xj(l) + BijXi(2)Xj(2) + Bij{Xi(I),Xj (2)}. 
(5.13) 

The first two terms are the SOl 3) scalars constructed for each 
bond separately. The third term, in which the bracket { , } 
indicates symmetrization with respect to the bond indices, is 
new and represents a rotationally invariant bond-bond in­
teraction. This construction is perhaps most familiar for the 
SU(2) case, where for J = jl + j2 one has that J2 = ji 
+j~ + 2jdz· 

In general, it is possible to construct operators invariant 
under the subgroup H C G by constructing Casimir covar­
iant operators of the direct product group G1 ® G2 (G1,G2 

isomorphic to G). This construction proceeds as follows. If 
C2 = Bij XiXj is a Casimir invariant for G, one can con­
struct the Casimir covariant operator ~ 
=Bij{Xi(I),Xj(2)} forGI ® G2• This operatoris not an in­
variant of G1 or G2 separately, but is an invariant for the 
direct product group. The construction of Casimir covar­
iants extends easily to higher-order Casimir operators and 
larger numbers of isomorphic subgroups. 

The interbond interactions of degree d = 2, which are 
constructed from the SO(3) scalars arising from the under­
lined terms in (5.12), can be written down immediately from 
the operators in (5.8) using the result (5.13): 

{ (1T+ iT)\O),(1T+ ,iT)~)}, 

{(1T+ iT)\2),(1T+ ,iT)~)} (0), (5. 14a) 

{(1T+iTh,(1T+iTb}(O) + {(u+iT)I,(u+iTb}(O). 

The additional SO(3) scalars, which cannot be constructed 
from the operators in (5.6), are obtained from the remaining 
terms of the generating function (5.12). The additional SO(3) 
scalars of degree d = 2 are 

(5.14b) 
D 2U~~{ (1T+ iT)I,(u+iTh) } (0) and {(U+iT)I,(1T+iTh}(O). 

The discrete operations of time reversal and Hermitian con­
jugation impose constraints on the coefficients of the two 
terms arising from D 2U~. The independent SO(3) scalars 
involving both the 1T's and u's (5.14a) and (5.14b) may be 
conveniently rewritten in terms of the P ± operators of (5.1 ). 
The five interbond interactions of degree d = 2 are then 

{T\L), T!f)}(O), withL = 0,1,2, 

{Pu (1), Pq(2)} (0), u = +, -. (5.14c) 

The total number of terms of degree up to 2 in the Ha­
miltonian with dynamical and symmetry groups 
SU(4) ® SU(4) ::::> SO(3) is 13. Each bond contributes one 
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linear and three quadratic terms, while the bond-bond inter­
action introduces five additional terms. These operators do 
not form an integrity basis of SO(3) scalars in 
U[SU(4) ® SU(4)] since new tensors occur for degree 3 (e.g., 
D 3C3

, D 3UfU2, andD3U2U~), 

In this group-subgroup lattice there are three types of sub­
group restrictions: 

G I E9 G2 ::J HI E9 H 2, 

G E9 G2 ::J GD , 

GD ::J H D • 

(5.16a) 

(5. 16b) 

(5.16c) 

Here Gi is a Lie algebra of operators for bond i, Hi is a 
subalgebra, and (HD)GD is a diagonal (sub)algebra whose 
basis vectors are direct sum operators of the form 
Xi(D) = Xi(l) + Xi (2), where Xi(a) is a boson number-con­
serving operator for bond a. 

The group to subgroup restrictions of the form (5.16a) 
generate SO(3) scalars for each bond separately. The opera­
tors so generated have the form (5.8) or with the identifica­
tion 1 ++ 2, (5. 14a). The group to diagonal-subgroup restric­
tions of the form (5.16b) generate SO(3) scalars describing 
bond-bond interactions. For example, the difference 
between the second-order Casimir operator of UD (3) and 
those of UI(3) and U2(3) is a sum of cross terms given in 
(5.14c): 

C2[UD(3)] - {C2[UI(3)] + C2[U2(3)]J 

= L {nL ), nL)J(O). (5.17) 
L=O,I,2 

[Note that with i =I=j all three of the operators {T \L ), T JL ) J (0) 

are independent while if i = j only two are. This can be seen 
by expressing these operators as linear combinations of the 
operators {(-1T/ 1T/ )(L ),(17'i 17'j )(L) J (0) using Racah recoupling 
techniques and noting that the operator with L = 1 vanishes 
by symmetry if i = j.] And finally, the diagonal group to 
diagonal subgroup restrictions of the form (5.14c) are useful 
for expressing the bond-bond scalar interactions as linear 
combinations of Casimir operators: 
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It is possible to replace the SO(3) scalars in 
SU(4) ® SU(4) up to degree 2 by the Casimir operators be­
longing to a group-subgroup lattice. A number oflattices are 
possible. We present one lattice which is particularly well 
matched to the SO(3) scalar operators given in (5.14): 

2 

- L {C2[SOa(4)] - C2[SOa(3)] J 
a=l 

= {P +(1), P +(2)J(O), 

C2 [SUD (4)] - C2 [UD (3)] 
2 

- L {C2[SUa (4)] -C2[Ua(3)]} 
a=1 

(5.15) 

(5.18a) 

(5.18b) 

Additional chains in the group-subgroup lattice (5.15) 
are possible whenever a mapping M of the Lie algebra G into 
itself exists whose square is the identity (involutive automor­
phism).25 The Lie algebra G then splits into eigenspaces of M 
with eigenvalues + 1 and - 1, 

MGM- i 

G=K E9 P - Kep, (5.19) 

restriction (5. 16a) can be replaced by an alternative restric­
tion 

GI E9 G2 = (KI E9 Pd E9 (K2 E9 P2) 

-G~ = (KI E9 K2) E9 (PI e P2). (5.20) 

This means that if the Xi (a) are even and the Yj(a) are odd 
under M (a = 1,2), the generators Xr(D) and Yj(D) are 

Xr(D) = Xi(l) + Xi (2), Yr(D) = Yj (l) - Yj (2). (5.21) 

Each of the four group-subgroup reductions contained in 
(5.9) obeys this automorphism property. The operators ob­
tained by including group-subgroup chains formed in this 
way are not independent of those occurring in the chains 
already present in (5.15). 

For symmetric triatomic molecules (e.g., CO2) it might 
be expected that the quantum numbers NI and N2 describing 
the two bonds are equal. (In fact, spectral data have been 
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fitted with Ni'=::::.2N2.
22) In the case that Nl = N2, one ofthe 

representations that occurs in SU D(4) :J SU 1(4) ® SU2(4) is 
of the degenerate type (/-Ll = 0,/-L2 = N,O). Within this repre­
sentation the generating function for SU(4) tensor operators 
reduces t04 

G [D;SU1(4) ® SUz(4)] 

= [(1-D~)(1-D3~)(1-DUIU3)(1-D2Um -1. 

(5.22) 

In this class of degenerate representations, the tensor opera­
tor D 2U 1 U 3 is proportional to D U 1 U3• As a result, the three 
SO(3) scalars {(1T+iT)\L), (1T+iT)!f)} (0) become linearly depen­
dent, and the number of independent parameters in the Ha­
miltonian (to second degree) is reduced by 1. 

c. Polyatomlc molecules (Poly> 3) 

Molecules with three interatomic bonds must have four 
or more atoms, or must have three atoms in a cyclic configu­
ration. The dynamical group for the vibron model of such 
molecules is SU 1(4) ® SU2(4) ® ••• ® SU d4). In the reduc­
tion to the diagonal group SUD (4), generic representations, 
(/-Ll' /-L2, /-L3) with the/-La all nonzero, will typically occur. The 
generating function for the tensor content of U[SU(4)] on 
such representations is known.s Although it is fairly compli­
cated, terms of degree less than 3 that occur in this generat­
ing function are identical to those that occur in the generat­
ing function for the degenerate class of representations 
(/-L l' /-L2'0). Therefore, the Hamiltonian describing a poly­
atomic system has the same structure as the Hamiltonian 
describing a two-bond triatomic system to second degree. It 
may be constructed as follows. 

(1) Include terms of the form shown in (5.8) for each 
bond, i = 1,2, ... ,k. 

(2) For each atom sharing bonds i and j, include terms in 
the Hamiltonian of the form (5.14) with the substitution 
(1,2)---+(i,11-

In going from the generic representation (/-Ll' /-L2, /-L3) to 
the degenerate representations (/-L l' /-L2'0), ( /-L 1,0, /-L3)' 
(0, /-L2' /-L3), no simplifications occur through second degree. 
The simplification that occurs for the slightly more degener­
ate representation (0, /-L2'0) has been described at the end of 
Sec. V B. The most degenerate representations (/-Ll'O,O) and 
(0,0, /-L3) have the same degenerate enveloping algebra, de­
scribed in Sec. V A. 

VI. 8U(6) :J 80(3) 

Nuclei exhibiting low-lying collective excited states 
have been described in terms of the dynamical group SU(6) 
(see Refs. 26-30). The basic excitations of importance are 
assumed to have quantum numbers J" = 0+ ,2 +. These are 
created by operators b /t = (s+, d,;; ), 
m = + 2, + 1,0, - 1, - 2. The dynamical group is generat­
ed by the bilinear number conserving operators b /t bv ' 

These operators generate U(6). Removing the first-order Ca­
simir invariant:Ip b 1'+ bp = s+s + d + d = N, where N has 
the interpretation of half the number of valence nucleons (or 
nucleon holes), yields thirty-five generators of the simple Lie 
group SU(6). This group acts in a Hilbert space that carries a 
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completely symmetric, or boson, representation (N,O) of 
SU(6). 

In the event that a distinction is to be made between 
protons and neutrons, collective operators b 1'+ (11, i = 17', v, 
are introduced.28--30 From these operators, 72 number con­
serving, charge conserving operators can be constructed, 
b 1'+ (i)bv(i). Removal of the invariants s: SfT + d : dfT = N1T 
and s: Sv + d v+ dv = Nv leads to the direct product dyna­
mical groupSU1T (6) ® SUv (6). This group acts on the direct 
product of two symmetric Hilbert spaces, (NfT'O) ® (Nv,O). 
Under restriction to the diagonal subgroup SUD (6) 
C SU1T (6) ® SUv (6), this Hilbert space reduces to a direct 
sum of Hilbert spaces characterized by Young partitions 
(NfT + Nv - K,K,O), K = O,I, ... ,min(NfT,Nv). 

In both cases the symmetry subgroup is SO(3). For the 
model in which proton-neutron equivalence is assumed 
(IBM -1), only the most degenerate class of representations, 
[N,O] = (N,O), occurs. For the model in which protons and 
neutrons are considered to be distinguishable (IBM-2), the 
next most degenerate representations of the type [/1./2,0] 
must also be considered. 

It is convenient to express the generators of SU(6) as 
spherical tensor operators as follows: 

T<i;)=(d+d)<i;)= L (2,m;2,m'IL,M)d,;;dm" 

m,(m') 

(6.1) 

D+ = d +s + s+d, D_ = i{d +s - s+d). 

An additional SO(3) scalar, S = s+s, is included among the 
generators ofU(6). Here 

s=s, dm =(-)md_ m, (6.2) 

where - denotes the time reversal operation. All these ten­
sor operators are Hermitian in the sense that 0 t + 
= (- l)M O~M' The 15 operators T(L) (L = 1,3), D_ are 
negative under time reversal. The latter generate a subgroup 
SOT(6) ofSU(6). 

A.IBM-1 

The generating function for the SU(6) tensor content of 
U[SU(6)] acting within the most degenerate class of repre­
sentation (N,O) is31 

G[D;SU(6)] = [(I-D 2C2)(I-DU1Us)]-I. (6.3) 

Here D U 1 U 5 represents the 35-dimensional adjoint repre­
sentation ofSU( 6) andD 2C2 is its second-order Casimir oper­
ator. Since the Hilbert space for a nucleus is taken to be a 
single SU(6) invariant subspace, the Casimir operator may be 
dropped from the generating function. 

Next, it is necessary to determine the SO(3) content of 
each SU(6) irreducible tensor operator in the enveloping al­
gebra. The only SU(6) tensors that occur are (K,ij3,K), of 
degree K. The adjoint representation (K = 1) contains one 
SO(3) scalar, nd = (d +d)(ol, the d-boson number operator. 
The next representation (K = 2) contains seven SO(3) sca~ 
lars, of which three are self-adjoint and there are two Hermi­
tian adjoint pairs. These operators, together with their 
group-subgroup parentage, are summarized in Table II. 
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TABLE II. SO(3) scalars in the SU(6) enveloping algebra, up to second degree, and the classification of their group theoretical parentage. Representation 
labels are given in tenns of Young partitions. 

SU(6) SU(S) SO(S) Form 

[214] [0] (00) (d+d)'O) 
4 

[424] [0) (00) L [(d +d)'L)(d +d),L)]'O) 
L=O 

[423
] (00) Linear combinations of forms: 

(22) [(d +d)'LI(d +d)ILI)'O); L = 0, ... ,4 
[2] (00) [(d+s)l2I(d +S)'2~'0) 
[24] (00) [s+ d )'2)(S+ d )'2~'01 
[31 3

] (30) [(d + d + )'2)(iis)'2~'01 

[W] (30) [(s+ d + )'2)(dd )'2)]'0) 

The number of missing labels in the reduction of sym­
metric representations of SU(6) to the subgroup SO(3) is 3. 
The missing label folk theorem suggests that there should 
therefore be six SO(3) scalars in the SU(6) ::> SO(3) integrity 
basis for symmetric representations, in addition to the sec­
ond-order Casimir operators ofSU(6) and SO(3). Seven inde­
pendent SO(3) scalars are listed in Table II. Note that 
[(d + d )(O)(d + d )(0)](0) = [(d + d )(O)f. The operator C2(SU( 6)] 
is not listed. Also, only three of the five operators 
[(d + d )(L) (d + d )(L) ](0) (L = 0,1,2,3,4) are independent. The 
operator with L = 1 is the Casimir operator of SO(3). As a 
result, the folk theorem is valid in this case. 

The fact that only three of the five operators 
[(d + d )(L) (d + d )(L) ](0) are independent can be seen in two 
ways. Standard tables show that the representations [0] and 
[423

] ofU(5) contain one and two SO(3) scalars, respectively. 
Alternatively, these five operators may be obtained from the 
ordered operators [(d + d + )(L) (d d )(L) ]'0) using Racah recou­
pling techniques. Two of these ordered operators vanish by 
the symmetry of the 3j symbols. 

The generating function for SO(3) scalars of arbitrary 
degree in the enveloping algebra ofSU(6) is 

G [D;SU(6) ::> SO(3)] 

= F~)(D )F~)(D )F~)(D )F\2)(D )F~)(D), (6.4) 

F~)= [l-D(d+ d)(O)]-I, 

F~)= (l_D2[(d+d)(L)(d+ d)(L)](O)}-1, 

F\2) = (l- D2[(d +d)(2)(d +S)(2)](O)}-1 

D2[(s+d)(2)(d + d)(2)](0) 
+ 1 _ D2[(S+d)(2)(d +d)(2)](o) , (6.5) 

F~) = (l - D 2[(d +s)(2)(d +S)(2)] (O)} -I 

D2[(s+d )(2)(s+d )(2)](0) 
+ 1 - D 2 [(s+ d )(2)(S+ d )(2)] (0) • 

U(5): T(O) T(I) T(2) T(3) 

SO(6): T(1) T(3) 

SO(5): rl) r 3) 

SU(3): T(I) 

SO(3): T(I) 

Two different SOt 6) subgroups may be chosen, with generators 
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To second order the Hamiltonian with dynamical 
grou~symmetry subgroup structure SU(6) ::> SO(3) is 

H=Ednd + L A~) [(d+ d)(L)(d+d)(L)](O) 
L=O,2,4 

+ a[(d +s)(2)(d +S)(2~(0) + a'[(s+ d )(2)(S+ d )(2)],0) 

+ P [(d +s)(2)(d +S)(2)](o) + P '[(s+ d )(2)(S+ d )(2)] (0). 

(6.6) 

Invariance under time reversal requires all parameters to be 
real. Invariance under Hermitian conjugation requires, in 
addition, that a = a', p = p'. As a result, there are six inde­
pendent real parameters in (6.6) corresponding to the linear 
SO(3) scalar nd = T(O) and five quadratic SO(3) scalars 
[T(L)T(L)](O), L = 0,2,4, [T(2)D+](O), and [D+D+](O). 

The linear operator T(O) and the four quadratic operators 
[T(L)T(L)](O) with L = 2,4, [T(2)D+](0), and [D+D+](O) pro-
vide an integrity basis for Hermitian, time reversal invariant 
SO(3) scalars in fully symmetric representations [N,O] of 
SU(6). These operators can be related to the Casimir opera­
tors for the group lattice 

SU(6) 

~!~ 
U (5) 50(6) 

~~ 
SU (3). (6.7) 

50(5) 

~ 
50(3) 

The generators for the subgroups are 

T(4) 

D+ 

D+ + XT(2) withx2 = ¥ 
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SO(6): T(ll, T(3), D+, 

SOT(6): T(1), T(3), D_. (6.8) 

All generators of SOT(6) are negative under time reversal. The subgroup SO(6) is chosen as a matter of convenience. The 
quadrupole operator D + is able to generate states from the vacuum [(s+ riO)] with respect to which all Hamiltonian matrix 
elements are real. Relationships between Casimir operators of the groups in (6.7) are 

C I [U(5)] = T(O) = nd' 

C2[U(5)] - C2[SO(5)] = L [T(L) T(L)](O), 
L=O,2,4 

C2[SO(6)] - C2[SO(5)] = [D+D+](O), (6.9) 

C2[SO(5)] - C2[SO(3)] = [T(3)T(31(0), 

C2[SU(3)] - C2[SO(3)] = [(D+ + XT(2»)(D+ + XT(2»)](0), withX2 = Jj, 

C2[SO(3)] = [T(1)T(11(0). 

B.IBM-2 

When a distinction is to be made between protons and 
neutrons, the dynamical group is SU".(6) ® SU,,(6) (see 
Refs. 28-30). These groups act in Hilbert spaces HIT and H", 
which carry fully symmetric representations (N".,O) of 
SU".(6) and (N",O) of SU,,(6). The direct product Hilbert 
space H". ® H" is reducible with respect to the diagonal 
subgroup SU D(6). The irreducible content of this Hilbert 
space consists of representations with Young partitions 
[/1= NI + N2 - K,j; = K,O], K = 0,1,2, ... , min(N"., N.,). 

Once again, the Casimir operators are now explicitly includ­
ed in the generating function because several irreducible re­
presentations occur in the reduction ofH". ® H". To second 
order, two new tensor operators besides C2 occur, D 2U IUS 

andD 2U2U 4• The operators C2,D 2UIUS' andD 2U2U4 each 
contribute one self-adjoint SO(3) scalar. 

The degree-2 SO(3) scalars describing the proton-neu­
tron interaction, which are derived from the term 
(l-DUIUs)-I, and whose structure can be inferred from 
the scalars in (6.8), are 

{T~), T~)}(O), withL = 0,2,4, 
(6. 11 a) 

In these expressions the brackets { , } mean that the opera­
tors within should be symmetrized with respect to the inter­
change of proton-neutron indices. 

The three additional self-adjoint operators of degree 
d = 2, which are derived from the additional terms 
(1 - D 2C2)-I, (1 -D 2U IUs)-1, and (1 - D 2U2U4)-I, are 
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In addition to the SOt 3) scalars, which can be construct­
ed from the generators of SU".(6) alone or of SU,,(6) alone 
(Table II), there are scalars which are "cross terms." These 
describe specifically the proton-neutron interaction, and 
first occur for d = 2. Many of these operators can be con­
structed from the second-degree operators given (6.8). The 
structure of all sot 3) scalars can be determined by construct­
ing the generating function for the SUD (6) tensor content in 
U[SU(6)] acting on degenerate representations in the class 
(11-» 11-2,0), and then constructing the SO(3) scalar generating 
function. The tensor generating function is 

(6.10) 

(6.11b) 

(d: d" )(O)(d: d". )(0) or equivalently {D _ "., D _ " } (0). 

The total number of terms up to degree d = 2 in the 
Hamiltonian with dynamical and symmetry groups SU".(6) 
XSU,,(6) ~ SO(3) is 20. Of these, six describe the protons 
alone and six the neutrons. The proton-neutron interaction 
is described by eight terms. Five of these are obtained direct­
ly from the scalar operators in SU(6) ~ SO(3) as Casimir 
covariants using the construction of (5.13). The remaining 
three terms, given in (6.11b), are sometimes called Majorana 
terms. 

It is possible to replace the SO(3) scalars in SU".(6) 
X SU" (6) up to degree 2 by the Casimir operators belonging 
to a suitably chosen group lattice. As in the case SU(4) 
® SU(4) ~ SO(3), this group lattice can be chosen to reflect 
the construction of the proton-neutron interaction terms 
from those of the simpler model with proton-neutron equiv­
alence [cf. (5.15)]: 
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Once again, this lattice provides a clear separation of the 
SO(3) scalars describing protons alone or neutrons alone 
from those describing the proton-neutron interaction. The 
former are derived as Casimir operators of direct product 
groups with the latter obtained from diagonal subgroups. To 
guide the eye, in (6.12) heavy solid lines are used to indicate 
diagonal group to diagonal subgroup connections, broken 
lines for direct product group to direct product subgroup 
connections, and regular solid lines to indicate the direct 
product to diagonal subgroup connections. This lattice does 
not describe an integrity basis for terms of degree d>3. 

Many additional groups can be placed in the group lat­
ticewithSU".(6) ® SUv(6) as the dynamical group and SO(3) 
as the symmetry subgroup. First, "off-diagonal cross-pro­
duct terms" such as U".(5)xSOv(6) can occur. Second, D * 
subgroups can occur by the process described in (5.20). And 
finally, subgroups can be constructed by combining two 
groups, Gi and G;, in an out of phase way. For example, the 
quadrupole tensor for the Lie algebra SU(3) for the proton 
and neutron subgroups of the dynamical groups are 

Q". = [d +5 +s+d + X(d + d)(2)]"., withX; = ~, 

(6.13) 

Qv = [d +5 +s+ d + X(d + d)(2)]v' withX~ =~. 

When the two factors X". and X v are chosen with the same 
sign the standard diagonal subgroup SU(3) results. When 
they are chosen with the opposite sign the subgroup called 
SU*(3) results. In this group--subgroup reduction the repre­
sentations ofSU".(3) are combined with the conjugate repre­
sentations ofSUv (3) and then reduced. 

VII. SUMMARY AND CONCLUSIONS 

An algorithm has been presented for constructing a Ha­
miltonian from the generators of a dynamical group G, 
which is invariant under the operations of a symmetry sub­
group H C G. Such an algorithm is necessary to determine 
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(6.12) 

I 
when the H scalars on which the Hamiltonian depends can 
be replaced by the Casimir operators for the members in a 
group-subgroup lattice. 

In principle, the algorithm is simple; it is certainly 
straightforward to state: The terms homogeneous of degree 
d in the universal enveloping algebra of the Lie algebra of 
G, U d (G), carry a representation of G, which in general is 
reducible. Under reduction to the subgroup He G the 
number of times the identity representation, r e(H), occurs in 
U d (G) can be determined. The basis vector operators for 
these identity representations are the H scalars in U d (G) 
from which the Hamiltonian can be constructed. 

As the implementation of this algorithm is usually 
somewhat less than straightforward, and since there are sim­
plifications that reduce the complexity of the results in many 
cases of physical interest, a number of guidelines for using 
and simplifying the algorithm have been presented. The ma­
jor part of these simplifications are effected by introducing 
generating functions for the irreducible tensor content of 
U d (G). For several cases of physical interest these functions 
have been constructed explicitly. Furthermore, it is shown 
how these functions can be used in turn to construct generat­
ing functions for the H scalars in U d (G). 

Generating functions are generally available only for 
connected Lie subgroups of Lie groups. The effects of dis­
crete operations (such as space inversion, time reversal, and 
Hermitian conjugation), which must also leave the Hamil­
tonian invariant, must be studied separately. These symme­
tries impose additional reality constraints on the parameters 
which appear in the Hamiltonian. Thus, they may reduce the 
number of H scalars which can appear in the integrity basis 
for the H scalars in the universal enveloping algebra of the 
dynamical group G from which Hamiltonians can be con­
structed. 

The use of this algorithm was illustrated first for the 
dynamical group SU(2). In the case that H C SU(2) is finite, 
the algorithm leads to the construction of the point group 
tensor harmonics as linear combinations of the spherical ten-
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sor operators. These have been used in the field of solid state 
physics to describe ligand and crystal fields. 

The algorithm was then used to construct the integrity 
basisforSU(3):::> SO(3),SU(4):::> SO(3),andSU(6):::> SO(3). 
In addition, another algorithm was presented for construct­
ing the integrity basis for direct product dynamical groups. 
The problem of replacing the integrity basis by the Casimir 
operators belonging to a group-subgroup lattice was also 
considered for the three cases SU(N) :::> SO(3), N = 3,4, and 
6. 

Compact simple Lie groups have been used to illustrate 
the algorithm stated in Sec. I. However, the algorithm can be 
applied to noncompact and nonsemisimple groups as well: 
The universal enveloping algebra, U(G), is structurally the 
same whether the group is simple, semisimple, nonsemisim­
pIe, compact, or noncompact.32 Each subspace U d (G) is fin­
ite dimensional if the algebra is finite dimensional. Its reduc­
tion into G-invariant tensor operators proceeds without 
change. When G is noncompact, the irreducible representa­
tions so obtained are finite-dimensional but nonunitary. The 
H scalars in these finite-dimensional representations can be 
obtained as before. The only change brought about by the 
use of a noncompact dynamical group G is in the reality 
restrictions on the complex parameters, which appear in the 
Hamiltonian H, brought about by the requirement that H be 
Hermitian. If G I is a noncompact dynamical group obtained 
by analytic continuation of the compact group G, then 
straightforward analytic continuation of the computation of 
the integrity basis of G :::> H can be used to construct the 
integrity basis for G I :::> H. This remark extends to the 
group--subgroup lattice as well. 

It would be useful to have a criterion for determining 
completeness of an integrity basis. The generating function 
for the G tensor content of U(G), and the extension of this 
generating function to one for the H scalars in U(G) suffices. 
However, construction of the latter from the former may be 
difficult. A more easily and directly applicable criterion, 
such as the missing label folk theorem, would be useful. This 
result holds for a number of the applications considered, and 
fails to hold for several applications also considered above. 
Something like it should be true, but we cannot recommend 
it as a test for completeness of an integrity basis. 

The dependences, which occur among inequivalent sets 
of tensor operators with identical transformation properties 
on restriction from one class of representations to a more 
degenerate class of representations, can be studied using as a 
tool the coherent states associated with the dynamical group 
G. The close relation between coherent states and indepen­
dent tensor operators can be seen as follows. Generalized 
coherent states are defined by specifying (i) a Lie group G, (ii) 
a Hilbert space in which G acts (in this case, a class of repre­
sentations), and (iii) an extremal state within this class of 
representations. An immediate output of the coherent state 
construction procedure is a stability subgroup (in this case, 
K). The structures used in the construction of coherent states 
are exactly those used in determining the number of inequi­
valent tensors of a given type that act within a class of repre­
sentations [cf. Sec. II, remark (6)]. The expectation value of 
these operators with respect to the coherent states provides a 

3066 J. Math. Phys., Vol. 26, No. 12, December 1985 

system of functions in which linear dependences show up 
clearly on restriction to a more degenerate class of represen­
ations. 

In this work we have not investigated the problem of 
constructing the most general group--sub group lattice based 
on the dynamical group--symmetry subgroup pair G :::> H. 
This is the counterpart of the problem of determining the 
integrity basis for the same pair of groups. The objective of 
such a study would be the development of an algorithm for 
constructing a "universal enveloping" group--subgroup lat­
tice, which could be compared with the integrity basis and 
from which a minimal complete group--subgroup lattice 
could be isolated and put in I-I correspondence with the 
elements in the integrity basis. 

Note added in proof: The concept of integrity basis de­
veloped in the context of invariant theory was studied exten­
sively in the past century by Molien, Grace, Young, and 
others. See Weyp3 for extensive references. The use of integ­
rity bases in physical applications is implicit in the work of 
many authors. Explicit use of the integrity basis appears in 
the work of Judd/4 Smith and Wyboume,35 Wyboume,36 
Killingbeck,37 and McClellan.38 We are indebted to Profes­
sor Wyboume for providing this brief outline of the use of 
the integrity basis concept in physical applications. 
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A new expression for the Green's function of a finite-length one-dimensional harmonic lattice 
with nearest-neighbor interactions is reported. Simple closed expressions in terms of Chebyshev 
polynomials are developed for periodic, fixed, and free end boundary conditions. 

I. THE GENERAL GREEN'S FUNCTION 

The finite-length one-dimensional single-component 
harmonic lattice with nearest-neighbor interactions is a well­
studied standard model whose natural frequencies and nor­
mal modes are well known for a variety of boundary condi­
tions. 1 

However, the real space representation of the Green's 
function for this model has only been developed as a deter­
minantal expression for periodic boundary conditions. We 
shall show here that the Green's function for this model can 
readily be derived as a simple closed expression in terms of 
Chebyshev polynomials for a wide range of different bound­
ary conditions. 

The equations of motion for the N atom lattice may be 
written in dimensionless units as 

2zu(n) - u(n + 1) - u(n - 1) = 0, ( 1) 

where u(n) is the displacement of the nth particle from its 
equilibrium position, n lies in the range l<n<N, and 
z = 1 - (J)2, where (J) is the dimensionless frequency. 

This model is usually constrained by one of four sets of 
boundary conditions expressed as constraints on u(O) and 
u(N + 1): (i) periodic boundary conditions, where 
u(N + n)=u(n); (ii) both ends clamped, so that 
u(O) = u(N + 1) = 0; (iii) both ends free, so that u(O) = u( 1) 
and u(N) = u(N + 1); and (iv) one end free and the other 
clamped, for example u(O) = u( 1) and u(N + 1) = O. 

The Green's function2 for the model is the solution to 
the inhomogeneous equation 

zG(n,m)- !G(n-l,m)- !G(n+l,m)=8n.m , (2) 

for all N~n, m~O. When ni=m, we note that the difference 
equation (2) is the recurrence relation for Chebyshev polyno­
mials,3 and that consequently the solution to Eq. (2) must be 
a sum of Chebyshev polynomials. As the solution must also 
obey the time-reversal requirement that G (n, m) = G (m, n), 
the polynomials with the appropriate symmetry to be includ­
ed are Tn_m(z), Tn+m(z), Uln_ml_1 (z), and Un+ m_ 1 (z). 

Direct substitution into Eq. (2) reveals that 
- U In _ ml _ I (z) is a particular solution to the equation, 

while the other three polynomials are solutions to the related 
homogeneous equation (1). Hence the Green's function may 
be written in general form as 

G(n, m) =A (z)Tn_m(z) +B(z)Tn+m(z) 

+ C (z)Un + m _ I (z) - Uln _ ml _ I (Z), (3) 

where A (z), B (z), and C (z) are determined by the boundary 
conditions. 

II. APPLYING THE BOUNDARY CONDITIONS 

The solutions under the four sets of boundary condi­
tions may now be found as follows. 

(i) Periodic boundary conditions: The Green's function 
depends only on the relative position n - m so that 
B (z) = C (z) = 0, and A (z) is the site diagonal Green's func­
tion, G (n, n). For an infinite chain it is known that 
G(n, n) = (r _1)-1/2 so that 

G(n,m)=Tn_m(z)l~ -Uln_ml_I(Z). (4) 

For a finite lattice, periodic boundary conditions can be writ­
ten as G (N, 0) = G (0, 0) so that 

A (z) = UN_ dz)/[TN(Z) - 1]. (5) 

The Green's function for N particles subject to periodic 
boundary conditions is then 

G(n, m) = GN(n - m) 

_ Tn_m(z)UN_ dz) _ U ( ) (6) 
- TN(z)-1 In-ml-IZ. 

(ii) Both ends clamped: The boundary conditions are 
G(O, m) = G(N + 1, m) = O,regardlessofthevalueofm>O. 
The first of these conditions is 

G(O, m) = 0 = (A (z) +B(z))Tm(z) + (C(z) - l)Um_ dz). 

The only solution valid for all m is when B (z) = - A (z) and 
C (z) = 1. Then 

G(N + 1, m) = 0 =A (Z)(TN+ l_m(Z) - TN+ I +m(z)) 

+ UN+m(z) - UN_m(z) 

= { - 2A (z)(r - l)UN(z) 

+ TN+ dz)}Um_l(z), 
so that 

A (z) = TN+ dz) U2N+ dz) 
(r - l)UN(z) T2N + 2 - 1 

Hence the Green's function for the N atom chain with 
clamped ends is 

U2N + I (Z) 
G(n, m) = (Tn_m(z) - Tn+m(z)) T ( ) _ 1 

2N+2 Z 

- Uln _ ml _ dz) + Un+m_dz) 

= G2N + 2(n - m) - G2N + 2(n + m), 

where GN(m) was defined in Eq. (6). 

(7) 
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(iii) Both ends free: The boundary conditions when both 
ends are free are designed to ensure that the force on each 
end of the chain is zero. This is ensured by setting 
G(O, m) = G(l, m)andG(N + 1, m) = G(N, mI. The first of 
these conditions can be written as 

G(O, m) - G(l, m) = ° =A (z)(Tm(z) - Tm_ J!z)) 

+B(z)(Tm(z) - Tm+ J!z)) 

+ C(z)(Um_ J!z) - Um(z)) 

- (Um- J!z) - Um _ 2 (z)). 

Using the identities for Chebyshev polynomials,3 

Tm(z) =zTm+ dz) - (r -l)Um(z) and Um_ dz) 
= zU m (z) - T m + dz), we find thatthe solution, valid for all 

m,isB (z) = 1 + zA (z) and C (z) = (1 - rIA (z) - z. Substitut-
ing these into Eq. (3), we find the Green's function to be 

G(n, m) =A (z){Tn_m(z) + Tn+m(z)} 

- U1n _ ml _ 1 (z) - Un + m _ 1 (Z). (8) 

The value of A (z) is then found from the boundary 
condition at the other end of the chain. Here 
G(N + I,m) = G(N,m), so that 

° = A (z) I TN _ m (z) + TN + m _ 1 (z) 

- TN+ l_m(Z) - TN+m(z)} 

- UN _ m _ J!Z) - UN _ m _ 2 (Z) 

+ UN_m(Z) + UN+ m_ J!Z) 

= 12A (z)(r - 1)UN- J!Z) - 2TN(z)j 

X {Um _ 2(Z) - Um _ J!Z)j 

so that 

A (z) = TN(Z) = U2N- 1 (z) 
(r - 1)UN- J!z) T2N (Z) - 1 

and 
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U2N _ J!z) 
G(n, m) = (Tn_m(z) + THm - J!z)) 

T2N(z) - 1 

- U1n _ ml _ J!z) - Un+ m_2(z) 

= G2N(n - m) + G2N(n + m - n (9) 

(iv) One end clamped, the other free: The Green's func­
tion that obeys the free boundary condition 
G(O, m) = G(l, m)isgivenbyEq.(8). The clamped boundary 
condition on the far end, G (N + 1, m) = 0, determines the 
value of A (z) through 

G(N + 1, m) = ° =A (z){ TN+ l_m(Z) + TN+m(z)j 

- UN_m(z) - UN+ m_ J!z), 

so that 

A (z) = U2N(Z)/[ T2N + 1 (z) + 1], 
and the Green's function is 

G(n,m)= [U2N(Z)/T2N+l(Z) + l]{Tn_ m(z) 

+ THm_dz)}- Uln_ml_dz) 

(10) 

Consequently, we have found that the Green's function 
for a finite-length one-component one-dimensional lattice 
with nearest-neighbor spring constants may be expressed in 
simple closed form in terms of Chebyshev polynomials, the 
exact form being determined by the applicable boundary 
conditions. 

ISee, for example, Mathematical Methods in One Dimension, edited by E. H. 
Lieb and D. C. Mattis (Academic, New York, 1966). 

2E. N. Economu, Green's Functions in Quantum Physics (Springer, New 
York, 1979). 

3See Chap. 22 in Handbook of Mathematical Functions, edited by M. 
Abramowitz and I. A. Stegun (Natl. Bur. Stand., Washington, D. C., 
1968). 
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The integrability of a two-dimensional Hamiltonian in which the potential depends explicitly on 
the momenta is investigated. Hamiltonians of this kind are encountered in the description of the 
motion of a particle in a magnetic field. Two integrable classes of potentials are identified and the 
second integral of motion is constructed for each of them. The singularity analysis of the 
equations of motion is also performed, confirming once more the relation between the (weak) 
Painleve property and integrability. 

I. INTRODUCTION 

The purpose of this article is to study two-dimensional 
Hamiltonian systems corresponding to the motion of a parti­
cle in a plane under the inftuence of a scalar potential and a 
transverse magnetic field. The Hamiltonian is postulated to 
have the form 

H =! (P! + p;) + A (x,ylPx + B (x,ylPy + W(x,y), (1.1) 

where A, B, and Ware, at this stage, arbitrary functions of 
the coordinates x and y, and Px and Py are the momenta 
canonically conjugate to x and y. We are interested in estab­
lishing the conditions on the scalar and vector potentials W 
and A = (A,B ), under which the system becomes integrable, 
i.e., a second integral of motion exists. 

The problem of finding integrable dynamical systems of 
physical interest is a difficult one. Research in this direction 
has been actively pursued during the last few years for a 
variety of reasons. These include the good physical proper­
ties of integrable systems, namely the regular behavior of 
trajectories and the related predictability of the behavior of 
the system over long periods of time. In particular, integra­
ble systems with well-behaved integrals of motion will not 
exhibit chaotic behavior. A knowledge of these sytems, on 
the other hand, helps in the study of "neighboring" noninte­
grable systems, e.g., in the investigation of the onset of chaos. 

Even for Hamiltonian systems not too many results are 
known. The Toda and Calogero systems'-3 are among the 
rare examples of integrable N-particle systems on a line with 
pair interactions. 

For a two-dimensional Hamiltonian system the prob­
lem should, in principle, be a simpler one. In order to ensure 
integrability, all that is needed is for a second constant of 
motion, independent of the Hamiltonian, to exist. Even in 
this case few general results are known, but the combined use 
of different techniques has made it possible to identify quite a 
few two-dimensional integrable systems of interest, and in 
some cases whole classes of such systems. 

A straightforward method, due to Bertrand,4 involves a 

direct search for additional integrals of motion, making the 
assumption that these constants are polynomials in the ve­
locities (or momenta). The coefficients ofthe polynomial are 
functions of the coordinates and are obtained by solving cer­
tain, in general nonlinear, partial differential equations. This 
direct method is most powerful in the simpler cases, when 
the additional integrals of motion are first- or second-order 
polynomials in the momenta. It has been generalized to the 
case of quantum mechanical integrable systems,5.6 and ap­
plied to the case of two- and three-dimensional nonrelativis­
tic one-particle Hamiltonian systems with velocity-indepen­
dent forces.5-7 In this case the existence of second-order 
integer polynomial integrals of motion has been related to 
the separation of variables in the corresponding Hamilton­
Jacobi or SchrOdinger equation. 

The drawbacks of the direct method are quite obvious. 
It cannot be applied to find non polynomial integrals of mo­
tion, which are known to exist and to be of interest.8 More­
over, even in the polynomial case, the method becomes ex­
tremely cumbersome for polynomials of order higher than 2 
in the momenta. More significantly, there is no guarantee 
that we will be able to solve the differential equations in­
volved in the reconstruction of the coefficients in the polyno­
mial. 

Other methods are hence needed to identify integrable 
systems or at least to pinpoint candidates for integrability. A 
powerful tool for this purpose is the Painleve criterion, 9 

based on the study of the singularity structure of the solu­
tions in the complex time plane. According to this criterion, 
a system is a candidate for integrability, if it does not allow 
any moving critical points, i.e., if the only singularities (in an 
arbitrary solution) that depend on the initial conditions are 
poles. The application of the Painleve criterion has led to the 
identification of several two-dimensional integrable Hamil­
tonian systems. 

As mentioned above, Hamiltonian systems of the type 

(1.2) 
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with a second integral of motion that is quadratic in the 
momenta, have been completely classified. 5. 

7 The integral of 
motion in this case has been shown to be the sum of a second­
order element in the enveloping algebra of the Lie algebra of 
motions of the plane e(2) [or its complexification e(2,C) if 
complex Hamiltonians are considered] and a function h (x,y), 
related to the potential V(x,y). A classification of quadratic 
integrals of motion then amounts to a classification of such 
second-order elements in the enveloping algebra into orbits 
under the action of the corresponding Euclidean Lie group 
E(2) [or E(2,C)]. In the real case four types of such orbits 
exist, corresponding to potentials allowing the separation of 
variables in the Hamilton-Jacobi (or Schrodinger) equation 
in Cartesian, parabolic, polar, and elliptic coordinates, re­
spectively. In the complex case, three more orbits, and corre­
spondingly, three more integrable types of potentials exist. 5.

7 

Some partial results also exist1
0-

14 for integrals of mo­
tion of the order 3,4, or 6. Here group theory is somewhat 
less helpful, since only the highest-order terms in the polyno­
miallie in the enveloping algebra of e(2). 

An interesting and different approach has been adopted 
by Hall. 12 He generalizes the concept of integrability by al­
lowing the second integral of motion to depend explicitly on 
the energy E. Such an integral will have different values on 
each energy surface, may have different properties on differ­
ent subsets of energy surfaces, and may indeed only exist on 
certain subsets. Such "configurational invariants," in Hall's 
terminology, are of considerable interest in both classical 
and quantum mechanics. Indeed, in quantum mechanics 
they could be used to analyze accidental degeneracy of cer­
tain energy levels, rather than of the entire energy spectrum. 
We shall not go into this interesting question in the present 
article. 

In this paper we concentrate on the Hamiltonian (1.1) 
and restrict ourselves to systems that allow integrals of mo­
tion that are first- or second-order polynomials in the veloc­
ities (or momenta). Indeed, the integral of motion will be 
written as 

where gi' k i , and h are functions of the coordinates x and y 
only. By assumption, they are thus independent of time t and 
energy E. 

In Sec. II we first analyze the linear case, i.e., 
go = g 1 = g2 = 0 in (1.3). As usual, such an invariant leads to 
potentials with purely geometric symmetries. The quadratic 
case (at least one of the gi'S nonvanishing) is more interest­
ing. As in the case of velocity-independent potentials (1.2), 
we are led to consider several cases, corresponding to differ­
ent types of separable coordinate sytems. A major complica­
tion arises in the present case: the linear terms ko(x,y) and 
k1(x,y) are present and cannot, as opposed to the case ofve­
locity-independent potentials, be set equal to zero as a conse­
quence of time reversal invariance. Thegi terms of(1.3) will 
again lie in the enveloping algebra of e(2), not, however, the 
linear terms. 

In Sec. III we obtain the most general Hamiltonian (1.1) 
allowing a "Cartesian" type integral of motion. The motion 
of a particle in several special cases of such Hamiltonian 
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systems is investigated in Sec. IV: we present some bounded 
trajectories and special Poincare sections. Section V deals 
with the Painleve analysis of the general system found in Sec. 
III: the potentials and the integral of motion in general in­
volve Weierstrass elliptic functions and hence have interest­
ing periodicity properties. Some conclusions are presented in 
Sec. VI. The Appendix deals with a "degenerate" case of the 
Cartesian type of integral of motion, occurring only for com­
plex Hamiltonians and reflecting the existence of isotropic 
(zero-length) momenta in the complex case. 

II. FORMULATION OF THE PROBLEM 

The equations of motion for the system with Hamilton­
ian (1.1) are 

. aH A 
x=-=Px + , 

apx 

. aH B 
y=a-=Py + , 

'Py 

Px = - ~~ = - Wx -AxPx -Bxpy, 

fty = -: = - Wy -AyPx -Bypy, 

or, after eliminating the momenta, 

x = - Wx +AAx + BBx + y(Ay - Bx), 

ji = - JJj, + AAy + BBy - x(Ay - Bx). 

Putting 
il=Ay -Bx, V= W_!(A2+B2), 

we simplify the equations of motion to 

x = - Vx +ily, 

ji= - Vy -ilx, 

and the Hamiltonian to 

H = !(.X2 + P) + V(x,y). 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

Once il and Vare determined we can use the definitions 
(2.3) to reconstruct the scalar potential Wand the vector 
A = (A,B ), up to a gauge transformation 

(V) ---+ (V + (A,V<,b) +! (V<,b)2) 
A A + V<,b , (2.6) 

where <,b (x,y) is an arbitrary function. 
We will consider the Hamiltonian system in the form 

(2.4) and (2.5) and investigate the conditions under which the 
system admits a second integral of motion C, independent of 
the Hamiltonian and linear or quadratic in the velocities. 

A. Linear Integral of motion 

Let us first consider the linear case, i.e., 

C = fo(x,y)X + fl(x,yty + h (x,y), (2.7) 

where again/; and h are independent of time and energy. 
Following Bertrand's method we impose dC / dt = 0, use the 
equations of motion (2.4), and equate the coefficients of each 
term in x and y to zero. We obtain 

fOx =0, fty =0, loy +flx =0, (2.8) 
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- III + hx = 0, IrIJ + hy = 0, lovx +11 Vy = O. 
(2.9) 

Thus 

10 = ay + (3, 11 = - ax + y. (2.10) 
The compatibility condition hxy = hyx for (2.9) gives 

IrlJx + Illy = O. 

For a = 0 we find 

v = V(5), !J = !J (5), h = h (5), 

s = rx -{3y, ;, (5) =!J (5). 
(2.11) 

For a 1= 0 an adequate translation in x and y permits the 
choice (3 = y = 0 so that, putting a = 1, we have 

V= V~), !J =!J~), h =h~), 

p=~X2+y2, ;,~)= -p!J. 
(2.12) 

We see that a linear integral of motion (2.7) exists if and only 
if both V and !J are invariant either under translations in 
some direction, or under rotations about some point (which 
we have translated to the origin). 

Hall12 has studied the less restrictive case of a linear 
constant depending explicitly on a fixed value of the energy. 
In that context he found extended families of solutions. 

B. Quadratic Integral of motion 

Let us now consider a quadratic constant of motion C in 
the form (1.3). The condition dC Idt = 0 directly implies 

gox =0, g2y =0, gOy +glx =0, gly +g2x =0, 

so that 

go = ay2 - {3y + 8, 

gl = - 2axy +{3x"":" r.v + S, 
g2 = ax2 + yx + ;, 

and the constant C reduces to 

C = a(xy - YX)2 + (xy - yx)({3x + rY) + 8x2 

(2.13) 

(2.14) 

+ ;y2 + Sxy + ko(x,y)X + k 1(x,y}y + h (x,y). 

(2.1S) 

It was shown in Ref. 12 that a weaker requirement, 
namely, that C be a configurational invariant that may de­
pend on the energy E, implies that F= !(go - g2) + (i/2)g1 
should be an analytic function of z == x + iy. It is a simple 
matter to verify that (2.1S) satisfies this requirement. Since a, 
(3, y, 8, ;, and S are constants, the quadratic part of C can be 
interpreted as a second-order element in the enveloping alge­
bra of the Lie algebra e(2), with a basis consisting of two 
translations x and y and the rotation (xy - yx). Performing a 
Euclidean transformation of the x,y plane (in general a com­
plex one) including reflections of x and y, and if necessary 
taking linear combinations of C and H, we can reduce C to 
one of the following seven casesS,7: (1) the Cartesian case, 
a={3=y=0,s/(8-;) 1= Ei,E= ± 1, 

(2.16) 

(2) the degenerate Cartesian case, a = (3 = y = 0, 
s 1(8 - ;) = Ei, 
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C2 =x(x + iy) + ko* + kJ + h; (2.17) 

(3) the parabolic case, a = 0, (3 2 + Y 1= 0, 

C3 = x(xy - yx) + ko* + kJ + h; (2.18) 
(4) the degenerate parabolic case, a = 0, y = Ei{3 1= 0, 

C4 = (x + iy)(xy - yx) + ko* + kJ + h. (2.19) 
In the case a 1= 0, define 

{3y {32 - Y 
Al = 2a - S, A2 = 4a +; - 8 , (2.20) 

0' = (l/2a)(A i + A ~)1/2. (2.21) 

We then have (S) the spherical case, a 1= 0, Al = A2 = 0, 

cs = (xy - YX)2 - ko* + k 1y + h; (2.22) 

(6) the elliptic case, a 1= 0, (Ato A2) 1= (0,0), Al 1= ± U 2, 

C6 = (xy - YX)2 + u(x2 - y2) + ko* + kl Y + h (2.23) 

(0' is the focal distance); and (7) the degenerate elliptic case, 
a 1= 0, Al = ± U 2 1= 0, 

C7 = (xy - YX)2 + (x + iy)2 + ko* + kl Y + h. (2.24) 

In addition to (2.13) the condition dC Idt = 0 implies the 
following system of differential equations: 

kox -gl!J=O, k 1y +gl!J=O, 

2go!J - 2g2!J + koy + klx = 0, 

- 2goVx -glVy - k 1!J + hx = 0, 

-glVx -2g2Vy +ko!J+hy =0, 

koVx + klVy = 0, 

withgi as in (2.14). 

(2.2S) 

In general these equations are not easy to solve. The 
polynomials gi should be chosen in one of the "standard" 
forms implied by the expressions C1, ... , C7 above and each 
case must be considered separately. In this article we restrict 
ourselves to the Cartesian and degenerate Cartesian cases, 
i.e., we put a = {3 = r in (2.14), so that go, gl' and g2 in the 
integral of motion (1.3) are constants. 

III. THE CARTESIAN CASE 

A. Derivation of basic equations 

Consider the case a = (3 = r = 0, s 1(8 -;)1= ± i in 
Eqs. (2.14). Performing an appropriate rotation and linear 
combination with H, we reduce C to the form C 1 of (2.16): 

c= !X2 + kox + k 1y + h. (3.1) 

Equations (2.2S), following from the condition dC Idt = 0, 
reduce to 

!J + koy + klx = 0, kox = 0, k 1y = 0, (3.2) 

ko!J+hy =0, -k1!J+hx - Vx =0, (3.3) 

koVx + kl Vy = O. (3.4) 

The case of a purely scalar potential, considered 
earlier-7 corresponds to ko = kl = O,!J = 0, V(x,y) = V1(x) 
+ V2( y). From now on we assume that at least one of the 

quantities ko or kl is not identically zero. 
Equations (3.2) can be immediately solved and imply 

ko= -gy(y), kl= -/x (x), !J=lxx(x)+gyy(Y). 
(3.S) 
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The compatibility condition hxy = hyx for the two equations 
(3.3) is 

Vxy + klny + kofJx = 0, 

which can be integrated to yield 

V(x,y) =/(x)gyy(y) +g(y)/xx(x) + u(x) + v(y), (3.6) 

where u(x),J(x), v( y), andg( y) are functions of one variable as 
indicated. Equation (3.4) reduces to 

gy [glxxx + Ixgyy + ux ] + Ix [Igyyy + gylxx + vy ] = O. 
(3.7) 

Defining 

F(x) = u + 1;12, G(y) = v +S;12, (3.8) 

and performing some simple manipulations, we transform 
(3.7) to the form 

Gy + Fx + g Ixxx +1 gyyy = O. (3.9) 
gy Ix Ix gy 

Taking the mixed derivative a 21 ax ay of(3.9) and separating 
variables we find 

l...!£lxxx = _l..!£ gyyy =2a. 
Ix dx Ix gy dy gy 

(3.10) 

Integrating (3.10) we obtain the following equations for the 
functions I(x) and g( y): 

I xx = al
2 + PI + r, 

(3.11) 
gyy = - ag2 + 8g + t, 

where a, p, r, 8, and t are constants. 
Returning to Eqs. (3.3) and (3.4) and their consequences, 

we can express the potentials and all other relevant quanti­
ties in terms ofthe functions/(x) and g( y): 

n =aif2 -g2) +PI+8g+ r+t, 

V=~(g-/f _P+8(g_/)2 + (r+K-t)(g-/), 
3 2 

(lb) a=p=8=0, t=O, r ¥ 0 (orr=O, t ¥ 0): In this 
case we have 

(3.14) 

(A, B, and no are constants). 
(20) a =0, p8 ¥ 0: Adding constants to I and g we can 

eliminate the constant terms in (3.11) to obtain 

Ixx = Pf, gyy = 8g. (3.15) 

Depending on the signs of P and 8 we find that I and g are 
either trigonometric or hyperbolic functions. 

(2b) a=O, 8=0, P ¥ 0 (or 8 ¥ 0, P=O): We find thatl 
is a trigonometric or hyperbolic function and g a quadratic 
polynomial (or vice versa). 

(3) a ¥ 0: Adding appropriate constants to I and g we 
reduce (3.11) to 

Ixx = al2 + r, gyy = - ag2 + t. (3.16) 

Putting 

1= 2~3ElrlaF((EIOrI3)1/4x), 

g = - 2~ - 3E~ laF(( - E2at 13)1/4y), 

where E; = ± 1 and F(z) satisfies 

F" = 6F2 + E12, E = ± 1, 

(3.17) 

(3.18) 

we express both/(x) and g(y) in terms of the Weierstrass 
elliptic function 

F(z) = P(z - k; E,h), (3.19) 

where k and h are arbitrary constants. The function P (z; g2' 
g3) is, in general, a doubly periodic function ofthe complex 
variable z, analytic in z except for an infinite number of sec­
ond-order poles (e.g., atz = 0). In the limit when one or both 
of the periods becomes infinite, the Weierstrass elliptic func­
tion is expressed in terms of elementary functions (trigono­
metric, hyperbolic, or inverse powers). Notice that, e.g., for 
r = 0, t = 0, in (3.16) a particular solution is 

I(x) = 61ax2, g(y) = - 61ay2. (3.20) 

ko=-gy, kl=-Ix, (3.12) Many other special cases can be extracted from Eq. (3.11). 

h = - (aI3)~ + 2/3 
- 3gf2) + P ifg - p) 

+ ! 8~ - 12) + y(g - 2/) + tg - Kf 

All the Greek letters represent arbitrary constants. The 
functions I and g introduced in (3.5) are defined up to an 
arbitrary additive constant. 

The problem of constructing the integrable Hamilton­
ian H, the constant C and the field n has thus been reduced 
to solving Eqs. (3.11). Let us now examine these equations. 

B. Analysis and solution of basic equations 

(lo) a=p=8=0, rt ¥ 0: In this case I and g are sec­
ond-order polynomials and we can, after a possible transla­
tion, put 

V = ! (AX2 + BT), n = no, (3.13) 

where A, B, and no are constants. 
This case describes a harmonic oscillator in a homogen­

eous magnetic field and the equations of motion can be 
solved explicitly. (See Sec. IV.) 
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IV. EXAMPLES OF TRAJECTORIES AND POINCARE 
SECTIONS 

In this section we shall study numerically some exam­
ples of Hamiltonian systems ofthe type (2.4) and (2.5), both 
integrable and nonintegrable ones. 

Let us first consider the integrable case (3.13), i.e., 
a = P = 8 = 0 in Eqs. (3.11). Thus, we have 
V = !(Ax2 + BT), n = const, and the equations of motion 
can be integrated analytically. Equations (2.4) in this case 
lead to a fourth-order differential equation for x and y sepa-
rately and, e.g., for x we obtain 

X(4) + (A +B +n2}X +ABx = O. (4.1) 

The solutions of the characteristic equation are 

1= {-(A +B+n2) 

+ Ej[(A +B + n2)2 - 4AB ]112/2, 

Ej = ± 1, j = 1,2. (4.2) 

Assuming that all four roots ± rl , ± r2 are different, we 
obtain 
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FIG. 1. A periodic trajectory for the potential V = (X
2 + y)l2 and constant magnetic field n = l' The period is T = 41T. 
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FIG. 2. A nonperiodic bounded trajectory for the integrable Hamiltonian with V = x2/2 + Y /4 and n = l' The frequencies in this case are not comeasurable. 
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x(t) = aer,t + be - r,t + eer,t + de - r,t, 

y(t) = (l/n'I'2) ['2(A + ~ )(aer,t - be - r,t) 

+ 'I(A + ~)(eer't - de-r,t)], 

(4.3) 

where a, ... ,d are arbitrary constants. We see that the motion 
is bounded (and quasiperiodic, i.e., restricted to a torus in 
phase space) if, I and '2 are pure imaginary. This happens if 

(A +B+n2)2>4AB>0 and A +B+n2>0. (4.4) 

The trajectories are actually periodic in configuration space 
if'I/'2 is a rational number. 

In Fig. 1 we present a trajectory for the caseA = B = 1, 
n =~. Conditions (4.4) are satisfied and we have '1 = 2;, 
'2 = i12, so the trajectories are periodic with period T = 41T. 
An integrable bounded, but nonperiodic trajectory is shown 
in Fig. 2, where we have chosen A = 1, B = !, and n = ~. 

A very useful tool in studies of two-dimensional Hamil­
tonian systems are the Poincare sections, defined as follows. 
Consider a Hamiltonian system with Hamiltonian 
H (x,y,Px ,Py)' The phase space is of dimension 4, but since the 
total energy H = E is an integral of motion, the trajectories 
in phase space are restricted to a three-dimensional mani­
fold, so that, e.g.,px can be expressed in terms ofpy, x, andy. 
A Poincare section is obtained by intersecting this three­
dimensional fixed energy manifold by a hyperplane, e.g., the 
hyperplane x = 0. If the system is integrable, the Poincare 
sections are regular, since they are sections of a torus. For 
chaotic systems, on the other hand, points are scattered on 
the Poincare sections in an irregular manner. 

"., 
-u 

Figure 3 represents such a regular Poincare section for 

0.8 

0.6 

0.4 

0.2 

0.0 

·0.2 

-0.1 

......... ........ ... 

., 
...... 

............... 
........... ... ... 

the integrable system discussed above withA = 1, B = !, and 
n = ~ and initial position (xo,yo) = (1,0). 

For comparison we also have studied some nonintegra­
ble Hamiltonian systems. We again consider the potential 
V =! x 2 + ir, but introduce a nonconstant magnetic field 

n = ~ + ex, e = const (4.5) 

(the only integrable case corresponds to e = 0). For small 
values of e (e < 1) the system remains close to the integrable 
one and the lack of integrability is not visible in the numeri­
cal studies. For e = ~ a trajectory is shown in Fig. 4 and it 
does not seem to differ qualitatively from the nonperiodic 
"integrable" trajectory of Fig. 2. The fact that the system is 
not integrable manifests itself quite clearly on the Poincare 
section of Fig. 5. 

Finally, in Fig. 6, we show a trajectory for a different 
integrable system, namely, 

V = (cosh ax + cosh {3y)2, n = a 2 cosh ax - {3 2 cosh {3y, 
(4.6) 

corresponding to the case when Eqs. (3.11) are linear. The 
trajectories in this case remain bounded. 

The trajectories for trigonometric-type potentials, or 
the doubly periodic ones involving Weierstrass elliptic func­
tions, do not, unfortunately, remain bounded, so there is 
little point in presenting them on figures. In the case of the 
elliptic functions this is due to the fact that the quadratic 
terms in the two equations (3.11) have opposite signs, so ei­
ther the/or g contribution to the potential will be repulsive 
and the other one attractive [see, e.g., (3.20)]. 
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FIG. 3. A Poincare section for the integrable system with V = r /2 + r /4 and n = !. 
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FIG. 4. A bounded nonperiodic trajectory for a perturbed nonintegrable system with V = x2/2 + Y/4 and magnetic field n = 3(1 + x)l2. 
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FIG. S. A Poincare section for the same nonintegrable system as in Fig. 4. 
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FIG. 6. A trajectory for the integrable system with V = (cosh ax + cosh fJy)2 and n = a2 cosh ax - fJ 2 cosh fJy. 

V. PAINLEVE ANALYSIS OF THE CARTESIAN CASE 

We recall that the equations of motion are 

x= - Vx +!ly, ji= - Vy -!lx, (5.1) 

where!l and V are expressed in terms of two elliptic func­
tionsf(x) andg(y) by the following steps. 

Iff and g satisfy 

fxx = ap + Pf + y, gyy = - ag2 + og + ;, (5.2) 

then!l = fxx + gyy and 

v = (aI3)(g - f)3 - [(13 + o)l2](g - ff + K(g - f) + v, 

where K and v are arbitrary constants. In the following, a 
will be taken equal to 3. 

The singularity analysis is somewhat unusual in this 
case, because when x and y go to infinity, the elliptic func­
tions do not go to any limit. This prevents x and y from going 
to infinity in a finite time. Rather, the singularities at finite 
times occur when x andy go to poles, respectively, offandg. 
Indeed, when x goes to a pole off at a finite time to, Y cannot 
go to a regular point of g but must go to a pole as well. 

Letxobe a pole offandyo a pole ofg. From Eqs. (5.2) one 
can see thatfbehaves as 

f-2/(x - xof, 

while g behaves as 

g- - 2/(y - Yof 

Balancing the leading powers in (5.1), we see that x - Xo and 
Y - Yomustbehaveasz1

/
4

, wherez = t - to. Note that all the 
terms in Eq. (5.1) are dominant and behave asz-7/4. As usu-
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aI, to is one of the free parameters of the expansion but Xo and 
Yo are fixed as they must be the locations of poles of the given 
functions f and g. From there on, the Painleve analysis fol­
lows as usual: We write 

x - xo_az1/4, y - yo_pZl/4. 

Balancing the coefficients of the leading powers, we find 
only one relation between a and p, namely, 

a 3p 3 = 16(a2 +p 2
). 

The resonances are found to be at - 1, 0, !, and ~. As usual, 
- 1 is related to the arbitrariness of to and 0 reflects the 

freedom of a (or P), since we have only one relationship 
between a and p. The other resonances are half-integers, 
therefore the expansion does not have the full Painleve prop­
erty. Still the expansion may be of "weak Painleve" type15 

because a power Zl/2 in the expansion is a "natural" one since 
the leading behavior goes as Zl/4. In order to check for the 
resonance condition, one must first expandf and g to order 3 
in (x - x o) and (y - Yo), respectively, then substitute expan­
sions of (x - x o) and (y - Yo) in terms of z. Checking the 
resonance conditions (especially at order~) is a very tedious 
task, which was accomplished using the REDUCE formal lan­
guage. Both resonance conditions were actually found to be 
satisfied and no logarithm enters in the expansion, which is 
thus indeed of the "weak Painleve type," as expected for 
integrability. 

VI. CONCLUSIONS 

The main result of this paper can be summarized as fol­
lows. 
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(1) We have shown that a nonrelativistic Hamiltonian 
system with the Hamiltonian (1.1 ), involving both scalar and 
vector potentials, admits a quadratic integral of motion C, 
only if the terms in C that are quadratic in the velocities are 
actually second-order operators in the enveloping algebra of 
the Euclidean Lie algebra with the basis {x, y, xy - xy}. 

(2) We have completely analyzed the case of "Cartesian" 
and "degenerate Cartesian" integrals of motion, i.e., the case 
when the coefficients gj of the second-order terms in the 
constant C are independent of the coordinates. The most 
general integrable system of the Cartesian type is given by 
(3.12), where f(x) and g( y) are solutions of the elliptic-func­
tion-type ordinary differential equations (3.11). In general, 
fIx) and g( y) are doubly periodic functions of the (complex) 
variables x and y, respectively. 

(3) We have investigated periodic and nonperiodic 
bounded trajectories and also Poincare sections for several of 
the obtained integrable systems and compared them with 
some nonintegrable ones. 

(4) We have shown that, in general, the obtained integra­
ble systems manifest the "weak Painleve property," i.e., the 
solutions may have moving poles and rational branch points, 
not, however, logarithmic ones. The case of a pure scalar 
potential is an exception. Then V (x,y) = F (x) + G (y) and 
(J = ko = kl = 0. ThefunctionsF(x) and G (y)arearbitrary, 
the equations of motion separate in Cartesian coordinates, 
and the singularity structure of the solutions can be arbitrary 
[depending on the form of F(x) and G (y)]. 

Several comments are in order here. 
(i) In general the vector and scalar potentials will be dou­

bly periodic in the complex x and y planes, though of course 
one or both periods may, in special cases, be infinite. In the 
general case the motion is unbounded. Periodic potentials 
are of obvious interest in crystallography and solid state 
physics and we plan to return to the case of integrable Ha­
miltonian systems with potentials expressed in terms of 
Weierstrass elliptic functions. 

(ii) The case when a magnetic field is present is much 
more difficult to treat than the case of a purely scalar poten­
tial, when the existence of an integral of motion quadratic in 
the velocities is tantamount to the separability of the Hamil­
tonian in one of several coordinate systems. This is the rea­
son why we have restricted ourselves to two of seven classes 
of quadratic integrals of motion. The other classes are pres­
ently under study. 
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APPENDIX: THE DEGENERATE CARTESIAN CASE 

As mentioned in Sec. II, if the variables x andy, as well 
as the potentials, are allowed to be complex, isotropic vec­
tors exist in velocity space and they lead to "degenerate" 
orbits of second-order integrals of motion. One such integral 
is the "degenerate Cartesian integral" 

C=x(x + iy) + kox + kly + h. 

[See (2.17) and Ref. 7.] 
In the coordinates 

Z = x + iy, Z = x - iy, 
the constant C reduces to 

C = !(r + z~) + ko Z + kl Z + h, 

and the equations of the motion are 

Z= - 2Vz - inz, z= 2Vz + illZ. 

Putting 

dC =0, 
dt 

(AI) 

(A2) 

(A3) 

using the equations of motion, and equating the coefficients 
of each term to zero, we obtain 

ko.z - il1 = 0, ko.z + k l.z = 0, kl,Z = 0, (A4) 

hz -2Vz - Vz -ikol1=O, hz - Vz +ikll1=O, 
(AS) 

kov:' = klVz = 0. 

We can easily integrate for ko, kl' and l1: 

kl = ~I(Z), ko = - ~ i (z)Z + ~o(z), 
in = ~ ~(z) - ~ i'(z)Z. 

(A6) 

(A7) 

(AS) 

The compatibility condition hzi = h'Zz for Eqs. (AS) implies 

2Vu = (~o~ i' - ~I ~~') +Z(~I ~ i" - ~ i ~ i'), (A9) 

leading to 

2V = uo(z) +zu1(z) + (r/2)(~o~ i' -~I ~~') 
+ tz3 /6)(~1 ~ i" - ~ i ~ i')· (AlO) 

Equation (A6) now reduces to 

( - ~i Z + ~O)(UI + ZA (z) + (r/2)B (z)) 

+ ~I(U~ + z ui + (r /2)A I + tz3 /6)B 'Iz)) = 0, 
where 

A(z)=~o~i'-~I~~" B(z)=~I~i"-~i ~i'· 

Equating to zero the coefficient of each monomial in Z, we 
obtain 

- ! ~i B (z) + (~1/6)B 'Iz) = 0, 

- ~i A (z) + (~oI2)B (z) + (~1/2) A 'Iz) = 0, 

- ~i UI + ~oA (z) + ui ~I = 0, 

UI~O + u~ ~I = 0. 

From the first equation we immediately deduce 

B(z)=k~L 

which yields an equation for ~I only: 

"" "",,, "" I """ _ k"" 3 0/10/1 -0/10/1 - 0/1' 
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Once r/J) is known, we obtain a linear third-order equation for 
r/Jo. The two last equations allow the calculation of u) and Uo 
in terms of r/Jo and r/J). 

Let us now integrate Eq. (AI2). Multiplying by r/J i' /r/J ~ 
we obtain 

r/Ji'r/Ji"/r/Ji -r/Ji r/Ji'2/~~ =kr/Ji', 
that is, 

(r/Ji,2/r/Ji)'=2kr/Ji', r/Ji,2=2k(r/Ji r/Ji +/r/Ji), 

if k ;60, we set 

u" = r/J i + /, 

thus u' = r/J) + /z + m, 

r/J) = u' - /z - m, 

U",2 = (2ku")(u' - /z - mf, 

u'''/jil' = $k(u' - /z - m), 

u" = p(u - /r - mz - n)2, p = const, 
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(Al3) 

(A14) 

that is, u is an elliptic function and r/J) is defined in terms of u 
by (Al3). 
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The primary purpose of this paper is to show that infinitesimal velocity-dependent symmetry 
mappings [(a) Xl = Xi + 6xi, 6Xi = 5 i(X,x,t )6a with associated change in path parameter (b) 
t = t + 6t, & = SO(x,x,t)] of classical (including relativistic) particle systems (c) Ei(x,x,x,t) = 0 
are expressible in a form with a characteristic functional structure which is the same for all 
dynamical systems (c) and is manifestly dependent upon constants of motion of the system. In this 
characteristic form the symmetry mappings are determined by (d) Si = Zi(X,x,t) + XiS °,5° 
arbitrary; the functions ZI appearing in (d) have the form (e) Z; = BAtA(Cl, ... ,C';t), 0<r<2n, 
A = 1, ... ,2n, where theB A are arbitrary constants of motion and the C's appearing in the functions 
it are specified constants of motion. A procedure is given to determine the it. For Lagrangian 
systems it follows that velocity-dependent Noether mappings are a subclass ofthe above­
mentioned general symmetry mappings ofthe form (aHe). An analysis of velocity-dependent 
Noether mapping theory is included in order to compare for Lagrangian systems the procedure 
for obtaining the characteristic form (e) of the general mappings with the procedure for obtaining 
the well-known formula (f) Z ~ = H !i(x,x,t )aZ / axl (Z = constant of motion), characteristic of 
velocity-dependent Noether mappings. It is shown how any given velocity-dependent symmetry 
mapping function Z i(X,x,t) (including Noether mappings) can be expressed in the form (e). A 
collection of variational formulas and identities is derived in order to develop from first principles 
the velocity-dependent symmetry mapping theory. Throughout, comparisons are made between 
velocity-dependent and velocity-independent symmetry theory. 

I. INTRODUCTION 

An infinitesimal mapping which maps the solution set of 
a system of differential equations into itself is said to be a 
symmetry mapping of the system of equations. In a series of 
earlier papers 1-14 the authors have investigated various rela­
tionships between infinitesimal symmetry mappings of clas­
sical (including relativistic) particle dynamical systemslS 

E I(XI , ... ,in,xl , ... ,xn,xl , ... ,xn,t) 

= E i(X,x,x,t ) = 0, i = 1, ... ,n, (1.1) 

and their constants of motion. (For further references see 
Sarlet and Cantrijn. 16) The infinitesimal mappings consid­
ered in those papers were of the form 

Xi = Xi + 6Xi, 6Xi = 5 i(X,t )6a, 

t = t + &, & = SO(x,t )6a. 

(1.2) 

(1.3) 

It is to be noted that the functions 5 i (1.2) which determined 
the point mappings and the functions 5° (1.3) which deter­
mined the associated change in path parameter t were as­
sumed to be functions of only Xi and t. We shall now refer to 
such mappings as velocity-independent in order to distin­
guish them from velocity-dependent mappings determined 
by mapping functions 5 I(X,x,t ), 5 O(x,x,t ) to be considered in 
this paper. 

The primary purpose of this paper is to show that gen­
eral infinitesimal velocity-dependent symmetry mappings of 

classical particle systems are always expressible in a form 
with a characteristic functional structure which is the same 
for all second-order dynamical systems (1.1) and is manifest­
ly dependent upon constants of motion of the system. In an 
accompanying paper (paper II of this series)17 the character­
istic functional structure of velocity-independent symmetry 
mappings is obtained for systems of first-order differential 
equations. In future papers knowledge of the characteristic 
symmetry structure will be applied to linear dynamical sys­
tems and to dynamical systems with cyclic coordinates. Ad­
ditional relationships between velocity-dependent symme­
try mappings of general dynamical systems and constants of 
motion will also be considered in later papers. 

In this present paper we start from first principles and 
develop (from the local point of view) the variational proce­
dures for determining general velocity-dependent symmetry 
mappings of dynamical systems (1.1), with emphasis on La­
grangian systems. 

For Lagrangian systems velocity-dependent Noether 
symmetry mappings are a subclass of the general velocity­
dependent symmetry mappings. Such Noether mappings are 
known to be expressible in a form with a characteristic func­
tional structure which is the same for all Lagrangian systems 
and dependent upon constants of motion of the system. It 
therefore follows that this known Noether structure must be 
expressible in the form of the above-mentioned general 
structure we have obtained, and this will be shown. A clever 
mathematical technique used by Candotti, Palmieri, and Vi-
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tale18•19 in their analysis of the inverse Noether theorem is 
essential to our derivation of the characteristic functional 
structure for general symmetry mappings. For this reason, 
and to make it convenient to compare the methods of deriv­
ing the characteristic functional structures associated with 
these two respective classes of symmetries, we include an 
extensive presentation of N oether theory as a prerequisite to 
our analysis of general symmetry mappings. 

Throughout this paper, where it is of interest, we shall 
make comparisons between velocity-dependent and veloc­
ity-independent symmetry properties. 

In the formulation and analysis of infinitesimal velocity­
dependent symmetry mappings of dynamical systems we 
have found that certain basic variational formulas and iden­
tities are frequently used in a number of different deriva­
tions. Therefore, before proceeding with any dynamical 
symmetry analysis per se we shall first develop in Sec. II a 
collection of useful fundamental variational formulas and 
identities. These will be derived in a systematic manner from 
a few basic variational definitions. Not only will these for­
mulas expedite many derivations in this paper, but we be­
lieve they will be useful for future reference. For complete­
ness many of the formulas will be given in a more general 
form than actually required in this paper. 

In Sec. III we apply the variational formulas developed 
in Sec. II to formulate several important variational identi­
ties which involve the Lagrangian operator. Two of these 
identities clearly show the distinction in functional structure 
ofthe variation of the Lagrangian operator based upon infin­
itesimal velocity-dependent and velocity-independent map­
pings. A third identity gives a decomposition of the variation 
of the Lagrangian operator which will be used to show that 
the variation in path parameter /)( may be arbitrarily chosen 
in the formulation of velocity-dependent symmetry map­
pings. 

In Sec. IV the identities developed in the previous two 
sections are employed to formulate conditions in order that 
infinitesimal velocity-dependent mappings define general 
symmetry mappings of an n-dimensional Lagrangian dy­
namical system. These conditions are in the form of a system 
of n partial differential equations in the n + 1 unknown 
mapping functionss I(X,x,t ), S O(x,x,t ). By a decomposition of 
the mapping functions S I( = Z I + XiS 0) the symmetry equa­
tions reduce to a system of n equations in the n auxiliary 
mapping functions Z I(X,x,t). The absence of S O(x,x,t ) from 
these latter equations indicates that in a velocity-dependent 
symmetry mapping the function S O(x,x,t ) may be chosen ar­
bitrarily. It then follows for each Z I solution that a choice for 
SO will lead to functions S I which together with S ° determine 
a velocity-dependent symmetry mapping. The symmetry 
conditions are shown to be invariant with respect to the "La­
grangian gauge change" L-+L == L + df(x,t )/dt. 

In Sec. Va presentation of velocity-dependent Noether 
theory is given. We define Noether mappings at the differen­
tial level (as opposed to a formulation based upon the vari­
ation of the action integral) in a manner which is applicable 
to both velocity-dependent and independent mappings. For 
velocity-dependent mappings this definition leads to condi­
tions which must hold identically in the Xl and thereby 
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avoids the situation in which every arbitrary mapping is a 
Noether mapping. 

By means of elementary analysis we obtain a general 
solution of the Noether mapping condition for velocity-de­
pendent mappings. This familiar Noether mapping solution 
has a characteristic functional structure which is the same 
for all Lagrangian systems. In this form each velocity-depen­
dent Noether mapping is manifestly functionally dependent 
upon a constant of motion of the dynamical system. The 
mapping function SO is arbitrary. Due to this arbitrariness, 
for any given constant of motion there is an associated class 
of velocity-dependent Noether mappings. These Noether 
mapping solutions are shown to satisfy the general velocity­
dependent symmetry mapping condition for Lagrangian 
dynamical systems (derived in Sec. IV), thereby establishing 
at the differential level that velocity-dependent Noether 
mappings are symmetry mappings (as to be expected). 

For any given velocity-dependent Noether symmetry 
mapping (described above) the Noether identity (given in 
Sec. III) shows that the well-known concomitant Noether 
constant of motion is independent of the arbitrary mapping 
function So. Moreover, this concomitant Noether constant 
of motion is the constant of motion which appears in the 
given Noether mapping. By an appropriate choice of the ar­
bitrary function S ° this latter property is the inverse Noether 
theorem as developed by Candotti, Palmieri, and Vitale. 18.19 

Section V also contains an analysis of the invariance of 
velocity-dependent Noether mapping theory with respect to 
the Lagrangian gauge change of Sec. IV. 

In Sec. VI we develop a method for obtaining the char­
acteristic functional structure of the velocity-dependent 
mappings which are solutions of the symmetry equations for 
the class of dynamical systems (1.1). The structure of sym­
metry mappings for Lagrangian systems is included as a sub­
case. For the dynamical system (1.1), as in the case of the 
Lagrangian systems, a decomposition in the mapping func­
tion S I( = Z i + XiS 0) reduces the symmetry condition to a 
system of n second-order partial differential equations in the 
n unknown auxiliary mapping functions Z I(X,x,t). Here 
again the absence of the mapping function S ° in the reduced 
system of equations indicates SO may be arbitrarily chosen. 
However, except for the simplest dynamical systems this re­
duced system of partial differential equations remains formi­
dable. 

As a prerequisite to deriving the characteristic func­
tional structure of the solution of this reduced system of 
symmetry equations we examine the reciprocity between 
any complete finite solution of the dynamical system (which 
has 2n essential integration constants) and its associated set 
of 2n functionally independent constants of motion. A con­
sequence of this reciprocity is that the constants of integra­
tion of any complete finite solution are also the respective 
values which its associated constants of motion assume on 
dynamical paths. 

In principle, by means of any assumed finite complete 
solution of the dynamical equations we show how the system 
of n partial differential symmetry equations in the n Z I(X,x,t ) 
may be reduced to a system of n second-order, linear, homo­
geneous ordinary differential equations in n unknowns i(t). 
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Any number of the above-mentioned 2n integration con­
stants of the finite solution of the dynamical equation may 
appear as parameters in this affiliated system of ordinary 
linear differential equations. The general form of the solu­
tion of such a system of ordinary linear equations is known to 
be a linear combination of 2n fundamental solution func­
tions. We thus conclude that when evaluated on dynamical 
trajectories every solution of the symmetry equations must 
be of this general form. 

In the solution of the affiliated system of linear equa­
tions we replace those constants of integration of the dynam­
ical equations, which now act as parameters, by their asso­
ciated (by means of the reciprocity mentioned above) 
constants of motion. In addition the 2n constants of integra­
tion which originate in the solution of these affiliated equa­
tions are replaced by arbitrary constants of motion of the 
dynamical equations. As a consequence of these replace­
ments the solution of the affiliated system of ordinary linear 
equations is converted into a set of n functions of Xi, Xi, and t. 
We then prove these n functions will be a solution Z I(X,x,t ) 
of the original partial differential symmetry equations. Such 
Z i solutions will be manifestly dependent upon the constants 
of motion of the dynamical system and will have a character­
istic functional structure which is the same for all dynamical 
systems. Moreover, we prove that every solution of the sys­
tem of partial differential symmetry equations is expressible 
in this characteristic form. Thus velocity-dependent 
Noether symmetry mappings, which have their own (famil­
iar) characteristic functional structure (as discussed in Sec. 
V), can also be reexpressed in this general characteristic 
form. 

Finally, we show in detail how any given velocity-de­
pendent symmetry solution Z i(X,x,t ) may be expressed in a 
form which has the characteristic functional structure of the 
above-described general symmetry solution. 

In Sec. VII we illustrate the theory developed in the 
preceding sections by determining the symmetries of a one­
dimensional nonlinear dynamical system. 

II. BASIC VARIATIONAL FORMULAS AND IDENTITIES 

Let Xi be the coordinates of a point P in a local region of 
an n-dimensional space. Agenerai curve r passing through P 
is expressed in terms of a path parameter t as Xi = xi(t). At P 
the curve r has a tangent vector dxil dt. 

We consider infinitesimal point mappings with associat­
ed change in parameter defined by 

. . . . .(dX ) i' = X' + /Jx', /JX'=S I """it ,x,t /Ja, 

t = t + lJt, lJt =So (~: ,x,t) /Ja, 

with inverse 

f:: I_f;-i(di --) f:: uX =~ dt ,x,t va, 

_ - - -_ ° (di _-) t - t - lJt, lJt =S dt ,x,t /Ja. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

Based upon the mappings (2.1) and (2.2) we define to 
within first order in /Ja 
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daxi daii daxi 
/J--=-_----, a= 1,2,.... (2.5) 

dt a dt a dt a 

We shall subsequently express (2.5) explicitly in terms of 
the basic mapping functions S i, SO and their derivatives. At 
this point we shall first establish a recursion relation 
between20 /J(d axil dt a) and /J(d a - I xii dt a - I). We therefore 
express (2.5) in the form 

d a Xi (d d a - Iii) dt d d a - I Xi 
/j dt a = dt dt a - I dt - dt dt a - I ' 

a = 1,2,... . (2.6) 

From (2.4) it follows that to first order in /ja we have 

d: = 1 _ dlJt . (2.7) 
dt dt 

Hence (2.6) may be expressed in the form 

/j d a Xi =.!!.... (d a - I ii _ d a - I Xi) _ (.!!.... d: - Iii) d/jt , 
dt a dt dt a - I dt a - I dt dt a - I dt 

a = 1,2, ... , (2.8) 

which to first order in /ja reduces to the desired recursion 
relation20 

daxi =.!!....( da-IXi)_ daxi dlJt _ 
/j /j , a - 1,2, .... 

dt a dt dt a - I dt a dt 

(2.9) 

Next we introduce a decomposition of the infinitesimal 
mapping (2.1) by expressing /jxi in the form 

/jxi = fui + dx
i 

lJt 
dt ' 

. .(dX ) ful==.Z' """it ,x,t /ja. 

It follows from (2.1), (2.10), and (2.11) that 

(2.10) 

(2.11) 

S i (dX ,x,t) = Z i (dX ,x,t) + dx
i 

SO (dX ,x,t). 
dt dt dt dt 

(2.12) 

Remark 2.1: We note that if the mapping functions Si 
and S ° are assumed to be velocity independent [i.e., S i(X,t ), 
S o(x,t )] then Z i must be at most linear in dxil dt, since for 
this case we have from (2.12) that Z i = Z ~ =='S i(X,t) - (dxil 
dt) SO(x,t ).21 • 

As we shall demonstrate, the decomposition (2.12) in the 
infinitesimal mapping will expedite many calculations. 
More importantly, it will be shown in a straightforward fash­
ion by means of (2.12) that when velocity-dependent point 
mappings of the type (2.1) are employed in the analysis of 
dynamical symmetries then the lJt occurring in (2.2) may be 
arbitrarily chosen. 22 

Remark 2.2: When lJt = 0 a mapping of the type (2.1) 
and (2.2) reduces by (2.10) to the form 

ii = Xi + !:.xl, 

t = t, (lJt =0). 

(2.13) 

(2.14) 

Thus we may consider the !:1 variation to be a special case of 
the /j variation for which t ==.t. It follows, therefore, that for­
mulas based upon the /j variation [associated with the map-
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ping (2.1) and (2.2)] will reduce to formulas based upon the 11 
variation [associated with the mapping (2.13) and (2.14)] by 
setting 81 = 0 in the former. • 

We find from (2.9) and Remark 2.2 that 

11 --= - 11 , a = 1,2, .... 
daxi d ( da-IX I

) 

dt a dt dt a- I (2.15) 

From (2.15) we immediately find for a = 1 that 

dxl dll.xi 
11-=-. 

dt dt 
(2.16) 

It now follows from (2.15) and (2.16) thatl° 

d a Xi d a Il.xi 
11--=--, a =0,1,... . (2.17) 

dt a dt a 

We next determine the relationship between t5(d a xii 
dta) and l1(d a xi/dta). From (2.10) we have 

dt5xi dll.xi d 2Xi dxi dt5t 
-=-+-81+--. (2.18) 

dt dt dt 2 dt dt 
By use of (2.18) we may express (2.9) for the case a = 1 in the 
form 

(2.19) 

(2.20) 

By (2.20) we may express (2.9) for the case a = 2 in the form 

d 2Xi d 21l.xi d 3Xi 
t5-=--+-8t. 

dt 2 dt 2 dt 3 (2.21) 

If we continue in a similar manner we find23 

daxi dall.xi da+IXi 
t5--=--+ 81, a =0,1, .... (2.22) 

dt a dt a dt a + I 

By means of (2.17) and (2.22) we obtain the desired relation­
ship 

daxl daxi da+IXi 
t5 -- = 11 --+ 81, a = 0,1,... . (2.23) 

dt a dt a dta+ I 

It is now a straightforward procedure to express 
t5(d a xl/dta), a = 1,2, ... , as a function of the basic deforma­
tions t5xl, t5t, and appropriate derivatives by use of (2.10) and 
(2.22). We thus obtain 

d a Xi d a t5xi d a (dXi ) d a+ I Xi 
t5--=---- -81 + 81, 

dt a dt a dt a dt dt a+ I 

a = 1,2,.... (2.24) 

Equation (2.24) can be rewritten in the expanded form 

+da+IXi 
--- 81, a = 1,2, .... 
dt a + 1 

We evaluate (2.25) for the cases a = 1,2,3: 

(a = 1) t5 dx
i = dt5x

i 
_ dx

l 
d8t , 

dt dt dt dt 
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(2.25) 

(2.26) 

d 2Xi d 2t5xl d 2Xl dt5t dxi d 281 
(a = 2) t5 dt 2 = di2 - 2 dt 2 dt - dt dt 2 ' 

(2.27) 

d 3x i d 3t5Xi d 3Xi dt5t 
(a = 3) t5 dt 3 = df3" - 3 dt 3 dt 

d 2xi d 28t dxl d 38t 
-3------. (2.28) 

dt 2 dt 2 dt dt 3 

It is now convenient to introduce the notation 

daxi 
x~ , a = 0,1, ... ; X~==xi. (2.29) 

dt a 

The variational formulas (2.1), (2.2), and (2.25) allow us 
to define the t5 variation of a function G (~N' x1v _ I'"'' 
x~ x~,t)=G(XN' XN_ p ... , Xl' xo,t) to be24 

aG i aG 
t5G (XN, XN _ I' XI' xo,t )= . t5xa + - t5t, a = O, ... ,N. 

ax~ at 

(2.30) 

In a similar manner the variational formulas (2.13), 
(2.14), and (2.25) allow us to define the 11 variation of G to be 

aG . 
I1G(XN,XN_P ... ,XI,xo,t)=!I' Il.x~, a=O, ... ,N. 

clX~ 

(2.31) 

By means of (2.22) and (2.30) we obtain 

t5G = a~ d
a 

Il.x
i 
+ (a~ Xi + aG) 81, 

ax' dt a aX' a + I at 
a a 

a = O, ... ,N. (2.32) 

With the use of (2.17), (2.31), and the definition 

dG = aG x~ + I + aG, a = O, ... ,N, (2.33) 
dt ax~ at 

we express (2.32) in the form 

W=W+~& ~~ 
dt 

From (2.30) with G ~ UV it immediately follows that 

t5(UV) = (t5U)V + U t5V. (2.35) 

Similarly from (2.31) we find 

I1(UV) = (I1U)V + U 11 V. (2.36) 

It follows from (2.31) and (2.33) by direct expansion [and 
use of (2.15)] that 

!!...I1G = 11 dG . (2.37) 
dt dt 
We use (2.34) and form 

!!... t5G = !!...I1G + d 2G 81 + dG dt5t . (2.38) 
dt dt dt 2 dt dt 

Again we employ (2.34) with G replaced by dG / dt to obtain 

t5 dG = 11 dG + d 2G 81. (2.39) 
dt dt dt 2 

It now follows from (2.37H2.39) that 

!!... t5G = t5 dG + dG dt5t . 
dt dt dt dt 

(2.40) 
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By use of (2.17) and (2.31) a straightforward calculation 
shows that for G=G(xN, XN_I"'" XI' xo,t) we have 

a aG _ aaG _ _ aG ~ (d {3 ax)) 
axi axi - ax) axi dt {3 , 

a a fJ a 

O<a<N, p = O,l, ... ,N. (2.41) 

a aG _ aaG = _ ao. ~ (d {3 ax)), p = O,I, ... ,N. 
at at ax6 at dt {3 

III. GENERAL AND VARIATIONAL IDENTITIES 
INVOLVING THE LAGRANGIAN OPERATOR AI 

(2.42) 

The basic variational formulas developed in the pre­
vious section will now be used to derive several important 
variational identities which involve the Lagrangian operator 

d a a 
A i=--.--.. (3.1) 

dt ax' ax' 

We shall, however, first give some general identities which 
will be freely used in this section and elsewhere in the paper. 
Since these general identities are easily verified by direct ex­
pansion we omit all derivational details. 

By use of the total derivative operator (2.33) we find for a 
function G = G (xN, XN _ " ... , xo,t) that 

~ dG _.!!.... aG==o, 
at dt dt at 

(3.2) 

~dG _.!!....aG=o 
axi dt dt axi- , 

(3.3) 

a dG d aG aG -----. =-.-, a=I,2, ... ,N. (3.4) 
ax~ dt dt ax~ ax~ _ I 

By use of (2.33) and (3.1H3.4) we find for the above G 
that 

A (dG)=~aG 
i dt - dt 2 axi ' 

(3.5) 

(
aG) a Ai at = at Ai(G), (3.6) 

A. (aG.) = ~ A.(G). 
'ax' ax" 

(3.7) 

For a function L W, xi,t ) we have 

.!!....(aL Xi-L) + aL==xi A.(L). 
dt ax' at' 

(3.8) 

Based upon mappings (2.1) and (2.2) with the use of 
(2.26), (3.1), and (3.8) it is easily verified for L = L (x,x,t) that 

8L + L d8t =.!!.... [aL. 8xi _ (aL. Xi _ L )8t ] 
dt dt ax' ax' 

- (8Xi - x i8t) Ai(L ). (3.9) 

Ifin (3.9) we eliminate 8L and 8xiby use of (2.34) and (2.10). 
respectively, we obtain 

(3.10) 

Equations (3.9) and (3.10) are well known. We shall refer to 
either as the Noether identity. 
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We now derive Several identities which involve 8 Ai(L ) 
and a Ai(L). We consider these identities to be offundamen­
tal importance in the analysis of symmetries of Lagrangian 
dynamical systems. The first identity follows immediately 
from (2.34) when we replace G (x,x,x,t) by AI [L (x,x,t)]. 

find 

Identity 3.1: 

8 Ai(L )=a Ai(L) + 8t ~ Ai(L). (3.11) 

• 
By use of (2.31) [with G=Ai(L n, (2.11), and (2.17) we 

a Ai(L ) = (Hij Z) + Jij Z) + KijZ )j8a, (3.12) 

where 

Hij(x,x,t)= ~ Ai(L), 

Jij(x,x,x,t)== ~ Ai(L ), 

Kij(x,x,x,t )=~ Ai(L ). 
ax' 

(3.13) 

(3.14) 

(3.15) 

From (3.1) we find that Hij defined by (3.13) is given by 

a2L 
H .. =--=H... (3.16) 

" axi ax) " 

From (3.1) with the use of (3.4) (with G replaced by aL laxi) 
the function J ij defined by (3.14) can be expressed in the form 

Jij =Hij + Oij' (3.17) 

where 

a2L a2L 
0 .. =-----= -0... (3.18) 

lJ axi axi ax) ax; J' 

We next obtain an alternative form for a Ai(L ) of(3.12). 
By means of(3.1) and the identity (2.37)(with G = L ) we find 

a A.(L) =!!.... a (aL) _ a (aL). (3.19) 
, dt ax' ax' 

Use of(2.41) (with G = L and the choices a = 0 and a = 1) 
allows us to express (3.19) in the form [recall from (2.11) that 
ax)=Z)8a] 

aA.(L)=A.(aL)+ [_!!....(aL aZ
i + aL aZ

i
) 

" dt ax' ax' ax' ax' 

+ aL aZ
J + aL aZ

i
] 8a. (3.20) 

axJ ax' ax' ax' 

By use of (3.3) and (3.4) (with G replaced by Z)) we ex­
press (3.20) in the form 

a A (L )=A (aL) + [_.!!....(aL . .!!.... aZ.
J 

I I dt ax' dt ax' 

+ aL aZ.
i + aL. az J)] 

ax} ax' ax' axl 

(3.21) 

Equation (3.1) allows us to write 
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aL !!.... az I =!!.... (aL az I) _ az I A.(L) _ aL az I. 
axl dt axi dt axl axi axi J axl axi 

(3.22) 

With (3.22) used in (3.21) we obtain the above-mentioned 
alternative form for flAi (L ) of (3.12). 

Identity 3.2: 

d
2 

(aL aax
l

) fl A;(L )=Ai(fl L) - dt 2 axl axi + Ai(ax
j
) Aj(L) 

+ aax.1 !!.... A.(L ). 
ax' dt J 

(3.23) 

• 
It is of interest to express 0 Aj(L) of (3.11) explicitly in 

terms of the basic functions ox j and 81. To achieve this we 
first express the right side of (3.23) in this form. By use of 
(2.34) (with G = L ) we may express Aj(fl L ) in the form 

Aj(flL) = Aj [OL + L!!....8t -!!.... (L 81)]. (3.24) 
dt dt 

Ifwe now use (3.5) (with G = L 81 ) we may write (3.24) in the 
form 

Aj(flL) = Aj (OL +L !!....8t) - d
2

2 [~(L8t)]. dt dt ax' 

(3.25) 

By use of (3.25) and (2.10) we express (3.23) in the form 

fl A.(L) = A. (OL +L !!""ot) _ ~ [aE aox.I 
, , dt dt 2 ax' ax' 

+ (aOxi _ 0181 _ xl a8t)!!.... A.(L). (3.26) 
ax" ax' dt ' 

Employing (3.26) we express (3.11) in the desired form 
which shows the explicit dependence upon OXi and 81 and 
thereby obtain the following identity. 

Identity 3.3: 

o A.(L) = A. (OL +L!!""8t) _~ [aL. aox.I 
, , dt dt 2 ax' ax' 

- -.x'-L -. +A.(ox'-x'8t)A.(L) (
aL. ) a8t] .. 
ax' ax" J 

+ (aox.1 _ xl ao~) !!.... A.(L ). 
ax' ax' dt J 

(3.27) 

• 
Inspection of (3.27) readily shows how the structural 

form of 0 Ai(L ) depends upon the velocity dependence of the 
mapping functions ox j and 81. 

IV. SYMMETRIES OF LAGRANGIAN DYNAMICAL 
SYSTEMS 

Identities developed in the previous two sections will 
now be employed in the formulation and analysis of infini­
tesimal symmetry mappings of n-dimensional, n> 1, Lagran­
gian dynamical systems 
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Aj(L) = 0, L = L (x,x,t). 

Expansion of(4.1) by means of(3.1) leads to 

Aj(L) =Hij Xi-R j =0, 

where Hij(x,x,t) is given by (3.16), and 

. [ a 2 L .' a 2 L aL ] R.(xxt)=- --x,+---- . 
, " axi axl axj at axi 

It is assumed that 

det Hij #0, 

so that we may define 

Hij cofHli =HJi . 
detHij 

From (4.5) it follows that 

HijHlk =o~. 

By use of (4.6) and (4.2) we obtain (R I==l{ Ij R i ) 

Xi ~ R I(x,x,t ). 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

Remark 4.1: The " ~ " notation: Before discussing the 
concept of symmetry mappings of a dynamical system we 
first discuss the idea of "dynamical functional composition." 
By means of the dynamical equation (4.7) and its total deriva­
tives with respect to t we may eliminate from any function 
[for notation refer to (2.29)] G (x~, x~ _ 1 ,.'" x;, x~,t), N>2, 
all derivatives of the coordinates which are of order higher 
than dxj/dt to obtain a function of dxj/dt, xi,t. We indicate 
this particular type of functional composition by the nota­
tion " ~ ." For example, iffrom the dynamical equation we 
obtain x = R (x,x,t) then G (x,x,x,t ) ~ G [R (x,x,t ),x,x,t ] 

F(x,x,t). 
The appearance of the " ~ " sign in place of the usual 

" =" sign in an equation indicates the above dynamical 
functional composition is to be used to express all functions 
appearing in the equation in terms of the "coordinates" 
dxj/dt, Xl, t. For example, if the function defined by the oper­
ation [refer to (2.11) and (2.31)] flG (x,x,x,t) appears in an 
equation which employs the " ~ " notation, then all deriva­
tives of the coordinates of order greater than dxi I dt are to be 
eliminated from the various partial derivatives of G and also 
from the expanded expressions Z j(x,x,t ) and Z j(x,x,t). It is 
understood equations so obtained by this procedure of dy­
namical functional composition are to hold only on dynami­
cal trajectories. We will retain the " ~ " notation in such 
equations as a reminder that these equations are to hold for 
dynamical trajectories. • 

With the above-described notational scheme in mind we 
tum now to the formulation of the condition for a symmetry 
mapping of Lagrange's equation. An infinitesimal mapping 
[(2.1), (2.2)] which maps the set of all solution curves of (4.1) 
into itself is customarily said to be a symmetry mapping of 
the Lagrangian dynamical system (4.1). Such mappings are 
determined by the condition2S 

OAj(L)~O. (4.8) 

Mappings of the form (2.1) and (2.2) may be classified 
with regard to the assumed explicit dependence of the map­
ping functions S j, SO upon the Xi variables. There are four 
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possibilities to be considered. However, in the analysis of the 
symmetry mapping condition (4.8) we find it convenient to 
define only two main types as follows. 

(I) Velocity-dependent point mappings: 

(a) Si = Si(X,x,t), SO = SO(x,x,t), (4.9) 

(b) Sl = SI(X,x,t), SO = SO(x,t). (4.10) 

(II) Velocity-independent point mappings: 

(a) S 1= S I(X,t), SO = S O(x,x,t), (4.11) 

(b) s 1= S i(X,t), SO = S O(x,t). (4.12) 

To see how the form ofthe symmetry condition (4.8) is 
dependent upon the assumed velocity dependence of S I, SO 
we use (3.27) (Identity 3.3) to express (4.8) in the form 

15 AI (L ) ~ AI (c5L + L :r t5t ) 

_~[aL ac5xl _(aL Xl-L) ac5t] ~o. 
dt 2 axl axl axl axi 

(4.13) 

Inspection of the symmetry condition in the form (4.13) 
shows that if S I and S ° are both independent of Xl [type (1I)(b)] 
then it reduces to the form 

(1I)(b) 15 AI(L) ~ AI (c5L + :t c5t ) ~ O. (4.14) 

This form of the symmetry condition for completely veloc­
ity-independent mappings was previously obtained by Kat­
zin and Levine.26 Since in (4.14) neither sinor SO contain Xi, 
the expansion of (4. 14) leads to n equations which must hold 
identically in Xl. Consequently, this generally results in an 
overdetermined system of equations to be solved for S I(X,t ), 
SO(x,t). Hence not every dynamical system will admit sym­
metry solutions of the type (1I)(b). Symmetries of this type 
have been extensively treated in the literature. 

Inspection of (4.13) shows that for type (1I)(a) solutions, 
for which S I = S I(X,t ), SO = S O(x,x,t ), the symmetry condi­
tion reduces to 

(1I)(a) 15 AI(L ) ~ AI (c5L + L ~;) 

+ ~ [(aL xl _ L) at5t] ~ O. (4.15) 
dt 2 axl ax' 

We are unaware of any systematic analysis of symmetries of 
this type. 

For both types (I)(a) and (I)(b) of velocity-dependent 
point mappings, when (4.8) is formally expanded [refer to 
(2.30)] and use is made of (4.7) to eliminate all time deriva­
tives of Xl of order higher than Xi, we are led to a system of n 
homogeneous, second-order, linear partial differential equa­
tions to be solved for the (n + 1) symmetry mapping func­
tions [s I(X,x,t ), S O(x,x,t )] or [s I(X,x,t ), S O(x,t )] . 

This system of differential equations may be simplified 
by changing n of the (n + 1) dependent variables from 
S I(X,x,t ) to Z I(X,x,t ) by the transformation 

s I(X,x,t ) = Z I(X,x,t) + Xl S 0. (2.12') 

We are easily led to this simplifying transformation by in­
spection of (3.11) (Identity 3.1) which indicates the effect of 
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such a variable change on 15 AI(L). Sinced AI(L )/dt ~ 0, we 
have from (3.11) that the transformation (2.12) expresses the 
symmetry condition (4.8) in the form 

(I)(a), (I)(b) aAi(L) ~ o. (4.16) 

From the definition of the a operator (2.31) it is apparent 
that the zt (x,x,t ) are the only unknown functions occurring 
in (4.16). [The detailed expansion of (4.16) is given in 
Theorem 4.2 below.] 

Remark 4.2: It is of significance that the elimination of 
S I from (4.8) by the transformation (2.12) also resulted in the 
simultaneous elimination of so. Hence for the case of veloc­
ity-dependent point mappings [type (I)] the solutions 
zt (x,x,t) of (4. 16) can be immediately used in (2.12) to obtain 
the functions Si (x,x,t ) with the functions S O(x,x,t ) arbitrarily 
chosen. Thus for a given zt (x,x,t) solution any choice of 
S O(x,x,t ) willlead to an associatedr (x,x,t ) such thatsi ,s ° will 
satisfy (4.8), and hence define a velocity-dependent symme­
try mapping [(2.1) and (2.2)]. • 

For the present purpose of comparison of (4.16) and 
(4.13), and for later convenience in the analysis of Noether 
mappings we briefly digress and employ (3.23) (Identity 3.2) 
to express (4.16) in the form 

(I)(a), (I)(b) AAi(L) ~ Ai(aL) - :t: (;~l a:;l) ~ O. 

(4.17) 

We may summarize the above results in the following 
theorem. 

Theorem 4.1: An infinitesimal velocity-dependent map­
ping 

Xi = Xi + c5xl, c5xi S I(X,x,t )c5a, 

t = t + c5t, c5t =SO(x,x,t )c5a, 

(2.1') 

(2.2') 

will define a symmetry mapping of a Lagrangian dynamical 
system 

AI(L ) = 0, L = L (x,x,t), (4.1') 

if the mapping functions c5xi , t5t are solutions of the symme­
try condition 

(4.8') 

The symmetry condition (4.8') may be expressed in the equi­
valent form 

A. (c5L + L dt5t) _ !£... [aL ac5xl 
I dt dt 2 axl ax; 

_ (aL. x1 _ L ) ac5t] ~O. (4.13') 
ax' axi 

The velocity-dependent mapping functions c5xl ,c5t which are 
solutions of (4.8') are given by 

c5xl = axl + xlc5t, 

axl==Z I(X,x,t jc5a, 

t5t = arbitrary, 

(2.10') 

(2.11') 

(4.18) 

where zt is a solution of the system of partial differential 
equations determined by either of the following equivalent 
conditions: 

(4.16') 

G. H. Katzin and J. Levine 3086 



                                                                                                                                    

or 

(4.17') 

-To obtain the partial differential equations for Z! (x,x,t), 
referred to in Theorem 4.1, we first make useof(3.12H3.15) 
to express the symmetry condition (4.16) in the form 

H/Zi+JijZi+KijZi-:!!::.O, (4.19) 

where in (4.19) the functions Jij(x,x,t) and Kij(x,x,t) result 
from the elimination of any Xi dependence from Jij (x,x,x,t) 
(3.14) and Kij(x,x,x,t) (3.15) by use of (4.7) in that 

Jij(x,x,x,t) -:!!::. J ij [R (x,x,t ),x,x,t ] ==Jij(x,x,t), (4.20) 

Kij(x,x,x,t) -:!!::. Kij [R (x,x,t ),x,x,t ]=Kij(x,x,t). (4.21) 

Formal expansion of (4.19) with use of (4.7) leads to a 
system of n homogeneous, second-order, linear, partial dif­
ferential equations to be solved for the n functions Z! (x,x,t ) 
only. 

We may therefore state the following theorem. 
Theorem 4.2: For a Lagrangian dynamical system 

Ai(L )==Hij(x,x,t)Xi - Ri(x,x,t) = 0, 

based upon the Lagrangian L = L (x,x,t), where 

· a2L H,;;(x,x,t)= -.-., 
, ax' axJ 

detHij#O, 

R;(x,x,t)== _ [ a.
2
L .xi + a~L _ aL.] , 

ax' axJ ax' at ax' 

the symmetry condition 

Il.Ai(L) -:!!::. ° 
may be formally expressed in the form 

HijZi +JijZi + KijZi-:!!::. 0, 

where 

· aAi(L) 
Hi' (x,x,t )= --.-, , axJ 

• 0 aAi(L) 
Jij(x,x,t)== ax j 

• 0 aAi(L) 
KIj(x,x,t)== --.-. 

axJ 

(4.2') 

(3.16') 

(4.4) 

(4.3) 

(4.16') 

(4.19) 

(3.13') 

(4.22) 

(4.23) 

For the dynamical system (4.2') the symmetry condition 
(4.16') [or (4.19')) is equivalent to the following system of 
partial differential equations for the symmetry mapping 
function Z! (x,x,t): 

Aa.b a
2
z

j 
+B,!b a

2
z

i 
+C,!.b a

2
z

i 

I] axa axb 'J axa axb I] axa axb 

Da.a2zi E,!.a
2
Z i +n..a2zi +Ga azi 

+ IJ axa at + 'J axa at I] at at Ij axa 

+F'!. az
i 

+J .. az
i 

+K"Zi-:!!::.O, (4.24) 
lJaxa I] at 'J 

where 

A ijb(X,x,t )==HIjR aR b, (4.25) 

3087 J. Math. Phys., Vol. 26, No. 12, December 1985 

B ijb(X,x,t )=2H ijR axb, 

C ':/(x,x,t )_Hljxaxb, 

Dij(x,x,t)=2HIjR a, 

(4.26) 

(4.27) 

(4.28) 

Eij(x,x,t)=2Hijxa, (4.29) 

Ga(' )_u (aR
a

Rb aRa' b aRa) JR a 
ij x,x,t ==n ij axb + aib x + ---at + Ij , 

(4.30) 

(4.31) 

(4.32) 

an. aR. 
Kij(x,x,t)==~Ra- -'., (4.33) 

axJ axJ 

The functionRa (x,x,t) appearing in (4.25H4.33) are defined 
by Ra = Irb Rb with Rb given by (4.3'), and where Hi is 
defined by Hi ~k = t5~. _ 

The fact that the system of partial differential equations 
(4.24) can be expressed formally in the condensed form (4.19) 
will be utilized in Sec. VI to develop a procedure for solving 
these equations for the vectors Z! (x,x,t ). 

Since Z! = ° is a solution of (4.24) [or (4.19)), it follows 
from Theorem 4.1 that we may state the following corollary. 

Corollary 4.1.1: The velocity-dependent infinitesimal 
mappings defined by 

t5xi = Xi t5t, 

t5t = arbitrary 

(4.34) 

(4.35) 

will be symmetry mappings in that they satisfy the symmetry 
condition (4.8). Such mappings will map points of each tra­
jectory into points of the same trajectory. _ 

Let us denote the symmetry equation (4.24) for Z! (x,x,t) 
by 

(4.36) 

By inspection of (4.2) and (4.24H4.33), it follows that if 

aAi(L) = ° (4.37) 
at ' 

then the coefficients appearing in the differential equation 
(4.24) [or equivalently (4.36)) will be independent of t. For 
this case we have 

~ Si[Z (x,x,t)] = Si [ az (x,x,t) ] , 
at at 

(4.38) 

which leads to the following corollary to Theorem 4.2. 
Corollary 4.2.1: If zi (x,x,t ) is a solution of the symmetry 

equation (4.24) associated with a Lagrangian dynamical sys­
tem (4.2) for which 

aAi(L) 
--=0, 

at 
(4.37') 

then aZ! (x,x,t )I at will also be a solution of the symmetry 
equation. • 

A result similar to Corollary 4.2.1 was previously ob­
tained for the case of velocity-independent symmetry map­
pings.3 
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Remark 4.3: From (3.5) with G replaced by f(x,t) we 
obtain the well-known result that 

AI [L + df~,t)] = Ai(L). 

Therefore it is immediately obvious that if we define 

I (x,x,t )==£ (x,x,t) + df (x,t ), 
dt 

(4.39) 

(4.40) 

then the symmetry condition (4.16) [for Z! (x,x,t)] will be in­
variant with respect to the Lagrangian gauge change 

L-+I = L + df(x,t)/dt. (4.41) 

Consequently the set of infinitesimal velocity-dependent 
symmetry mappings (2.1) and (2.2) of a Lagrangian dynami­
cal system as described in Theorem 4.1 will be invariant with 
respect to this gauge change. A similar result was found for 
the case of velocity-independent symmetry mappings. 8 

• 

Thus far we have found that the problem of obtaining 
infinitesimal velocity-dependent symmetry mappings deter­
mined by the functions S I(X,x,t ), S O(x,x,t ) can be reduced to 
that of solving the system of partial differential equations 
(4.24) for the functions Z! (x,x,t). For all but the simplest 
dynamical systems this is a formidable task. However, as we 
shall prove (in Sec. VI), every solution of the above-men­
tioned system of partial differential symmetry equations can 
be expressed in a form which has a characteristic functional 
structure which is independent of the specific dynamical sys­
tem being considered. 

There exists a major subclass of solutions of the symme­
try equation (4.24) which is based upon the work of Noeth­
er.These known velocity-dependent Noether symmetry so­
lutions Z! (x,x,t) (discussed in Sec. V) also have a 
characteristic functional structure which is the same for all 
dynamical systems; however, in standard form the Noether 
functional structure differs from the functional structure of 
the general solution mentioned in the paragraph above. It is 
not apparent how the functional structure of the Noether 
subclass is reconcilable with the functional structure of the 
general solution-but this will be shown in Sec. VI. 

As is known, there is a direct relation between the 
Noether subclass of symmetries and constants of motion. 
We shall show there is also a relation between general veloc­
ity-dependent symmetries and constants of motion, al­
though more involved than in the Noether case. 

To fully appreciate how velocity-dependent Noether 
symmetries are related to the above-mentioned general ve­
locity-dependent symmetries and to compare the two meth­
ods used for obtaining these symmetries we first discuss 
Noether theory in detail (in the next section) and then give a 
detailed discussion of general symmetries in Sec. VI. 

V. NOETHER MAPPINGS 

An infinitesimal mapping (2.1) and (2.2) is said to define 
aN oether mapping if there exists a function T(x,x ,t ) such that 
the condition 

{)L + L d& = _ dr {)a 
dt dt 

(5.1) 

is satisfied. It is to be noted that in this condensed form the 
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Noether mapping condition is the same for both velocity­
dependent and velocity-independent cases.27 

Use of (1.1), (1.2), (2.26), (2.27), and (2.30) allows us to 
expand (5.1) to the form28 

[aL. asi _ (aL. Xi -L) as~ + ar] xl 
ax' ax} ax' ax) ax} 

+ aL [(aS~xl+ asi) _xi(aS~ xl+ asO)] 
ax' ax) at ax) at 

+ aL Si + aL SO +L (asO xl + asO) 
ax' at ax} at 

+ ar xl + ar = o. 
ax} at 

(5.2) 

The well-known classical case of Noether mappings is 
the one for which the functions Si, So, and r are all velocity 
independent, i.e., r (x,t ), S O(x,t ), T(x,t ). For this classical case 
the Noether mapping condition (5.2) must hold identically in 
the Xi. In general this leads to a set of overdetermined equa­
tions in the unknowns S i, So, r, and hence there may exist 
Lagrangians for which there are no Noether mappings of 
this classical type. 

It is readily shown at the differential level that any clas­
sical Noether mapping determined by (5.1) will be a symme­
try mapping. To see this we first note from (3.5) with the 
choice G = T(x,t ) that 

A. [dT(x,t)] ==0. (5.3) 
, dt 

As a consequence of (5.3) it follows for classical Noether 
mapping solutions of (5.1) that 

[ 
d&] Ai {)L + L dt =0. (5.4) 

Hence the symmetry condition (4.14) is satisfied by classical 
Noether mappings.8 

We now consider solutions of(5.1) which determine type 
(I) velocity-dependent point mappings [(4.9) or (4.10)], where 
the associated function r mayor may not contain Xl. We shall 
refer to such solutions as velocity-dependent Noether map­
pings. As is known, such velocity-dependent Noether map­
pings are also symmetry mappings. In the latter part of this 
section this will be shown at the differential level without 
reference to the invariance of the action integral. 

By means of (2.34) (with G = L) we may express (5.1) in 
terins of the mapping functionsZ! (x,x,t) [refer to (2.12)]. We 
thereby obtain the Noether mapping condition in the alter­
native form 

dr· aL= - --{)a, 
dt 

where 

r·(x,x,t )==LS ° + r. 
Expansion of(5.5) [refer to (2.31) and (2.11)] gives 

(
aL. azi + ar •. ) xl + aL. (aZ

i 
xl + aZ

i
) 

ax' ax) ax) ax' ax) at 

+ aL. Z i + ar~ Xi + ar· = o. 
ax' ax' at 
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Note that the elimination of 5 i from the (velocity-depen­
dent) Noethermapping condition (5.1) by means of(2.12) has 
again led to an equation in which 5 ° does not appear and 
hence may be considered as arbitrary. [See Remark 4.2 fol­
lowing (4.16).29] 

For the case ofvelocity-dependent functions T(x,x,t ) it is 
important to stress that in the Noether mapping condition 
(5.1) and subsequently in (5.5) the" =" sign is used rather 
than the " ~ " sign. To understand the reason for this we 
note first that for dynamical paths (denoted by the " ~ " 
sign) the Noether identity (3.10) reduces to 

f1L 0 !!.... (aL. Zi) 8a. (5.8) 
dt ax' 

Hence if" ~ "were used in the Noether mapping condition 
(5.1), then by use of(5.8) it would follow that (5.5) could be 
expressed in the form 

!!.... (aL Zi + r*) ~ O. (5.9) 
dt ax' 

Solutions to (5.9) are given by 

Z i(X,x,t) = arbitrary, 

r* =M(x,x t) - aL Zi, 
, ax' 

where 

dM ~O 
dt ' 

(5.10) 

(5.11) 

(5.12) 

i.e., M (x,x,t ) is any constant of motion of the dynamical sys­
tem (4.1). 

If in (2.12) we consider 5 I(X,x,t ) as arbitrary in addition 
to the above-mentioned arbitrariness in 5 O(x,x,t), then the 
determined value of zt (x,x,t) will satisfy condition (5.10). It 
then follows from (5.6) and (5.11) that a value of T(x,x,t) will 
exist corresponding to each such arbitrarily chosen t , 5 0. 
The above analysis implies that if " ~ " were used in (5.1), 
any infinitesimal velocity-dependent mapping (2.1) and (2.2) 
would be a Noether mapping. To avoid this situation the 
Noether mapping condition (5.1) has been formulated with 
the" = "sign.30 Consequently (5.7) must hold identically in 
the Xi .31 In contrast it is readily seen for the case of velocity­
independent Noether mapping [5i (x,t ),5 O(x,t ),r(x,t )] that Xi 
is the highest-order derivative of a coordinate which appears 
in (5.2). Hence for the velocity-independent case it is imma­
terial whether or not" = " or " ~ " is used in the Noether 
mapping condition (5.1). 

We now continue with the analysis of velocity-depen­
dent Noether mappings determined by (5.7). We observe that 
if a set of functions Z i(X,x,t ), r*(x,x,t ) is a solution to (5.7), 
then it follows from (2.12), (5.6), and the above-mentioned 
arbitrariness in 5 O(x,x,t ) that a solution to the Noether map­
ping condition (5.1) [or (5.2)] will be given by the functions 

5 i(X,x,t ) = Z i(X,x,t ) + XiS O(x,x,t ), 

SO(x,x,t) = arbitrary, 

T(x,x,t) = r*(x,x,t) - L50(X,x,t). 

(5.13) 

(5.14) 

(5.15) 

[Note, however, for the case of velocity-independent 
Noether mappings, it follows from the remarks in the para-
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graph immediately after (5.2) that the function 5 O(x,t) will in 
general not be arbitrary.] 

We next determine the form of the functions Z i(X,x,t ) 
and r*(x,x,t) appearing in (5.13) and (5.15) by obtaining the 
solution to (5.7). As mentioned above (5.7) must hold identi­
cally in Xi. This leads to the following equations in the un­
known functions Z i(X,x,t ) and r*(x,x,t ): 

aL az i ar* -.-. + -. =0, (5.16) 
ax' ax) ax) 

aL. (az~ x j + aZ
i
) + aL Zi + ar* Xi + ar* = o. 

ax' ax) at axi axi at 

(5.17) 

Solutions to (5.16) and (5.17) can be obtained in terms of 
thefunctionL (x,x,t), provided detHij #0 [see (3.16) for the 
definition of H ij]' Sarlet and Centrijn 16 obtained solutions to 
(5.16) and (5.17) in their analysis of symmetries of Lagran­
gian dynamical systems (based upon the Cartan one-form) 
which led to constants of motion of the Noether type. 32 
Their solutions, however, were determined using the suc­
cinct methods of the modem techniques of calculus on mani­
folds. Palmieri and Vitale18 in their analysis of the inverse 
Noether problem stated without detailed proof a special so­
lution to essentially (5.16) and (5.17) for the case where 
L = L (x,x) and where the mapping functions are assumed to 
have no explicit dependence on t. Saletan and Cromer3 in 
their textbook treatment of an inverse Noether theorem [for 
systems with L (x,x,t)] followed the method of Palmieri and 
Vitale18 and essentially verified a solution to (5.16) and 
(5.17). Candotti, Palmieri, and Vitale19 gave a detailed proof 
of an inverse Noether theorem for the case L (x,x,t) with the 
assumption of velocity and time-dependent mapping func­
tions t ,5 0. However, they based their work upon the condi­
tion r = o and hence did not obtain a general solution to (5.1) 
[or (5.16) and (5.17)]. 

Due to the importance of Noether mappings as a sub­
class of the more general symmetry mappings to be consid­
ered in Sec. VI we shall solve in detail by elementary meth­
ods the Noether mapping conditions (5.16) and (5.17). Of 
particular interest to us in the derivation of this Noether 
solution is a technique employed by Candotti, Palmieri, and 
Vitale, 19 since we shall apply a similar technique in an analy­
sis of velocity-dependent general symmetry mappings. This 
detailed derivation of the solution of the Noether mapping 
conditions will also provide a unified notation so that the 
reader may readily compare the method used to obtain the 
Noether subclass of velocity-dependent symmetry mappings 
with the method used to obtain the velocity-dependent gen­
eral symmetry mappings (treated in the next section). 

From (5.16) the integrability conditions on r* take the 
form 

H.. az
i 

-H. az
i 

= o. 
.) axk .k ax j 

We define 

Zi=HijZj, 

and by (4.5) and (4.6) find 

Zi=HijZj' 

G. H. Kat2in and J. Levine 

(5.18) 

(5.19) 

(5.20) 

3089 



                                                                                                                                    

By means of (5.20) we may express (5.18) in the form [use 
being made of a formula for aIfc laxk obtained from (4.6), 
and the property a~blaxk ==.aHkb lax j , which follows 
from the definition (3.16)] 

aZj aZk ---=0. 
axk ax j 

(5.21) 

The solution to (5.21) is 

ZJ' = az., Z (x,x,t ) arbitrary. 
aX' 

(5.22) 

From (5.22) and (5.20) we find that the integrability condi­
tion for r* (5.18), obtained from (5.16), requires Z! to have 
the form 

Zi = Hij az., Z(x,x,t) arbitrary. (5.23) 
ax} 

We now proceed with the integration of (5.16) by first 
rewriting it in the form [with the use of(3.16)] 

ar*. = _ ~ (aL Zi) + n.Zi. (5.24) 
ax} ax} ax' lJ 

If Z! in (5.24) is replaced by use of(5.23), the resulting equa­
tion may be readily integrated to give 

r*= _Him aL az +Z. (5.25) 
axi axm 

Since Z (x,x,t ) is arbitrary there has been no loss of generality 
in dropping an arbitrary additive integration function of Xi 

and t from (5.25). The integration of(5. 16) is now complete; it 
has led to Z! with the form (5.23) and r* with the form (5.25). 

Consider next the integration of the remaining condi­
tion (5.17). Use of Z! (5.23), r* (5.25), along with (4.3) allows 
us to express (5.17) in the form 

HimR az + az xm + az = O. (5.26) 
I axm axm at 

From the decomposition of Ai(L) given in (4.2), along with 
the use of (4.6), we may eliminate Ri from (5.26) to obtain 

dZ _Him az A.(L)=O. 
dt aXm

' 

If we evaluate (5.27) for a dynamical path we find 

dZ ~O. 
dt 

(5.27) 

(5.28) 

Hence the unknown function Z(x,x,t) appearing in (5.26) 
must necessarily be a constant of motion of the dynamical 
system (4.1). 

It is next shown that a sufficient condition for a function 
Z (x,x,t) to be a solution of (5.26) is that it be a constant of 
motion of the dynamical system (4.1). Assume then that a 
function Z (x,x,t) is a constant of motion of the dynamical 
system (4.1) so that (5.28) holds. We thus have upon expan­
sion of(5.28) 

az "m az 'm+ az 00 --x + --x - = . 
axm axm at 

(5.29) 

Use of the dynamical equation in the form (4.7) allows (5.29) 
to be written in the form 
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F(x,x,t)==HimR. az + az xm + az ~ O. (5.30) 
, axm axm at 

Since the function F(x,x,t) vanishes at every point of every 
dynamical path it must vanish identically in the space with 
variables (Xi ,xi,t ).34 Thus if Z (x,x,t ) is a constant of motion of 
the dynamical system (4.1) it will identically satisfy (5.26); 
this establishes the above-mentioned sufficiency condition. 

Equations (5.16) and (5.17) have now been solved for 
r*(x,x,t) and Z! (x,x,t) given by (5.23) and (5.25), wherein 
Z (x,x,t ) must be a constant of motion of the dynamical sys­
tem (4.1). It therefore follows that the solution to the alterna­
tive form of the velocity-dependent Noether mapping condi­
tion (5.5) has been obtained. These functions for r* and Z! 
when used in (5.13) and (5.15) lead to It ,s O,r), the general 
solution of the velocity-dependent Noether mapping condi­
tion (5.1): 

Si(X,x,t) =Hij ;~XiSO, (5.31) 

s O(x,x,t ) = arbitrary, (5.32) 

-'x,xt)= _Him aL. az +Z-LSo, (5.33) 
'\ , ax' axm 

where Z (x,x,t ) is a constant of motion of the dynamical sys­
tem (4.1) with LagrangianL (x,x,t). 

Remark 5.1: The Noether mapping functions given by 
Palmieri and Vitale18 can be obtained as a special case of 
(5.31)-(5.33) with the assumption that L = L (x,x), 
Z = Z(X,X), and SO = O. 

The Noether mapping functions given by Candotti, Pal­
mieri, and Vitale19 can be obtained from (5.31)-(5.33) with 
the assumption that r = O. In this case SO is no longer arbi­
trary and is determined by (5.33). 

The Noether mapping functions obtained by Sarlet and 
Cantrijn 16 in their search for generalized symmetry map­
pings with a concomitant constant of motion of the Noether 
type were essentially the same as (5.31)-(5.33). • 

We now establish at the differential level that the above­
obtained velocity-dependent Noether mapping functions 
(5.31)-(5.33) determine symmetry mappings ofthe dynami­
cal equation (4.1). To show that an infinitesimal velocity­
dependent mapping (2.1) and (2.2) defined by mapping func­
tions t, SO is a symmetry mapping it is sufficient to show 
that the associated mapping function Z! [refer to (2.12)] sat­
isfies (4.17). Since the Z! and r* associated with the Noether 
mapping functions t, r [refer to (5.13), (5.15), (5.31), and 
(5.33)] satisfy (5.5) it follows for Noether mappings that 
(4.17) immediately takes the form 

aA.(L) ~ _ [A. (dr*) + ~ (aL. aZ.
j

)] ~a. 
, 'dt dt 2 ax} ax' 

(5.34) 

Use of the identity (3.5) and the definition (3.16) allows us to 
express (5.34) in the form 

aA,.(L)~ - - -. r*+ -.Z} -Hi,Z} ~a. d 2 [ a ( aL.) .] 
dt 2 ax' ax} , 

(5.35) 

The term in square brackets in (5.35) vanishes identically 
upon substitution of Z! and r* given by (5.23) and (5.25). 

G. H. Katzin and J. Levine 3090 



                                                                                                                                    

Hence every infinitesimal velocity-dependent Noether map­
ping (2.1) and (2.2) defined by (5.31H5.33) is a symmetry 
mapping ofthe dynamical system (4.1). We note that this 
method for proving that Noether mappings are symmetries 
has bypassed any reference to the invariance of the action 
integral. 

It is next shown that the above Noether solution (5.31)­
(5.33) leads in a natural manner to the inverse Noether 
theorem. 

As is well known, from the Noether identity (3.9) and 
the Noether mapping condition (5.1) it follows that corre­
sponding to every velocity-dependent or independent 
Noether mapping It ,S 0,1") there exists a Noether constant of 
motion IN of the dynamical system (4.1), where 

I =aL.l:i_ (aL. xi _ L )sO+1". (5.36) 
N ax' ':J ax' 

For the case of velocity-dependent Noether mappings it is 
found by use of(5.13H5.15) that IN reduces to the form 

I - aL Z i + * (5 37) 
N - axi 1" . . 

This latter form for IN shows it is independent of the arbi­
trary function So. Moreover, ifthe Noether mapping func­
tions (5.31 H5.33) (which incorporate the detailed form of Z. 
and 1"*) are used in (5.36), we find 

IN =Z, (5.38) 

i.e., the Noether constant of motion IN is exactly the con­
stant of motion Z which appears in the Noether mapping 
functions. This relation (5.38) between IN and the arbitrarily 
chosen constant of motion Z, which determines the Noether 
symmetry mapping functions Z. ,1"*, essentially forms the 
basis of what is generally referred to as the inverse Noether 
theorem, that is, corresponding to every constant of motion 
Z there will exist velocity-dependent Noether symmetry 
mapping functions (Z I, 1"*) whose concomitant Noether 
constant of motion is Z. However, as a consequence of the 
arbitrariness of the mapping function S 0, an infinite number 
of velocity -dependent Noether symmetry mappings lSi ,s 0,1") 
[(5.31H5.33)] may be associated with each given (Noether) 
constant of motion (5.38). Thus even a Noether constant of 
motion originally obtained as a concomitant of a velocity­
independent Noether mapping could also be considered as a 
concomitant of an infinite number of velocity-dependent 
Noether mappings. 

We summarize the velocity-dependent Noether map­
ping theory in the theorem that follows. 

Theorem 5.1: (Noether theory): An infinitesimal veloc­
ity-dependent mapping 

Xi = Xi + /)xi, /)xi = S i(X,x,t )/ja, 

r = t + /)t, /)t = S O(x,x,t )/ja 

(2.1') 

(2.2') 

is said to be a velocity-dependent Noether mapping of a La­
grangian dynamical system 

AI(L) = 0, L = L (x,x,t) (4.1') 

[Hij=a 2L/axlaxJ, detHij#O), if and only ifthere exist 
functions r (x,x,t ), S O(x,x,t), and 1"(x,x,t) which satisfy the 
Noether mapping condition 
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/)L + L d/)t = _ d1" /)a. 
dt dt 

(5.1') 

The change in variables 

S I(X,x,t ) = Z I(X,x,t ) + XiS O(x,x,t ), 

1"(x,x,t) = 1"*(x,x,t ) - L (x,x,t lS O(x,x,t ) 

(2.12') 

(5.6') 

reduces the Noether mapping condition (5.1') to the form 

d1"* IlL = - --&, 
dt 

(5.5') 

in which S ° does not appear. The solution to (5.5') is express­
ible in the form 

ZI = Hij az (5.39) 
ax}' 

1"* = - Hij aL az + Z, (5.40) 
axl ax} 

where H} ~k = /)~, and Z (x,x,t ) is an arbitrary constant of 
motion of the dynamical system (4.1'). Hence the solution to 
the Noether mapping condition (5.1') is expressible in the 
form 

SI(X,x,t) =Hij ;~ +XISO, 

SO(x,x,t) = arbitrary, 

-Ix t)=HijaL az +Z-LSo, 
' \ ,x, axl ax} 

(5.31') 

(5.32') 

(5.33') 

and the most general infinitesimal velocity-dependent 
Noether mapping (2.1') and (2.2') is determined by the 
Noether mapping functions r (5.31') and SO (5.32'). All ve­
locity-dependent Noether mappings are symmetry map­
pings in that the Noether mapping functions r (5.31') and S ° 
(5.32') will identically satisfy the symmetry condition 

/)AI(L ) ~ O. (4.8) 

Alternatively, the Noether mapping function Z. (5.39) will 
identically satisfy the symmetry condition 

(4.16') 

Associated with each infinitesimal velocity-dependent 
Noether symmetry mapping there will exist a concomitant 
Noether constant of motion 

IN = aL. I:i _ (aL. Xl- L) SO + 1", (5.36') 
ax' ':J ax' 

which can be expressed in the equivalent forms 

or 

I = aL Z i + 1"* (5.37') 
N axl ' 

(5.38') 

• Remark 5.2: From the form of the velocity-dependent 
Noether symmetry solution zt (5.39) we may regard the 
problem of obtaining solutions of the Noether symmetry 
condition (5.5) as being reducible to that of obtaining con­
stants of motion of the associated Lagrangian dynamical sys­
tem(4.1). • 

Remark 5.3: Infinitesimal velocity-dependent Noether 
symmetry mapping solutions zt and 1"* may be obtained as 
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explicit functions of Xi, Xi, and t so that their functional struc­
tures in terms of the constant of motion Z [refer to (5.39) and 
(5.40)] are not immediately apparent. However, one may 
readily express such known zi (x,x,t) and 1'*(x,x,t ) in the re­
spective forms (5.39) and (5.40) by first employing the zi and 
1'* in (5.37) to obtain IN, which by (5.38) is the required con­
stant of motion Z (x,x,t ) needed to express zi and 1'* in the 
desired forms. This is one of the points illustrated by Exam­
ple I given in Sec. VII. • 

Remark 5.4: Noether mappings (refer to Theorem 5.1) 
are a subclass of general symmetry mappings (refer to 
Theorem 4.1). It therefore follows (refer to Remark 4.3) from 
the invariance of the symmetry condition (4.16) with respect 
to a Lagrangian gauge transformation (4.40) that the set of 
solutions I zi (x,x,t ) J of the Noether symmetry condition 
(5.5) must be Lagrangian gauge invariant. However, it re­
mains of interest to examine the effect of Lagrangian gauge 
transformations on the Noether symmetry condition (5.5) in 
order to determine how 1'* is affected and then to use the 
results to investigate the behavior of the Noether constant of 
motion IN (5.37) with respect to this gauge transformation. 

For completeness it is of interest to not assume the 
above-mentioned invariance of the Noether mapping func­
tions zi but to investigate how such invariance arises from 
the direct analysis of the effect of a Lagrangian gauge change 
on the Noether mapping condition (5.5). We therefore now 
assume that the Noether mapping condition (5.5) is based 
upon the Lagrangian I (x,x,t) (4.40). We thereby obtain 

KI(x,x,t) = - dT*(x,x,t) ~a (5.41) 
dt 

(K indicates variation with respect to Z), which is to be 
solved for Z (x,x,t ) and :r*(x,x,t ). By means of(4.4O) and (5.5) 
it follows by the use of(2.37) [with G =t(x,t)] that (5.41) may 
be expressed in the form 

- d1't 
I1L = - - ~a (5.42) 

dt ' 

where 

1't ~a==Kt(x,t) + 1'* ~a. (5.43) 

Equation (5.42) is identical in form to (5.5); it therefore fol­
lows from Theorem 5.1 that the solution to (5.42) is given by 

Zi =HijaZ 
axi

' 

1't = _Hija~ az. +z, 
ax' ax l 

(5.44) 

(5.45) 

where Z (x,x,t ) is an arbitrary constant of motion. The set of 
arbitrary constants of motion IZ J appearing in (5.44) and 
(5.45) is the same as the set of arbitrary constants of motion 
I Z J which appears in (5.39) and (5.40). Hence there is no loss 
in generality in assuming Z = Z. 

It therefore follows that 

(5.46) 

which verifies the previous observation that Noether sym­
metry solutions are invariant with respect to the Lagrangian 
gauge transformation (4.40). 

By use of (5.43)-(5.46) we find 
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-* _ * at Zi 
l' - l' - axi ' (5.47) 

which shows how the function 1'* is affected by the Lagran­
gian gauge change (4.40). 

We next examine the effect of the Lagrangian gauge 
change (4.40) on the functional structure of a Noether con­
stant of motion IN (5.37). To do this we formulate the 
Noether constant of motion (5.37) in terms of I, Z , and 1'* to 
obtain 

IN = a~ Zi + 1'*. (5.48) 
ax' 

Upon use of (4.40), (5.46), (5,47), and (5.37) we find that (5.48) 
takes the form 

(5.49) 

Thus the Lagrangian gauge transformation (4.40) leaves the 
functional structure ofa Noether constant of motion invar­
iant because the induced gauge change in 1'* compensates for 
the gauge change in L (with zi remaining invariant). 

Since in the Noether solution (5.31)-(5.33) the function 
S O(x,x,t) is arbitrary, there is no loss in generality in consider­
ing it unchanged with respect to the Lagrangian gauge 
change (4.40). We then find under this gauge change that 

ti=Si, (5.50) 

1'= 1'- at Si - at r. 
ax' at 

(5.51) 

For a discussion of velocity-independent Noether the­
ory with respect to Lagrangian gauge transformations refer 
to Katzin and Levine. 8 

• 

Remark 5.5: For Lagrangian systems for which the La­
grangianhasnoexplicitt dependencesothataL (x,x)/at = 0, 
it follows from (5.5) [by use of (3.2)] that if zi (x,x,t) and 
1'*(x,x,t) satisfy (5.5) then so will azi lat and a1'* lat. Hence if 
zi defines a Noether mapping of such a dynamical system, 
then azi lat will also be a Noether mapping of the system, 
that is, azi lat remains within the subclass of Noether map­
pings (refer to Corollary 4.1). A similar result was proved for 
velocity-independent Noether mapping.9 

• 

Remark 5.6: For Lagrangian systems for which 
aL lat = 0 it follows from (5.39) and Remark 5.5 that for 
such dynamical systems if M (x,x,t ) is a constant of motion so 
too will be aM (x,x,t )lat. This well-known result is generally 
proved by other means. 35 • 

Remark 5.7: Based upon the Noether mapping condi­
tion (5.1) we have discussed Noether mappings for the classi­
cal velocity-independent case [ti (x,t ),SO(x,t ),r(x,t)] and for 
the most general velocity dependence case lSi (x,x,t ), 
SO(x,x,t ),r(x,x,t )]. It would be of further interest to system­
atically investigate Noether mappings with regard to the as­
sumed explicit velocity dependence or independence of each 
of the functions t ,s 0,1'. To do so one must consider the two 
choices r(x,x,t) and r(x,t) for each of the four types of Si, s ° 
considered in Sec. IV [refer to (4.9)-(4.12)]. By analysis ofthe 
(n + 1) equations obtained from (5.2) (which must hold iden­
tically in the Xi) it can be shown for unconstrained Lagran­
gian systems that of the eight possible situations, the two 
cases [Si (x,t ),SO(x,x,t ),1'(x,t)] and lSi (x,t ),SO(x,t ),r(x,x,t)] 
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cannot exist. We have not attempted a literature search with 
regard to this detailed classification system. • 

For a Lagrangian dynamical system (4.1) the Noether 
symmetry condition (5.5) defines a subclass of symmetry so­
lutions of the general symmetry condition (4.16). These ve­
locity-dependent Noether symmetry solutions z! were 
shown to be expressible in a form that has a characteristic 
functional structure which is the same for all (Lagrangian) 
dynamical systems and dependent upon the constants of mo­
tion of the system. Weare thus led to the problem of deter­
mining if the general velocity-dependent symmetry solu­
tions z! of (4.16), that is, solutions which are either 
non-Noether or Noether symmetries, can also be expressible 
in a form which has a characteristic functional structure 
which is the same for all dynamical systems and is dependent 
upon the constants of motion of the dynamical system. This 
problem will be considered in the next section. 

VI. A CHARACTERISTIC FUNCTIONAL STRUCTURE OF 
ALL VELOCITY-DEPENDENT SYMMETRY MAPPINGS 

In this section it is shown that every velocity-dependent 
solution z! (x,x,t) (Noether or non-Noether type) of the sym­
metry condition (4.16) is expressible in a characteristic form 
which in principle is derivable if a set of2n functionally inde­
pendent constants of motion of the dynamical system is 
known. For generality in the derivation to follow we shall 
consider dynamical equations which are more general than 
Lagrange's equation (4.1). 

Consider then a system of dynamical equations of the 
form 

E/(x,x,x,t )=Hij(x,x,t)Xj - Fi(x,x,t) = 0, (6.1) 

in which det Hij #0 so that thex} terms can be expressed in 
the form 

Xi ~ Fi(x,x,t), 

where 

F i=Hi,P· Hi]H· _ COi 
- j' jk - Uk' 

(6.2) 

(6.3) 

Dynamical equations (6.1) include Lagrange equations of the 
form (4.1) for the choiceEi(x,x,x,t )==AtlL) [refer to (4.2) and 
(4.3)], in which case Ftlx,x,t) of (6.1) reduces to Rtlx,x,t) of 
(4.3), and Hij of(6.1) reduces to (3.13) [which may then be 
expressed in the form (3.16)]. 

Let c;A (x,x,t ), A = 1, ... ,2n, be a set of 2n functionally 
independent constants of motion of the dynamical system 
(6.1) so that on a dynamical path we may write 

(6.4) 

where in general the constants c;A will vary from path to 
path. 

Remark 6.1: The" :b. " notation: the notation" 4: " in­

dicates that any function [refer to (2.9)] G (x~,x~ _ 1 , ••• , 

x; ,xi,t) is to be expressed completely in terms of the path 
parameter t by means of the finite equations of the dynamical 
paths. • 

The 2n equations (6.4) may be inverted to express Xi and 
Xi in the form 
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(6.5) 

(6.6) 

The set of equations (6.5) is a complete solution to the dy­
namical equations (6.1) [or (6.2)]. Conversely, for a complete 
solution (6.5) we could solve Eqs. (6.5) and (6.6) for the con­
stants c;A and thereby obtain the 2n constants of motion 
CA (x,x,t) (6.4). This reciprocity between a complete solution 
of the dynamical equations and its associated set of 2n func­
tionally independent constants of motion is essential to the 
proof to follow. 

As with Lagrange's equations (4.1), an infinitesimal ve­
locity-dependent mapping (2.1) and (2.2) which maps the set 
of all solution curves of (6.1) into itself will define a symmetry 
mapping of this more general dynamical system. Such map­
pings are determined by the condition 

(6.7) 

Use of (2.34) with G replaced by Ei shows (in a similar man­
ner to that of Sec. IV) that such symmetry mappings are 
determined by velocity-dependent mapping functions 8Xi ,81 
of the form 

(6.8) 

81 = arbitrary. (6.9) 

In (6.8), lui [ =Z! (x,x,t )8a] is determined by the set of partial 
differential equations obtained by the formal expansion of 
the symmetry conditions 

f1Ei 0 .'. '. • Ta =HijZ'+JijZ'+KijZ'~O, (6.10) 

• 0 aEi • 0 aEi H..(x,x,t) = -., J .. (x,x,t) = -. , 
V ~,v ~, 

• 0 aEi Kij(x,x,t) = --.. 
ax' 

(6.11) 

The expanded form of (6.10) is given by (4.24)-(4.33), 
wherein for applicability to the more general dynamical sys­
tem (6.1) currently being considered, we now employ Hij,Jij' 
K ij as defined by (6.11), and R i is now replaced by F i as 
defined in (6.2). 

In the definitions (6.11) and in the formal expansion of 
Z j and Z j occurring in (6.10) all Xi and Xi terms are to be 
expressed as functions of Xi ,xi,t by means of the dynamical 
equation (6.2). 

It should be noted thatifEi = Ai(L), [see (3.1)] thenJij' 
Kij given by (6.11) will reduce to the respective Jij.Kij based 
upon the Lagrangeequaton (4.2) [refer to (3.14), (3.15), (4.20), 
and (4.21)], and the functions Hij of (6.11) will reduce to 
(3.16). 

It is convenient to transvect (6.10) with H ik and express 
the system of equations in the form 

Z i + J ~ Z j + K ~ Zj ~ 0, 

where 

(6.12) 

J~(x,x,t) = HimJmi' K~(x,x,t) = HimKmj" (6.13) 

We first derive a necessary condition that every solution 
Z i(X,x,t) of the set of partial differential symmetry equations 
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obtained by the expansion of (6.12) must satisfy. If (6.12) is 
evaluated on the dynamical trajectories of (6.1) by means of 
(6.5) and (6.6) we obtain an associated set of ordinary differ­
ential equations 

zt(e,t) + jim (e,t )Z"'(e,t) + kim (e,t )z"'(e,t) b 0, (6.14) 

where 

ZI(X,x,t) 4: ZI[rP(e,t ),¢(e,t ),t ] = t(e,t), (6.15) 

Kim (X,x,t) 4: Kim [rP(e,t ),¢(e,t ),t ] = kim (e,t). (6.17) 

We note that the associated system of equations (6.14) which 
must be satisfied by t(e,t) (6.15) is always a system of linear 
equations irrespective of whether the original dynamical sys­
tem (6.1) is linear or nonlinear. Solutions of (6.14) are ex­
pressible in the form 

t(e,t) = bA~(C,t), (6.18) 

where the b A, A = 1, ... ,2n are arbitrary constants. 
We may thus state the following theorem. 
Theorem 6.1. When evaluated on trajectories 

Xi=¢i(C,t) (6.5') 

of the dynamical system 

Hq(X,x,tjXi - Fi(x,x,t) = 0, (6.1') 

every solution Z i(X,x,t) of the symmetry (partial differential) 
equations obtained by the formal expansion of 

ZI+J~Zi+K~Zj~O 

must be expressible in the form 

(6.12') 

Z I(X,x,t) 4: t(c,t ) = b A~ (e,t), 

b A = arbitrary const, A = 1, ... ,2n, (6.19) 

where the t(c,t ) are solutions of the associated ordinary dif­
ferential equations 

zt(e,t) + j 1m (e,t )Z"'(c,t) + k im(C,t )z"'(e,t) b 0 (6.14') 

obtained by evaluating the symmetry equations (6.12') on the 
trajectories (6.5'). The 2n vectors~(c,t) appearing in (6.19) 
constitute a fundamental solution set of (6. 14'). • 

Since on a trajectory every solution Z I(X,x,t) of (6.12) 
has the form (6.19) we are led to assume (to be proved below) 
that the functions Z *i(X,x,t ) defined by 

Z *1(X,x,t) = B *A (x,x,t ~ [C l(X,x,t ), ... ,C211(X,x,t ),t ] 

= B *A~ (C,t) (6.20) 

will be a solution of the (partial differential) symmetry equa­
tion (6.12). In (6.20) the B *A (x,x,t) are arbitrarily chosen 
constants of motion. Hence, they can always be expressed as 
functions of the 2n functionally independent constants of 
motion C A (x,x,t) (6.4) which are associated with the inver­
sion of the dynamical solution (6.5). We may thus write 
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B *A (x,x,t ) = b *A [C (x,x,t )] 4: b *A (c), 

b *A (c) = const, A = 1, ... ,2n. (6.21) 

In (6.20) the functions ~ [C(x,x,t),t ] are obtained by re­
placing the constants ~ appearing in the ~ (e,t ) of (6.18) by 
the respective above-mentioned constants of motion e A by 
means of (6.4). 

It will now be verified that the assumed solution 
Z *1(X,x,t) (6.20) satisfies the (partial differential) symmetry 
equations (6.12). To do so it is notationally convenient to first 
define 

Qi(Z)=Zi+J~Zj+K~ Zi, (6.22) 

so that it is required to prove Q I(Z *) ~ O. 
We first form from (6.20) 

Z*I=B*Ai +B*A(a~ (;B+ a~). (6.23) 
A aeB at 

Since the B *A (x,x,t ) and e A (x,x,t ) are constants of motion 
we have by use of(6.2) thatB *A ~ 0, (; A ~ 0, and we thereby 
obtain from (6.23) that 

Z*I~B*A a~ . 
at 

In a similar manner we find 
a2 . 

Zi~B*A~. 
at at 

Use of (6.20), (6.24), (6.25), and (6.22) leads to 

Qi(Z*)~B*A [a2~(e,t) +Jl
m 

at at 

X a~(e,t) +Klm ~(e,t)]. 
at 

(6.24) 

(6.25) 

(6.26) 

It is to be noted as a consequence of the " ~ "in (6.26) that 
Q i(Z *) is now a function of Xi, Xi, and t, so that we may write 

Q I(Z *) ~ Pi(X,x,t), (6.27) 

where 

P I(X,x,t) == B *A [a 2tA (e,t ) 
at at 

+p a~(e,t) +Ki ,.m(Ct)] 
m at m 6A , • 

(6.28) 

We note that in the derivatives a~(e,t)/at and 
a2~(C,t)/atat which appear in (6.28) the functions 
e A (x,x,t ) are held fixed. Therefore if we evaluate the expres­
sionP I(X,x,t) (6.28) on the dynamical paths by means of(6.S), 
(6.6), (6.15H6.17), and (6.21) we may write the resulting 
expression in the form 

P I(X,x,t) 4: b *A (c) [ ~ (e,t) + jim (c,t) g,;(c,t ) 

(6.29) 

The functions tA (c,t) in (6.29) are solutions of (6.14) for all 
values of ~. It follows that P I(X,x,t) 4: O. Since the functions 
P I(X,x,t ) vanish at each point of every trajectory they vanish 
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identically in the variables ;e, Xi, and t. 36 From (6.27) we 
thereby conclude that Q i(Z *) ~ O. Hence the symmetry 
condition (6.12) is satisfied by Z *i(X,x,t) (6.20). 

It is next proved that every solution Z i(X,x,t ) of the sym­
metry equation (6.12) is expressible in the form (6.20). To do 
this we assume on the contrary the existence of a solution 
Z Ui(X,x,t) which is not expressible in the form (6.20). By 
Theorem 6.1, there will exist constants b A = b UA (c) so that 
on dynamical trajectories [refer to (6.19)] 

Z Ui(X,x,t ) b zUi(e,t) b b UA (c) ~ (e,t ). (6.30) 

By means of (6.20) and the assumed solution Z Ui we 
form Wi(X,x,t) = Z Ui(X,x,t ) - Z *i(X,x,t ) to obtain 

Wi(X,x,t) = Z Ui(X,x,t ) - B *A (x,x,t) ~ [C (x,x,t ),t ]. 
(6.31) 

Evaluating Wi(X,x,t) on dynamical trajectories by use of 
(6.4)-(6.6), (6.21), and (6.30), we obtain 

Wi(X,x,t) b b UA (c) ~ (e,t) - b *A (c) tA (e,t). (6.32) 

Since in (6.31) theB *A [associated with the Z * solution 
(6.20)] may be arbitrarily chosen constants of motion, we 
may always pick them so that B *A (x,x,t) = b *A [C (x,x,t )]. 
For this choice it follows [refer to (6.21)] that 

b UA [C(x,x,t] b b UA(e) and hence by (6.32) Wi(X,x,t) 

b 0 (for all c). Since Wi(X,x,t) vanishes at every point of 
every trajectory it vanishes identically in the variables Xi, Xi, 
and t. Therefore, by (6.31) 

Z Ui(X,x,t) = B *A (x,x,t) t[ C (x,x,t ),t ], (6.33) 

which contradicts our assumption that Z u; was not ex­
pressible in the form (6.20). We are thus able to state the 
following theorem. 

Theorem 6.2: Consider a system of dynamical equations 

E; == Hij x j - F;(x,x,t) = 0, det Hij :;60, (6.1 W) 

with a complete solution for the trajectories given by 

i ""i( 1 2n t ) - ""i( t) x =." e , ... ,e , =." e, , 

cA == const, A = 1, ... ,2n, (6.5") 

so that 

(6.6') 

Let 

C A (x,x,t) b cA (6.4') 

be the specific set of 2n functionally independent constants 
of motion obtained by inversion of (6.5") and (6.6') for the 
constants cA . 

A solution Z i(X,x,t ) of the (partial differential) symme­
try equations 

l1Ei 0 ••• • • • 0 

&=HijZ}+JijZ}+KijZ}=O, (6.10) 

where 

3095 J. Math. Phys., Vol. 26, No. 12, December 1985 

is 

aE. 
H,ij(x,x,t) ~ __ '. , ax} 

aE. 
Kij(x,x,t)~ __ '. , 

ax} 

aE. 
J .. (x,x,t) ~ __ '. , 

I} ax} 

(6.11) 

Z i(X,x,t ) = B A (x,x,t ) ~ [C l(X,x,t ), ... ,C 2n(X,x,t ),t ] 

=BAtA(C,t); (6.20') 

the B A (x,x,t ) are arbitrary constants of motion of (6.1 W) and 
hence may be regarded as arbitrary functions ofthe 2n con­
stants of motion C A (x,x,t) (6.4'), and the functions 
~ [ C (x,x,t ),t] are obtained by replacing the constants cA 
appearing in the functions ~ (e,t) of Theorem 6.1 by the 
respective constants of motion C A (x,x,t ) by means of (6.4'). 
Moreover, every solution Z i(X,x,t) of the symmetry equa­
tion (6.10) is expressible in the form (6.20') by a suitable 
choice of the constants of motion B A (x,x,t ). • 

Remark 6.2: With Z (x,x,t ) given by (6:20'), symmetry 
mappings for a dynamical system (6.1) will be determined by 
(6.8) and (6.9). • 

Remark 6.3: Since in (6.20) we may choose the arbitrary 
constants of motion B A to be absolute constants, it follows 
that the 2n vectors 

Z~(x,x,t) tA [C(x,x,t),t], A = 1, ... ,2n (6.34) 

will be solutions of the symmetry condition (6.10), and hence 
may be regarded as a "basis" for all symmetry solutions 
Zi(X,x,t). • 

Remark 6.4: Had we initially chosen a different set of 2n 
functionally independent constants of motion (6.4), e.g., 

(6.35) 

then the associated solution (6.5) (obtained by inversion) of 
the dynamical equations would correspondingly change to 

Xi = ~i(cA,t). (6.36) 

This change would permeate through the whole procedure 
and in general results in a different set of fundamental solu­
tion functions ~ (c,t ) (refer to Theorem 6.1). Consequently, 
we would obtain a different set of solution functions 
~ [C (x,x,t ),t] which would also constitute a basis for 
Z i(X,x,t) solutions of the symmetry equation (6.12). It would 
then follow that 

Z i(X,x,t ) = B A [ C (x,x,t )] ~ [ C (x,x,t ),t ] 

= Ii A [C (x,x,t)] ~ [C (x,x,t ),t ]. (6.37) 

• 
Since Noether symmetry solutions are a subclass of the 

solutions Z i(X,x,t) of the symmetry condition (4.16) for a 
Lagrangian dynamical system (4.2), and since such Lagran­
gian dynamical systems are a subclass of dynamical systems 
(6.1), we may state the following corollary to Theorem 6.2. 

Corollary 6.2.1: Every velocity-dependent Noether sym­
metry solution Zi(X,x,t) (5.39) (as described in Theorem 5.1) 
of a Lagrangian dynamical system (as described in Theorem 
4.1) is expressible in the form (6.20) [as described in Theorem 
(6.2)]. • 
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With reference to Theorem 6.2 let Z i(X,x,t ) be any given 
solution to the symmetry equation (6.10) [or equivalently 
(6.12)]. We now show how to choose the arbitrary constants 
of motion B A (x,x,t) so that Z i is expressible in the charac­
teristic form (6.20), that is, 

Zi(X,x,t) =BA(X,x,t)~ [C(x,x,t),t]. (6.38) 

From (6.38) we form (recall jJA ~ O,(:'A ~ 0) 

Zi~BAit(C,t) ~BA a~(C,t) . 
at 

(6.39) 

The functions ~ (e,t ) (~ = const) define a complete set 
of solutions to the ordinary differential equation (6.14); it 
thus follows thae7 

1 ~(e,t)1 W(e,t) == -.-. -_. - #0, 
fA (e,t) 

(6.40) 

where A = 1, ... ,2n denotes columns and i = 1, ... ,n denotes 
rows in the partitioned determinant. Since the constants of 
motion C A (x,x,t ) appearing in the functions ~ [ C (x,x,t ),t ] 
act as constants in (6.39), it follows from (6.40) that 

1 ~(C't)1 W(C,t) ~ ~ ~ - - - - #0. 
fA (C,t) 

(6.41) 

Therefore the 2n linear equations (6.38) and (6.39) may be 
solved algebraically for the 2n constants of motion B A by 
Cramer's rule. 

We are thus led to the following corollary to Theorem 
6.2. 

Corollary 6.2.2: For a given solution Z i(X,x,t) of the 
symmetry condition (6.10) to be expressed in the generic 
form (6.20) with respect to the basis functions 
~ [C (x,x,t ),t ] the arbitrary constants of motion B A (x,x,t ) 
must be chosen to have the form 

-A • , aA 
B (x,x,t) =-, 

W 

where 

a
A 
~ 1~:':~-:_I __ ~~_~_-t:~':'_~_n_1 

fJ ... fA - 1 Z i fA + 1 ••• ~n 
and 

W~ 11-1. 

(6.42) 

(6.43) 

(6.41') 

In the partitioned determinants aA and W, the indices 
i = 1, ... ,n denote rows and the indices A = 1, ... ,2n denote 
columns. In (6.41') and (6.43) the constants of motion 
C A (x,x,t ) appearing in the functions iA (C,t ) behave as con­
stants in that it (C,t) ~ a~ (C,t )Iat. • 

It is of interest to demons~rate that the B A (x,x,t ) (6.42) 
actually satisfy the conditions B A ~ 0, required of constants 
of motion. With reference to (6.42) we form 

~A 0 • • 2 
B = aAIW - a A W IW . (6.44) 

We first form Wby differentiation of the 2n X 2n deter-
minant W (6.41). Since differentiation of row i (i = 1,2, ... ,n) 
results in a row whose elements are identical to those of row 
i + n, we obtain a sum of only n determinants which arise 
from differentiation of the last n rows of W. Hence 
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• n 

W~LWi' (6.45) 
i=1 

where 

'1 
gl 

'1 
g2n 

Wi~ (6.46) 
g;-I ~;;-I 

g; ~n 
g;+ 1 g{+ 1 

2n 

g: ~n 

Expand Wi on row i + n to obtain 

• 2n 

Wi ~ L ~ cof~. (6.47) 
A=I 

Remark 6. 5: Note that the appearance of a free index "i" 
on the left side of an equation implies the index i is also free 
on the right side of the equation. • 

Comparison of the Wi determinants (6.46) with the W 
determinant (6.41) shows that 

(cof~ of Wi) == (cofit of W). (6.48) 

Hence (6.47) may be written as 
2n 

Wi ~ L ~(cofit ofW). (6.49) 
A=I 

With reference to Remark 6.3 and (6.34) therein we have 
from (6.12) that 

;;i' (Ji;.,i Ki j) .sA = - j.sA + j gA • (6.50) 

Upon substitution of (6.50) in (6.49) the resulting equation 
may be expressed in the form 

· n 2n 

Wi ~ - L J~ L [g~(cofit of W)] 
j= 1 A= 1 
j¥i 

2n 

-Pi L [it(cofit of W)] 
A=I 

n 2n 

- L K~ L [g~(cofit of W)]. (6.51) 
j= 1 A= 1 

From the theory of determinants38 we have for 
a = laijl andAij == cofaij that 

n 

L aik Ajk = c5;a. (6.52) 
k=1 

With reference to (6.41) it follows from (6.52) that (6.51) re­
duces to 

W· ~ JiW i- - i , (6.53) 

and hence (6.45) becomes39 

(6.54) 
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The functions A", which also appear in (6.44), will now 
be calculated. By the same argument preceding (6.45) it is 
found that 

(6.56) 

2n 

6."'i ~ L iB cofiB + Zi cofZi. (6.57) 
B=I 

B"" 
By means of(6.12), (6.50), and relations similar to (6.48), Eq. 
(6.57) can be expressed in the form 

6."i ~ - jtl J~ L~I gB(cofgB of AB) 

+ Z j(cofZi of AB)] . (6.58) 

With reference to (6.43) and (6.52), Eq. (6.58) reduces to 

6."1 ~ - PiA", (6.59) 

and hence (6.54) takes the form 

6." ~ - (.f Jil ) A". .= I (6.60) 

By means of (6.44), (6.54), and (6.60) we find /j" ~ 0, 
which verifies that /j" (6.42) is a constant of motion. 

As a consequence of the form of the symmetry solution 
(6.20) we obtain a third corollary to Theorem 6.2 whose 
proof is immediate. 

Corollary 6.2.3: If Z I(X,x,t ) is a solution of the symmetry 
equation (6.12), then so will be 

Zi(X,x,t) =A (X,x,t)Zi(X,x,t), (6.61) 

where A (x,x,t ) is an arbitrary constant of motion of the dyna­
mical system (6.1). • 
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Remark 6.6: Katzin and Levine7 had previously ob­
tained a result similar to Corollary 6.2.3 for the 2n-dimen­
sional symmetry vector of Hamilton's equations expressed 
in sympletic notation. More recently, Sarlet and Cantrijnl6 

gave another proof for this using the concepts of calculus on 
manifolds. • 

VII. EXAMPLES 

To illustrate various aspects of the theory developed in 
the preceding sections we now give two examples. 

Example L' Consider the one-dimensional dynamical 
system defined by the Lagrangian 

L=e-x-x. 

It follows from (3.1), (6.1), and (7.1) that 

EI = AI(L) =e-xx + 1 =0, 

and hence we have [refer to (6.2)] 

x~ -~. 

(7.1) 

(7.2) 

(7.3) 

The dynamical equation (7.3) may be solved to obtain 
[refer to (6.5)] 

x = (t + cl)[1 - In(t + cl)] + c2
, 

from which it follows that 

x = - In(t + c l
). 

(7.4) 

(7.5) 

By solving (7.4) and (7.5) for the constants cl and c2 we 
obtain two functionally independent constants of motion C I 
and C 2

, where 

(7.6) 

(7.7) 

By useof(7.2) and (7.3) we find from (3.13H3.15), (4.20), 
and (4.21) [or alternatively from (6.11)] that 

Hl1 ~ e-X, J l1 ~ 1, Kl1 ~ 0, 

from which it follows that 

H 11 = Hili = ~. 

(7.8) 

(7.9) 

It now follows that the symmetry condition (4.19) [or (6.10)] 
takes the form 

e-xZ I +2'1 ~O. (7.10) 

Formal expansion of (7.10) [including elimination of all dot 
derivatives of x or order higher than x as required by the 
" ~ "notation] will lead to the partial differential symmetry 
equation for the symmetry vector Z I(X,x,t) [refer to (4.24)]. 

We transvect (7.10) by means of H II (7.9). The resulting 
equation may be evaluated on the dynamical trajectory by 
means of (7.4) to obtain the associated ordinary differential 
equation [refer to (6.14 H 6.17)] 

(t+CI)Z1 +Zl bOo 

The solution to (7.11) is 

Zl = b I In(t + c l ) + b 2. 

(7.11) 

(7.12) 

Hence corresponding to (6.18) we have by inspection of(7.12) 
that 

(7.13) 
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By the procedure described in Theorem 6.2 we may now 
construct the solution Z I(X,x,t) to the partial differential 
equation (4.24) obtained from the expansion of the symmetry 
condition (7.10). Hence from (7.12) the solution Z I as given 
by (6.20) takes the form 

Z I(X,x,t) = B I In[t + C I(X,x,t)] + B 2, (7.14) 

where B I(X,x,t ) and B 2(X,x,t ) are arbitrary constants of mo­
tion of the dynamical system (7.3) and hence may be regard­
ed as arbitrary functions ofthe constant of motion C I (7.6) 
and C 2 (7.7). We now make use of(7.6) in (7.14) and find the 
general solution of the partial differential symmetry equa­
tion obtained by expansion of the symmetry condition (7.10) 
to be 

ZI(X,x,t) = _BIX+B2. (7.15) 
It is of interest to note that by appropriate choices of the 

arbitrary constants of motion Bland B 2, Noether and non­
Noether symmetry solutions may be obtained from the gen­
eral solution (7.15). For example, the choice B 1= C l (7.6) 
and B2 = C 2 (7.7) reduces (7.15) to a Noether solution as 
described in Theorem 5.1 (refer also to Corollary 6.2.1) in 
that the resulting symmetry vector 

Zl = _ Clx + C 2 (7.16) 

may be expressed in the Noether form (5.39) 

zl=iI ! (-C I C 2
), (7.17) 

where with reference to (5.37) and (5.38) the Noether con­
stant of motion Z = IN = - C IC 2

, and with reference to 
(5.40) the Noether function r* = - xe- 2X 

- te- ic + xt. 
If in the general symmetry solution (7.15) we choose 

B 1= C I (7.6)andB 2 = Oitisreadilyshownthattheresulting 
symmetry vector 

Zl= -(e-ic-t)X (7.18) 

is a non-Noether solution. 
Example II: We again use the procedure developed in 

the proceding section to obtain the general velocity-depen­
dent mappng of the one-dimensional system 

El = xX - x2 = O. (7.19) 

It is easily verified that the solution to the dynamical 
equation (7.19) is 

From (7.20) we find 

x = clcec't. 

(7.20) 

(7.21) 

Equations (7.20) and (7.21) can be solved for cl and c2
• 

This inversion procedure leads to two functionally indepen­
dent constants of motion 

CI(x,x,t) = xe-ictlx:b cl , 

With reference to (6.11) and (7.19) we find 

HIl =x, J Il = - li, KIl =x2/x. 

(7.22) 

(7.23) 

(7.24) 

It then follows from (7.24) that the symmetry condition 
(6.10) takes the form 
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(7.25) 

Expansion of (7.25) with use of the dynamical equation 
(7.19) to eliminate x and x gives the partial differential equa­
tion which determines the symmetry mapping function 
Z (x,x,t) [refer to the two paragraphs immediately following 
(6.11)] 

X4 a 2z + .,~3 a 2z '2 a 2z 
--- .LoA. --+xx --
x axax ax ax ax ax 

+ li2 a
2
z + 2xx a

2
z +x a

2
z _ x

3 
az 

ax at ax at at at x ax 

_x2 az _ li az + x2 z~O. 
at at x 

(7.26) 

To solve (7.26) we follow the procedures described in 
Theorems 6.1 and 6.2. We evaluate (7.25) on the trajectories 
(7.20) to obtain (after simplificaton) the associated ordinary 
differential equation 

z - 2c2z + (C2)2Z :b 0, 

which has as its solution 

z = b lec't + b 2tec't, b I,b 2 = const. 

(7.27) 

(7.28) 

[From (7.28) the functions it (c,t) appearing in (6.19) have 
the form 

gl (c,t) == ec't, g~ (c,t) = tec't.] (7.29) 

The solution Z (x,x,t ) of(7.26) is constructed from (7.28) 
by replacing the constants b I,b 2 by arbitrary constants of 
motionB I(X,x,t), B 2(x,x,t) of the dynamical system (7.19), 
and by replacing the constant c2 by the constant of motion 
C 2(x,x,t) (7.23). As result of this procedure we obtain 

Z (x,x,t ) = B I (x,x,t )ilt Ix + B 2(X,x,t )te*t Ix. (7.30) 

It is easily verified that Z (x,x,t) (7.30) will satisfy (7.26) 
identically in x, x, and t if use is made of the fact that the 
constants of motion B A (x,x,t), A = 1,2, satisfy the condi­
tions 

iJ A ~ aB A x
2 + aB A x + aB A ~ O. 

ax x ax at 
(7.31) 
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2Opor any functionF(t, x', dx'/dt, d2x'/dt 2, •.. ) the notation dOF /dt°==F, 
For example, d ox' / dt 0=xl• 

21For additional discussion refer to Ref. 16. 
221n the formulation of dynamical symmetries of Hamilton's equations in 

phase space one is led in a natural manner to introduce such a decomposi­
tion to simplify the system of difFerential equations which determine the 
mapping functions s I, SO. See Sec. II of Ref. 7. 

23Note for the choice a = 0 in (2.22) we recover the defining relationship 
(2.10). 
~e Einstein summation notation is applied to both the coordinate indices 

(lowercase Latin) and the derivative indices (lowercase Greek) so that 

aG N" OG 
~x~=L L~x~. 
a~ a_OI_1 a~ 

We shall indicate the range of Greek indices in each equation, since in 
some equations they start with ''0'' and in others they start with "I." 

250ther procedures for formulating infintesima1 symmetries exist. For ex­
ample, one could require that the condition 

MI(L )=u{AJ(L) +,J, dAJ(L )/dt 

be satisfied identically in the variables d 2x' / dt 2, d 3x' / dt 3 for some func­
tions u{(x,x,t ), ,J,(x,x,t ). 
2~Eq. (3.10) of Ref. 8. 
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Infinitesimal velocity-dependent symmetry mappings of second-order dynamical systems (a) 
E i(X, X, x, t )==.Xi - Fi(x, X, t) = 0, i = 1, ... , n, were studied in considerable detail in a previous 
paper [J. Math. Phys. 26,3080 (1985), the first ofthis series]. Among the results developed in that 
paper was a procedure for determining the characteristic functional structure of symmetry 
mappings for such second-order systems. In this present companion paper it is shown that a 
similar procedure may be used to obtain the characteristic functional structure of infinitesimal 
symmetry mappings (blY =]1 + 8]1, 8yl =7JI (y, t)8a;(c)t = t + 81, 8t=7J0(Y, t )8a, for systems of 
first-order differential equations (d) E I (y, y, t) j/ - A I (y, t) = 0, 1= 1, ... , N. This 
characteristic structure is the same for all first-order systems (d) and is explicitly dependent upon 
constants of motion ofthe system. For the special case in which (d) is a system of N = 2n equations 
derived from a system of n second-order equations (a) it is shown how the respective symmetry 
equations based upon these two equivalent dynamical descriptions are related and how their 
symmetry solutions are c.orrelated. Two examples are given. 

I. INTRODUCTION 

In the first paper of this series I (denoted by I) an analysis 
of infinitesimal velOcity-dependent symmetry mappings of 
classical (including relativistic) particle dynamical systems 
described by second-order differential equations 

=Ei(X, X, x, t) = 0, i = 1, ... , n, (Ll) 

was presented. For such dynamical equations (Ll) it was 
shown that symmetry mappings 

Xi = Xi + 8Xi, 8xi 5 i(X, x, t )00, 

with associated change in path parameter 

t = t + 81, 81 =SO(x, x, t )8a, 

(1.2) 

(1.3) 

were expressible in a form with a characteristic functional 
structure which was the same for all dynamical equations 
(1.1), and which was manifestly dependent upon constants of 
motion of the dynamical system. In this characteristic form 
the (velocity-dependent) symmetry mapping functions were 
given by 

Si(X,X, t) = Zi(X, x, t) +XiSO(x,x, t), 

SO(x, x, t) = arbitrary; 

the functions Z i(X, x, t) in (1.4) had the form 

(1.4) 

(1.5) 

Zi(X, x, t) = BA(X, x, t ltA [C I(X, x, t ), ... ,Cr(x, x, t), t], 

0<;;;r<;;;2n, A = 1, ... ,2n, (1.6) 

where theBA were arbitrary constants of motion, and the C 's 
appearing in the functions tA were specific constants of mo­
tion. A procedure was given to determine the ~ . 

With slight modifications the method developed in pa­
per I for obtaining the characteristic structure of velocity­
dependent symmetry mappings of second-order differential 
equations is also applicable for determining the characteris-

tic structure of velocity-independent symmetry mappings of 
systems of first-order differential equations. Such first-order 
systems of differential equations may arise, for example, 
from a 2n-dimensional description of an n-dimensional dyn­
amical system, as in the case of Hamilton's equations. 

Due to the similarity in the derivations of the character­
istic structures of symmetry mappings of first- and second­
order systems of differential equations we give in this paper 
only a brief sketch of the derivation for first-order equations. 

For the special case in which a system of 2n first-order 
dynamical equations is derived from a system of n second­
order dynamical equations it is shown how the respective 
symmetry equations, based upon these two equivalent de­
scriptions of a dynamical system, are related and how their 
symmetry solutions are correlated. Two examples are given. 

II. STRUCTURE OF SYMMETRY MAPPINGS 

Consider a system of first-order differential equations 
which is expressible in the form 

EltyA,yA, t)==EI(y,y, t) r -A l(y, t) = 0, 

I,A = 1, ... ,N. 

A complete solution of Eqs. (2.1) is denoted by 

]I = <1>1 (yl, ... , yN, t )=<1>1 (y, t), Y ==const. 

(2.1) 

(2.2) 

Inversion of the solution (2.2) leads to theN functionally 
independent constants of motion 

r lf" )-rlf"i+n i ).!.. • .1 '-1 \'y, t = \.Y ,y ,t -r, I - , ... , n. (2.3) 

Remark 2.1: The notation ~ indicates that the finite 

solution (2.2) is used to express a function completely in 
terms of the path parameters t. • 

The reciprocity between a complete solution and the 
constants of motion obtained by its inversion will be essential 
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in the determination of the characteristic functional struc­
ture of symmetry mappings of first-order systems, as was the 
case for second-order systems. 

In our symmetry analysis of second-order differential 
equations treated in paper I we assumed the highest-order 
derivatives of the coordinates appearing in the mapping 
functions 5 i, 5 ° to be one less than the order of the differen­
tial equations. As a consequence the mapping functions were 
taken to be velocity dependent. In our symmetry analysis of 
first-order differential equations to be treated in this present 
paper we make a similar assumption and thereby take the 
mapping functions "lI,"l0 to be velocity independent. We 
thus assume 0 variations to be based on point mappings 

y = y + 8y, oy ="lI (y, t loa, 
with associated change in path parameter 

1 = t + Or, Or ="l0(Y, t loa. 

(2.4) 

(2.5) 

Based on such velocity-independent mappings (2.4) and 
(2.5) the symmetry mapping condition for first-order sys­
tems (2.1) is also formally written in the form2 

8E l lj, t, t) ~ O. (2.6) 

Remark 2.2: The" ~ " notation for first-order differ­
ential equations: Conceptually the" ~ " notation is essen­
tially the same for first-order systems of equations as it is for 
second-order systems (refer to paper I, Remark 4.1). How­
ever, for first-order systems (2.1) the" ~ " notation implies 
that the differential equation (2.1) is to be used to eliminate 
all dot derivatives of the coordinates from expressions or 
equations. • 

With reference to [1-(2.26)] and [1-(2.30)] (this notation 
used to refer to equations of paper I), we now find for the 
differential equation (2.1) that the symmetry condition (2.6) 
leads to 

. I y' ° aA I J aA I ° 0 0 "l - "l --"l --"l = . 
ay' at 

(2.7) 

For first-order systems a modified version of the decom­
position [1-(2.12)] is found to be useful. 3 We therefore write 

"lI(y, t) = UI(y, t) +A l(y, t)"l°(Y, t). ) (2.8) 

By use of (2.1) and (2.8) the symmetry condition (2.7) may be 
expressed in the form 

t;1 + KIJUJ = 0, 

where 

aA I 

KIJ(y, t)== - --. 
ay' 

(2.9) 

(2.10) 

The function "l0(Y, t) does not appear in (2.9) and there­
fore may be taken to be arbitrary, as was the case for 
50(i, x, t) in the analysis of velocity-dependent symmetry 
mappings of second-order differential equations. However, 
the arbitrariness of "l0(Y, t ) for velocity-independent symme­
try mappings of first-order systems is in contrast to the non­
arbitrariness of 5 O(x, t) for velocity-independent symmetry 
mappings of second-order systems. 

From this point on the procedure for obtaining the char­
acteristic functional structure of the U I (y, t) solutions of 
(2.9) is essentially the same as that for determining the char-
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acteristic structure of the Z i(i, x, t ) symmetry functions of 
second-order systems. We therefore omit the details of the 
analysis which leads to the following theorem about symme­
try mappings of first-order differential equations. 

Theorem 2.1: Consider a system of first-order differen­
tial equations expressible in the form 

EI jI_ A l(y, t) = 0, 1= 1,,,.,N, (2.1') 

with a complete solution given by 

y = «1>1 (r i 
'''., yv, t )=«1>1 (r, t ), r = const. (2.2') 

Let 

(2.3') 

be the specific set of N functionally independent constants of 
motion obtained by inversion of (2.2') for the constants r. 

An infinitesimal mapping 

y = y + oy, oy ="lI (y, t loa, (2.4') 

(2.5') 

will define a symmetry mapping of the system (2.1') if the 
mapping functions are solutions of the symmetry condition 

M/~Q ~~ 

The mapping functions "lI (y, t ), "l0(Y, t) which are deter­
mined by (2.6') are expressible in the form 

"lI (y, t) = U I (y, t) + A I (y, t )"l0(Y, t), (2.8') 

"l0(Y, t) = arbitrary, (2.11) 

where the functions U I (y, t) are solutions of the partial dif­
ferential equations 

aU/A J + aul 
_ aA I u J ~ 0 (2.12) 

ay' at ay' , 

obtained by the formal expansion of the auxiliary symmetry 
condition 

t;1 + KIJ(y, t)UJ ~ 0, 

where 

(2.9') 

(2.10') 

Evaluation of (2.9') on the solution curves (2.2') of (2.1') 
gives the associated ordinary differential equations (refer to 
paper I, Theorem 6.1) 

(2.13) 

where 

A complete solution to (2.13) is 

ul(r, t) =/3JG~(r, t), /3J = const. (2.15) 

Every solution U I (y, t) of the partial differential equations 
(2.12) is expressible in the form (refer to paper I, Theorem 
6.2) 

(2.16) 

where the B J (y, t) are arbitrary constants of motion of (2.1') 
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and therefore are expressible as functions of the constants of 
motion r l (y, t) (2.3'), and the functions G ~ [r(y, t), t] are 
obtained by replacing the constants y1 appearing in the func­
tions G ~(r, t) of(2.15) by the respective constants of motion 
rl(y, t) of (2.3'). • 

Corollary 2. 1.1: Since in (2.16) the B J (y, t ) are arbitrary 
constants of motion it follows that each of the N vectors 
U [J) =G~, where I denotes component and J denotes vec­
tor, are symmetry vectors. • 

Corollary 2.1.2: If UI(y, t) is a solution of the partial 
differential symmetry equation (2.12), then so is 

UI(y, t)~ (y, t)UI(y, t), (2.17) 

whereA (y, t) is a constant of motion of the differential equa­
tion (2.1) • 

Remark 2.3: Results similar to Corollary 2.1.2 were ob­
tained for second-order systems of differential equations (re­
fer to paper I, Corollary 6.2.3), and also for first-order differ­
ential equations of Hamilton form (refer to Theorem 5.1 of 
Ref. 3). • 

Corollary 2.1.3: If Ul (y, t) is a solution of the partial 
differential symmetry equations (2.12) associated with an au­
tonomous first-order system of differential equations (2.1) 
[in that A I = A l(y)), thenaUI(y, t )/at will also beasolution 
of(2.12). • 

Remark 2.4: A similar result was found for velocity­
dependent symmetry solutions Z! (x, x, t) in the analysis of 
autonomous second-order differential equations (refer to pa­
per I, Corollary 4.2). A similar result also holds for velocity­
independent symmetries of second-order systems.4 

• 

Corollary 2.1.4: For autonomous differential equations 
(2.1) the functions aGHr(y, t), t ]lat can be expressed in 
the form 

aGHr!, t), t] = Bf[r(y, t)]Gi[r(y, t), t], (2.18) 

for appropriately chosen constants of motion B f [r(y, t )]. 
In (2.18) the indicated partial differentiation with respect to t 
is to also include the t appearing in the argument r(y, t) 
(keepingy fixed). • 

III. AN ILLUSTRATION OF THEOREM 2.1 

The procedure described in Theorem 2.1 will be illus­
trated by determining the symmetry mappings of the one­
dimensional first-order differential equationS 

E{jI,y, t) Y - (2ylt)lny = O. (3.1) 

It is readily verified that the solution to (3.1) is 
2 

Y = ert , r = const, (3.2) 

and that inversion of(3.2) for r gives the constant of motion 

r(y, t) = (1/t 2)lny,;, r. 
Comparison of (3.1) with (2.1) shows that 

A (y, t) = (2ylt )lny. 

(3.3) 

(3.4) 

Hence (2.9) takes the form 

if - (2It)(1 + Iny)U ~ O. (3.6) 

The expanded form of (3.6) obtained by use of (3.4) in (2.17) 
gives 

[2Y Iny] au + au _ ~ (1 + Iny)U ~ 0, 
t iJy at t 

(3.7) 

which is the partial differential equation to be solved for the 
auxiliary symmetry mapping function U (y, t ). 

To obtain the solution of (3.7) by the method summar­
ized in Theorem 2.1 the finite solution curves (3.2) are used in 
(3.5) to obtain [refer to (2.14)] 

k (r, t) = - 2(rt + 1/t). (3.8) 

With the use of (3.8) the associated ordinary differential 
equation (2.13) is found to be 

u - 2(rt + 1/t)u';' o. (3.9) 

The solution of (3.9) is 

u(r, t) = {3t 2ert2, {3 = arbitrary const. (3.10) 

The solution of the partial differential equation (3.7) is 
constructed from (3.10) by replacing the constant r with the 
constant of motion r(y, t) by means of(3.3) and by replacing 
the integration constant {3 with an arbitrary constant of mo­
tionB (y, t) [anyfunctionofr(y, t)]. We thereby obtain [refer 
to (2.16)] 

U(y, t) =B(y, t)t 2y. (3.11) 

It can be readily verified that the auxiliary symmetry func­
tion U(y, t) given by (3.11) is a solution of(3.7), if use is made 
of the condition 

[
2Y lny] aB + aB ~ 0, (3.12) 
t ay at 

which is a consequence of B (y, t) being a constant of motion 
of(3.1). 

It therefore follows from (2.4), (2.5), (2.8), (2.11), (3.4), 
and (3.11) that the differential equation (3.1) admits the infin­
itesimal symmetry mapping 

y =y + [B(y, t)t 2y + [(2ylt)lny].,,°(Y, t)]lSa, (3.13) 

t = t + .,,0(Y, t )lSa, .,,0(Y, t) arbitrary. (3.14) 

Each choice of the constant of motion B and the mapping 
function .,,0 will determine a symmetry mapping. 

IV. CORRELATIONS BETWEEN SYMMETRY MAPPINGS 
OF RELATED SYSTEMS OF FIRST· AND SECOND· 
ORDER DIFFERENTIAL EQUATIONS 

Consider a system of n second-order differential equa­
tions expressible in the form 

E I(X, x, x, t )==.Xi - Fi(x, X, t) = 0, i = 1, ... , n. (4.1) 

In terms of N = 2n variables y , 1= 1, ... , 2n, defined by 

(4.2) 

(4.3) 

the n second-order equations (4.1) may be expressed as 2n 
With reference to (2.10), it follows from (3.4) that 

K (y, t) = - (2/t)(1 + lny). (3.5) first-order equations 
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jI-A I (y,t)=O,l=I, ... ,N, (4.4) 

where 

A i(y, t) yi + n, i = 1, ... , n, (4.5) 

Ai + n(y, t )=Fi(yj + n, yJ, t) = Fi(XJ, xi, t). (4.6) 

Theorem 2.1 describes the characteristic functional 
structure of the symmetry mapping of first-order systems of 
the type (4.4). In paper I the characteristic functional struc­
ture of symmetry mappings of second-order systems of the 
type (4.1) was discussed. Since (4.1) and (4.4) are two descrip­
tions of the same dynamical system it is of interest to show 
how the respective symmetry conditions based upon these 
two descriptions are related and to correlate their solutions. 

With use of(2.10) the expansion of the symmetry condi­
tions (2.9) for a general system of N = 2n first-order equa­
tions(2.1) with the rangel, J = 1, ... ,2n leads to the equations 

iJi _ aA i(y, t) UJ _ aA i(y, t) UJ+n ~ 0 (4.7) 
ayJ ayJ+n ' 

iJi+n_ aAi+n(y,t) UJ- aAi+n(y,t) UJ+n ~ O. 
ayJ ayJ+n 

(4.8) 

When the N = 2n first-order equations (2.1) are derived from 
the system ofn second-order equations (4.1), the AI (y) of(2.1) 
take the form (4.5) and (4.6) and the symmetry conditions 
(4.7) and (4.8) for UI (y, t) reduce, respectively, to 

(4.9) 

iJi+n _ aFi(y, t) UJ _ aFi(y, t) Ui+ n ~ O. (4.10) 
ayJ ayJ+n 

With reference to [1-(6.11)] and [1-(6.12)] the symmetry 
conditions which determine the velocity-dependent symme­
try mapping functions Z i(X, x, t ) for the second-order dyna­
mical equations (4.1) take the form 

Zi_ aFi(x,x,t) ZJ_ aFi(x,x,t) ZJ ~ O. (4.11) 
aXi axi 

We now verify that the 2n first-order symmetry equa­
tions (4.9) and (4.10) for UI (y, t) are equivalent to the n sec­
ond-order symmetry equations (4.11) for zi (x, x, t). From 
(4.2), (4.3), and the basic definitions [1-(2.11)], and [1-(2.16)] 
we have 

(4.12) 

Ui+n(y,t) ~ Zi(X,x,t), (4.13) 

where the equality indicated in (4.13) requires the use of 
" ~ "in order to eliminate the Xi which occurs in the expan­
sionofZ i

. By means of(4.2), (4.3), (4.6), (4.12), and (4.13), it is 
found that (4.9) transforms into an equation which is identi­
cally zero and (4.10) transforms into (4.11). In a similar man­
ner by use of (4.12) and (4.13) the second-order system (4.11) 
may be transformed into the first-order system (4.9) and 
(4.10). 

We show finally the correlation between the character­
istic functional structure of the n functions Z i(X, x, t) which 
are solutions of the second-order symmetry equations (4.11) 
and the characteristic functional structure of the 2n func­
tions UI (y, t) which are solutions of the equivalent first-order 
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symmetry equations (4.9) and (4.10). With reference to [1-
(6.5)], [1-(6.6)], and (2.2) we obtain from (4.2) and (4.3) the 
following relations based upon the finite solutions of the n 
second-order dynamical equations [1-(6.2)] and the finite so­
lutions of the equivalent 2n first-order dynamical equations 
(4.4)-(4.6): 

¢/(e, t) = <l>i(y, t), 

a¢/(e, t) = <l>i + n(y, t ), 
at 

eA = yA. 

(4.14) 

(4.15) 

(4.16) 

It then follows from (4.2), (4.3), and (4.14)-(4.16) that the 
constants of motion CA (x, x, t) [1-(6.4)] (obtained from the 
finite solution of the n second-order dynamical equation [1-
(6.2)] by inversion of [1-(6.5)] and [1-(6.6)]) and the constants 
of motion r A (y, t) (2.3) [obtained from the finite solutions of 
the 2n equivalent first-order dynamical equations (4.4)-(4.6) 
by inversion of (2.2)] are equal, that is, 

(4.17) 

From (4.2), (4.3), (4.12), (4.13), and (4.17), along with [1-
(6.20')] contained in Theorem 6.2 of paper I, and (2.16) con­
tained in Theorem 2.1 of the present paper, it follows that 

G~ [r(y, t), t) =~ [C(x,x, t)), 

G ~ + n [r(y, t ), t ) = a~ [C (x, x, t ), t ) . 
at 

(4.18) 

(4.19) 

[The functions c;A are considered constant with respect to 
the partial differentiation indicated in (4.19).] Hence the fun­
damental solution functions G ~ and~ which determine the 
respective characteristic functional structure of the symme­
try solutions associated with the equivalent first- and sec­
ond-order dynamical equations are correlated by (4.18) and 
(4.19). 

V. ILLUSTRATION OF DISCUSSION IN SEC. IV 

To illustrate the correlation between symmetries of 
equivalent first- and second-order systems of differential 
equations we continue with the study of a dynamical system 
which in Sec. VII of paper I was used to illustrate symmetry 
theory of second-order differential equations. 

Consider then the dynamical equation [1-(7.19)] 

El =xx _x2 = O. (5.1) 

The associated symmetry condition for the dynamical equa­
tion (5.1) is given by [1-(7.25)] 

Z - (2Xlx)Z + (xlx)2Z ~ 0, (5.2) 

with symmetry solution 

Z(x, x, t) = B I(X, x, t)g:(C, t) + B2(X, x, t)g~(C, t), 
(5.3) 

where the B 's are arbitrary functions of the constants of mo­
tion [1-(7.22)] and [1-(7.23)] 

C 1 (x, x, t) = xe - Xlix, C 2(X, x, t) = xix, (5.4) 

and where the functions [1-(7.29)] 
2 2 

g:(C, t) = eC 
I, g~ = teC I (5.5) 

define a fundamental solution set. 
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In terms of the variables yl, y2 defined by 

yl =x, y2=X, (5.6) 

the one-dimensional second-order differential equation (5.1) 
is converted to the equivalent two-dimensional first-order 
differential equations [refer to (4.4)-(4.6)] 

jll _ y2 = 0, 

jl2 _ (f)2 jyl = O. 

(5.7) 

(5.8) 

For the dynamical equations (5.7) and (5.8) we find that 
the symmetry conditions (4.9) and (4.10) expand to the par­
tial differential symmetry equations 

r au
l + (f)2 au

l + au
l 

_ U 2 ~ 0, (5.9) 
ayl yl ay2 at 

y2 au
2 + (f)2 au

2 + au
2 + (y2)2 u l _ 2 y2 ~ O. 

ayl yl ay2 at yl yl 
(5.10) 

Based upon the fundamental solution functions ~ (5.5) 
of the second-order partial differential symmetry equation 
resulting from the expansion of (5.2) we construct the asso­
ciated fundamental solution functions G ~ for the equivalent 
first-order partial differential symmetry equations (5.9) and 
(5.10) by means of the correlation (4.17)-(4.19) [with use of 
(5.4) and (5.6)-(5.8)] to obtain 
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G: (r, t) = e
r2t = ertfY', 

Gi(r, t) = r 2er't = (y2jyl)ertfY', 

G ~ (r, t) = te
r2t = tertfY', 

G~(r, t) = (1 + y2t jyl)ertfY'. 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

The fundamental solution functions (5.11)-(5.14) may 
be used in (2.16) to obtain the general solution to the first­
order partial differential symmetry equations (5.9) and 
(5.10). Since the ~ in (2.16) are arbitrary constants of mo­
tion it follows that 

U(I)==(Ull)' U(~))=(G:' Gi) (5.15) 

and 

U(2)=(UI~" Uf2))=(GL G~), (5.16) 

where the G~ are given by (5.11)-(5.14), will each be solu­
tions of (5.9) and (5.10), as may be readily verified. 

'G. H. Katzin and J. Levine, J. Math. Phys. 26, 3080 (1985). 
2Refer to Sec. II in Ref. 1 for basic variational definitions. 
3G. H. Katzin and J. Levine, J. Math. Phys. 16, 548 (1975). 
4G. H. Katzin, J. Levine, and R. N. Sane, J. Math. Phys. 18,424 (1977). 
3Since N = 1, we suppress all indices. 
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Exact reduced density matrices for a model problem 
Leon Cohena) 
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The reduced density matrices of arbitrary order for the boson problem of N particles, each 
attracted harmonically to a central point and interacting with each other harmonically, are 
analytically calculated. 

I. INTRODUCTION 

Although the applications of reduced density matrices 
have been quite extensive there are very few examples for 
which they have been calculated exactly. The advantage of 
having exact results is that they can be used to study and test 
different ideas relating to their properties and applications. 
We consider here an N-body boson problem for which we 
have been able to calculate exactly the reduced density ma­
trices of arbitrary order. 

The system we consider consists of N bosons of unit 
mass, each one harmonically attracted to a "nucleus" with 
spring constant 0)2 and interacting with each other with a 
harmonic force whose spring constant is r. Various aspects 
regarding this model problem have been previously devel­
oped. 1- 4 The Hamiltonian is 

N 1 N 

H=!2: (- Vf + 0)2r;) ± -r2:r~, (1.1) 
;=1 2 i<j 

where the minus sign signifies mutual repulsion and the plus 
sign attraction. Schrooinger's equation 

HtP(CI,C2, ... ,CN) = EtP(CI,C2, ... ,CN) (1.2) 

can be decoupled by making the following coordinate trans­
formation5.6: 

1 k 
Qk= 2:(Ck+ I -C;), l<..k<..N-l, 

~k(k+ 1) ;=1 

1 N (1.3) 
QN=-2: C;J 

.,fN ;= I 

in which case the Hamiltonian becomes 

H=l.. N~I(P2 +82Q2)+l..p2 +l..0)2Q2 (1.4) 
2 k~1 k N k 2 N 2 N , 

with 

Pk = (l/i)VQk , 

8~ = 0)2 ± Nr . 

(1.5) 

(1.6) 

This is the Hamiltonian for N independent harmonic oscilla­
tors in the coordinates Q;, the first N - 1 having spring con­
stant 8~ and the last one 0)2. The ground state wave function 
is therefore 

t/J(CI ,C2,···,CN) 

= (8; Y/4(N-
II(: y/4e -1/2SNl:f.:"lQ~-~"'Q~, (1.7) 

a) Permanent address: Hunter College of the City University, New York, 
New York, 10021. 

and the corresponding energy is 

E = ~(N - I)8N + ~O) • (1.8) 

We now express the wave function in terms of the spatial 
coordinates. Using Eq. (1.3) one may show that 

2 2 1 k+lk+1 1 k k 
Q k = r k+ I - k + 1 ;~I J~I c;-c} + k ;~IJ~ICi-C} , 

(1.9) 
N-I 1 N 2 N 
2:Q~=(I--) 2:r~--2:c;-r}, (1.10) 

k=1 N k=1 N ;<j 
1 N 2 N 

Q~ =- 2:r7 + - 2:c;-cJ . (1.11) 
N;=I Ni<j 

Substituting Eqs. (1. 9H 1.11) into Eq. (1.17) the ground state 
wave function is expressed in terms of the space coordinates 
as 

Xexp { - ~((N - I)8N + 0)) 

(1.12) 
II. EXACT REDUCED DENSITY MATRICES 

We now derive the exact reduced density matrices for 
the following class of wave functions: 

N N 
tP(rlJr2,· .. ,rN) = KNexp (- 2A 2:r; - 4B2:c;.cj), (2.1) 

;=1 i<j 

whereA and B are constants and K N is a normalizing factor. 
The wave function given by Eq. (1.12) is a special case. The 
full N-body density matrix is 

= K ~exp { - 2A;tl (d + r;2) 

- 4B i.(c;-cj + c;-cn} . 
'<J 

For convenience we define the following function: 

= exp { - 2A itl (r7 + r;2) 

- 4Bi.(C;'Cj + c;-cj) - CNR~} , 
'<J 

(2.2) 

(2.3) 
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where C N is a constant and 
N 

RN = L (rj + rn . 
i=1 

(2.4) 

The factor - CNR has been inserted for reasons which will 
become clear below. Eventually we will take CN to be zero. 

Now. consider integration with respect to the N th parti­
cle. Using the fact that 

I -ar' - brJ d _ (1r)3/2 b'J>/4a e r- - e 
a 

(2.5) 

and 

RYv =4rYv +4rN ·RN _ I +RYv_I' (2.6) 
we have 

I gN drN = exp { - 2A ~~II(r; + r;2) 

xI exp (- 4(A + CN )r7v 

- 4(B + CN)rN·RN_ I )drN 

= i~/2/(A + CN )3/2 

Xexp {[(B + CN)2/(A + CN)]R Yv- d 
= .~/2/(A + CN )3/2 

A. B.CN _ I ). 

where we have taken 

C N _ I = C N - (B + C N f /(A + C N) . 

(2.7) 

(2.8) 

Hence. integrating the N - (s + 1) coordinates out of 
Eq. (2.3) yields 

fgN drs+ 1···drN 

[ 
~-. ]3/2 

= 4N-'nf=s+ I (A + Cj ) 

xg.(rl •...• r.;r; •...• r;;A.B.C.). (2.9) 

where in general 

Cj = Cj + I - (B + Cj + I f /(A + Ci + I ) . (2.10) 

To complete the solution we must find Cj explicitly and 
evaluate the product that appears in the denominator ofEq. 
(2.9). Equation (2.10) is a nonlinear difference equation 
which can be transformed into a linear difference equation 
by making the transformation 

Cj = -A + (B -A )(Z;lZj+ I)' 

Substituting this into Eq. (2.10) results in 

(2.11) 

Zi+2 + 2Zj+ I + Zj = O. (2.12) 

which is linear and can be solved by standard methods. Tak-
ing 

Zi = mi. (2.13) 
where m is to be determined. results in the requirement that 
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(2.14) 

or 

(m+ W=O. (2.15) 

As both roots are equal to - 1 the general solution is 

Zj = (- l)j(1JI + i1J2)' (2.16) 

where 1Jl and 1J2 are arbitrary constants. Substituting this 
solution into Eq. (2.11) results in 

Cj = -A + (A - B )(1 + i1J)/[ 1 + (i + l)1J]' (2.17) 

where 

(2.18) 

We see therefore that there is only one arbitrary constant.1J. 
to be solved for. We express it in terms of CN: 

CN = -A + (A -B)(l + 1JN)/[l + 1J(N + 1)] . (2.19) 

For our case C N = O. which results in 

1J = -B/(A +NB). (2.20) 

We now evaluate the product that appears in the numerator 
in Eq. (2.9): 

IT (A + Cj ) = IT {A - B _ (A ~ B )1J } 
i=S+ I j=s+ I 1 + (I + 1)1J 

= (A - B )N -. IT 1 :- i1J 
i = s+ I 1 + (I + 1)1J 

=(A _B)N-. nf=s+d1 +1Ji ) 
nf=s+ 1(1 + (i + 1)1J) 

=(A-B)N-. l+(s+l)1J 
1 + (N + 1)1J 

=(A_B)N-.A+(N-s-1)B. (2.21) 
A-B 

By taking s = 0 for the first factor in Eq. (2.9) and using 
Eq. (2.21) we obtain the normalizing factor 

KYv = {4(A - B )/1r}3NI2{[A + (N - 1)B ]/[A - B ]}3/2. 

(2.22) 

We now specialize to the wave function given by Eq. 
(1.12). Comparing Eq. (2.1) with Eq. (1.12) we take 

A = (l/4N){(N - l}15N + wJ, (2.23) 

B = (l/4N)(w -ISN). 

from which 

A -B=!ISN • 

A + B (N - 1) = !w • 

(2.24) 

(2.25) 

(2.26) 

A + B(N - s - 1) = (l/4N){(N - s)w + SISN)' (2.27) 

Also. the factor in Eq. (2.9) is 

(ISNlnP/2)s{Nw/[(N - s)w + SISN) } 312 . (2.28) 

The reduced density matrix of order s is defined by 

p.(rl· .. r.;r; ... r;) = (-J f "'*(r; .. ·r;;rs+ l .. ·rN) 

x "'(r1• .. r •• r.+ 1· .. rN)drs+ 1 .. ·drN . 
(2.29) 
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Using Eqs. (2.24H2.29) we finally have the reduced density 
matrices 

P. = (N\(8N )(3/2)S{ Nm }3/2 
sJ 1r (N -s)m +s8N 

(2.30) 

where for convenience we rewrite some of the previous ex­
pressions in terms of the physical parameters: 

{
I' 

g. = exp - -::7:(m + (N - 1)8N ) L (r; + r;2) 
2N ;=1 

- N1 
i(r;orj + r;"r;l- C.R:} , (2.31) 
i<j 

where 

• 
R. = L (r; + rn , 

1=1 

1 (N - s)(m - 8N)2 
C = - --'------

• 4N (N - s)m + s8N 
We write out the cases s = 1 and s = 2 

( ') _ N { 8NNm/1r }3/2 - a,(r1 + ri2) + a,r,'rj 
PI r\>r; - (N _ l)m + 8

N 
e , 

N(N - 1) { Nm8~/r } 3/2 
P2(rl ,r2;r; ,ri) = 2 (N - 2)m + 28

N 

where 

X exp ( - bl(r ~ + r;2 + r ~ + ri2) 

- b2(rl"r2 + r; "ri) 

1 (N - 1)(m2 + 8~) + 2(N 2 
- N + 1)m8N 

a --
I - 4N (N - 1)m + 8N 

1 (N - l)(m - 8N)2 
a2 =- , 

2N (N -1)m +8N 

(2.32) 

(2.33) 

(2.34) 

(2.36) 

(2.37) 

1 (N - 2)m2 + (3N - 2)8~ + 2(N 2 - 2N + 2)m8N 
bl = 4N (N-2)m+28N ' 

(2.38) 

b _ 1 (N-2)m2_(N+2)8~ +4m8N 
2- 2N (N-2)m + 28N ' 

(2.39) 

b _ 1 (N - 2)(m - 8N)2 

3 - 2N (N - 2)m + 28N 
(2.40) 

The reduced density matrix can be expressed in different 
forms: 

p.(rl,r2,···,r.;r; ,ri,···,r;) 

{
I (. r· - r~)2 = exp - -7:(m + (N - 1)8 N) L -'--' 
N 1=1 2 
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~ r l - r; rj - r;} 
+28N~--"--

I<j 2 2 

(
rl +r; r2+ri r. +r;) 

XP. --,--, ... ,-- , 
2 2 2 

(2.41) 

where thep appearing on the right-hand side is thes particle 
density, that is 

p.(rl,r2, ... ,r.) =p.(rl,r2, ... ,r.;rl,r2, ... ,r.). (2.42) 

Also the reduced density matrix of order s can be expressed 
in terms of the one particle density: 

p.(r I, ... ,r.;r I,. .. ,r,) 

= (N - I)! (8N )(3/2)(S-I)((N - 1)m + 8N )3/2 
(N - s)!s! 1r (N - s)m + s8N 

xexp{-~m+(N-l)8N)(i r;_r;)2 
N ;=1 2 

+ 8N i.(r;"rj + r;or;l} 
,<} 

( ~ r; + r;) 
XPI ~-- . 

;=1 2 
(2.43) 

The parts of the total energy can be readily expressed as 

(
IN ) 3 --LVf =-[m+ (N -l)8NJ , 
2 1=1 4 

(2.44) 

(2.45) 

(2.46) 

Also, the kinetic energy can be expressed as an integral 
involving the one body density, 

I{ 1 Nm8N } = C + - lnpl(r,r) PI dr, 
2 (N-l)m+8N 

(2.47) 

where C is a constant given by 

C =..i.. (N - 1)m2 + (N - 1)8~ + (2N2 - 2N + 2)m8N 
4N (N -1)m +8N 

1 Nm8N 
2 (N-1)m+8N 

Xln [N(8N )3/2{ Nm }3/2] . (2.48) 
1r (N - 1)m + 8N 

III. CONCLUSION 
Equation (2.30) gives the reduced density matrices of 

arbitrary order. In conclusion we show that the Hartree so­
lution for this problem can also be obtained exactly. Taking 

N 

tjIf(rl,r2,· .. ,rN)= IItp(r;), (3.1) 
;=1 

the Hartree equation is 

{
II 1 N 

Etp (r) = - _V2 + --(JJ2r ± - L Y 
2 2 2k=2 

X I tp *(rk)(rk - r)2tp (rddrk}tp (r) . (3.2) 
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Each of the terms in the summation is identical and evalu­
ates to 

I IP *(rk)(rk - r)21P (rk)drk 

=r+ IIP*(rk)rilP(rk)drk 

+ 2 I IP *(rk )rorklP (rk )drk 

=r+ IIP*(rk)rilP(rk)drk , (3.3) 

where the last term in the middle step is zero due to symme­
try. Equation (3.2) then becomes 

€1P(r) = I -!V2+!87v_lr±~(N-1)JrllP(r), (3.4) 

or 

(- !V2 + !87v_lr)1P (r) = (€+!(N - l)rI)IP (r), (3.5) 

where we have set 

I = I IP *(r)rlP (r)dr . (3.6) 

Equation (3.5) is identical to the standard one particle har­
monic oscillator equation. The ground state solution is 

IP (r) = (8 N _ 1 I1r)3/4e - (1/2)6N - I" , 
with energy 

€ ± !(N - l)r I = ~8 N _ 1 • 

(3.7) 

(3.8) 

To complete the solution we must evaluate 1. Substituting 
Eq. (3.7) into Eq. (3.6), 

1= (8N;IYI\1Tl">e-6N-I"dr= 3/2 8N_ 1 . (3.9) 

Using Eq. (3.8) the orbital energies are therefore 

€=~8N_l +UN - 1)rI8N-I' 

The total energy of the system is 

3108 

EH = ;~l€- ;~l ~I II +~y2(r; -rjfl 

X lIP (r; W lIP (rj W dr; drj 

=N€±!N(N-1)y2 
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(3.10) 

X I I(r; - rj )211P (r; W lIP (rj W dr; drj 

=~N8N_l . 

The Hartree N-body wave function is 

(3.11) 

(3.12) 

from which the reduced density matrices may be calculated 
straightforwardly as 

(N'\ (8 )(3/2)S (1 S ) 
= s) N;l exp -28N-1 ;~yT+r;2) . 

(3.13) 

Note added in proof After the acceptance of this paper, 
the referee noticed and brought to our attention the work of 
S. Pruski, J. Mackowiak, and O. Missuno dealing with this 
model [Rep. Math. Phys. 1, 309 (1971); 3, 227, 241 (1972)]. 
Sage has also considered this model [Theoret. Chim. Acta 
19, 179 (1970)]. These authors have obtained many interest­
ing results and have given expressions for the reduced den­
sity matrices. We thank the referee for bringing this to our 
attention. 
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Formulas are given that make it possible to calculate the eigenvalues of the two independent SOt 3) 
scalars O~ and Q~ in the SU(3) enveloping algebra. 

I. INTRODUCTION 

It is well known that the degeneracy problem for SO(3) 
states in SU(3) representations can be solved by the construc­
tion of the orthonormal eigenfunctions of the SU(3) Casimirs 
12 and 13, the SO(3) Casimir L 2, the SO(3) generator 10, and 
one additional Hermitian operator X in the enveloping alge­
bra of SU(3) (see Refs. 1 and 2). The choice for X can be 
restricted in the sense that only two algebraically indepen­
dent SO(3) scalars exist, one of third order and one of fourth 
order. All other SO(3) scalars are polynomials in these two 
independent ones, 12, 13, and L 2. Many alternative defini­
tions and notations have been proposed for the two scalars 
mentioned and these are summarized by Partensky and 
Quesne.3 In the present paper we treat the so-called scalar 
shift operators 0 ~ and Q~, which were introduced by 
Hughes.4 On account of relations that we previously estab­
lished between products of shift operators associated to both 
scalars, we have been able to derive expressions for certain 
o ~ and Q ~ eigenvalues in closed form.5,6 

It is the aim of the present paper to establish new simple 
formulas by which 0 ~ and Q ~ eigenvalue expressions can be 
easily deduced. We thereby overcome the calculational re­
strictions induced by the application of the shift operator 
formalism. The essential point in the present approach to the 
problem is the introduction of matrix elements in a particu­
lar nonorthogonal SO(3) basis, namely the Elliott basis,? 
which nuclear physicists are very familiar with. In fact, the 
results that we obtain in the present paper are very important 
in the context of a new extension of the nuclear interacting 
boson modelS in the rotational SU(3) limit, which we have 
developed very recently.9 

II. SPECTRUM OF THE 0/ SHIFT OPERATOR 

The SO(3) scalar operator 0 ~ is a polynomial in the 
SU(3) generators that is homogeneous and quadratic in the 
principal SO(3) subalgebra generators 10 , I ± and that is lin­
ear with respect to the remaining generators ql-'­
(,u = - 2, - 1,0,1,2), the components ofa five-dimensional 
SO(3) tensor representation. This polynomial form of 0 ~ to­
gether with the equivalent polynomial expressions of the as­
sociated shift operators 07 (k = - 2, - 1,1,2), which have 
previously been derived,4,5 allow us to obtain the following 
relationship between certain 0 ~ - and qo-matrix elements, re­
spectively, in a SO(3) basis: 

_I Senior research associate of the National Fund for Scientific Research 
(N.F.W.O.) (Belgium). 

bl Research assistant of the N.F. W.O. (Belgium). 

(I, m' = 0, a'IO~I/, m = 0, a) 

= ~(21 + 3)(21 - 1)(/, m' = 0, a'lqol/, m = O,a). 
(2.1) 

Herein a and a' denote appropriate values of an additional 
label that distinguishes between states with the same I value, 
which usually occur in the SO(3) decomposition of a SU(3) 
(A,,u) representation. Furthermore, it should be clear that 
the relation (2.1) only holds for the elements that are diag­
onal in the SO(3) representation label I. 

In order to calculate the 0 ~ spectrum it is extremely 
useful to select as a particular SOt 3) basis the so-called Elliott 
basis7 consisting of states II, m, K), whereKis the additional 
label. The decomposition of a SU(3) representation (A,,u) in 
Elliott states II, m, K) is dictated by the following formulas 
prescribing the values which the state labels can take: 

K=min(A,,u), min(A,,u)-2, .•. ,0 or 1, 

I=K,K+ 1, ••. ,K+max(A,,u), if K>O, 
(2.2) 

I = max(A, ,u), max(A,,u) - 2, •.. , 0 or 1, if K = 0, 

m = -I, -I + 1, ••• , 1- 1, I. 

It is well known that the Elliott basis is not an orthogonal 
basis,7 but this fact is definitely not prohibitive to the calcula­
tion of 0 ~ eigenvalues. Moreover, such a calculation is facili­
tated by a formula, which has been derived by Elliote and 
which gives an expression for the action of the qo generator 
upon basis states, namely, 

qol/, m, K) 

=I( 2/+1 )(/2mOI/'m) [(/2KOI/'K) 
I' 21' + 1 e(K,1) 

Xe(K, I')(,u + U + 3 + 1'(/' + 1)12 

-/(/+ 1)12)1/',m,K) 

+ I(l2K ± 21 / ' K ± 2) 
± 

X(3(,u +K)(,u ± K + 2)12)1/2 

Xe(K ± 2, 1')11', m, K ± 2)] (A>,u). (2.3) 

The coefficients elK, I) can be regarded as normalization co­
efficients. Hence, they can be absorbed by a redefinition of 
states as follows: 

II, m, K» = elK, 1)1/, m, K). (2.4) 

If K < 2 then the second term of (2.3) involves a state with 
negative K. In Elliott's scheme II, m, - K) is defined to be 
identical with II, m, K), which is consistent with the choice 

e( -K, I) = (- 1)IH+l-'-e(K, I). (2.5) 
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It follows that 

I/,m, -K»=(-l)I+A.+PI/.m,K». (2.6) 

By combining all the foregoing results it is clear that we can 
express the action of O? as 

O?I/,m=O.K» = 2: nK'KI/,m=O.K'». 
K'=K.K±2 

(2.7) 
Next we substitute into (2.3) the algebraic closed expressions 
of the Clebsch-Gordan coefficients. Then the matrix ele­
ments nK'K are brought into the following simple form: 

n KK = v'6(U + It + 3)[/(1 + 1) - 3K2]. 
n K±2K= -3[3(.u=FK)(.u±K+2)(/±K+2) (2.8) 

X(I ±K + 1)(1 =FK)(I =FK - 1)/2]112. 

The calculation of the 0 ? eigenvalues therefore necessitates 
the diagonalization of a tridiagonal matrix of which the di­
mension coincides with the degree of I degeneracy. 

As an example, let us consider the case of even A;;;' 2 and 
It = 2. From (2.2) we learn that K = 0 for 1= O. that K = 2 
for 1= 3. 5 ••••• A-I. A + 1. A + 2, whereas for 
I = 2, 3 ••••• A either K = 0 or K = 2. Hence. for 
1= 3, 5 ••••• A + 1. A + 2 the 0 ~ eigenvalue is determined by 

v'6(U + 5)(/- 3)(1 + 4). Also og 10.0.0.» = O. For 
1= 2, 4 ••••• A we need to diagonalize the matrix 

(1100 1120 + 0-20). 

\002 0 22 

The corresponding O? eigenValues are v'6! (U 
+ 5) (/- 2) (I + 3) ± 6[1(1 + 1) (/- 2) (I + 3) + (U 
+ 5)2]112}. 

These and other results are in complete agreement with 
the eigenvalues obtained previously by different methods. I-S 

III. SPECTRUM OF THE O'! SHIFT OPERATOR 

The SO(3) scalar shift operator Q ~ is quadratic in the q's 
and also quadratic in the I generators. Its I-diagonal matrix 
elements can be related to the matrix elements of coupled q 
generators. Indeed. on account of the explicit form of Q? and 
of the associated higher-order shift operators Q ~ 
(k = - 2. - 1.1.2). one can prove that6 

(I. m' = O. a'IQ?I/. m = O. a) 

= - .[14(21 + 3)(2/- 1) 

X (I. m' = 0, a'i [qxq]~I/. m = 0, a) 

-811(/+1), (3.1) 
whereby 

[qxqn = 2:(2 2 0- - 0-1 2 O)qCTq -CT' (3.2) 
CT 

In (2.3) we have presented Elliott's formula expressing the 
action of qo on Elliott basis states. It is straightforward to 
deduce from it analogous formulas for the action of the other 
q generators on the same states. Applying such a formula 
twice one then arrives at 

[qXq]~I/,O,K» = ~~~(~/N:\)(220- -0- 120) (/20 -0-11' -0-) 

X (I' 2 - 0- 0-11" 0) { [(12 K 011' K)(U + It + 3 + I '(1' + 1)/2 -I (I + 1)/2)] 

X [(I' 2KOI/" K)(U +It + 3 + 1"(1" + 1)/2 -1'(/' + 1)/2)1/".0, K» 

+ 2:(/' 2K ± 21/" K ± 2)(3(.u =FK)(.u ± K + 2)/2)1/21/", 0, K ± 2»] 
± 

+ 02K21/' K + 2)(3(.u -K)(.u + K + 2)/2)1/2[ (I' 2K + 2 011" K + 2) 

X(U +It + 3 + 1"(/" + 1)/2 -1'(/' + 1)/2)1/",0, K + 2» 

+ 2:(/' 2K + 2 ± 21/" K + 2 ± 2)(3(.u =FK =F2)(.u + 2 ±K ± 2)/2)11211", O,K + 2 ± 2»] 
± 

+ (12K - 21/' K - 2)(3(.u + K)(.u -K + 2)/2)1/2[ (I' 2K - 2 011" K - 2) 

X(U + It + 3 + 1"(1" + 1)/2 -1'(/' + 1)/2)1/",0, L - 2» 
+ 2:(/' 2K - 2 ± 21/" K - 2 ± 2)(3(.u =FK ± 2)(.u + 2 ±K =F 2)/2)1/211 ", O,K - 2 ± 2»]}. 

± (3.3) 

I 
If one further defines matrix elements A K 'K by cients, which we obtain by standard techniques. 10 By doing 

Q?I/.m=O.K»= 2: AK'KI1.m=0.K'». 
K'=K,K±2,K±4 

(3.4) 

then these can be explicitly calculated by substituting into 
(3.3) the closed expressions for the Clebsch-Gordan coeffi-
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so it turns out that A K ± 4. K is zero except for K = =F 2, in 
which case we can, on account of the phase convention (2.6), 
reabsorb the contribution into theAKK element. In fact, this 
property is not that remarkable if one realizes that the q 
dependence of Q? is contained into a SO(3) tensor of rank 2. 

The final simplified forms of the A K' K elements, ob­
tained after lengthy calculations, are 
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AKK = 2(U +JL + 3)2[/(1 + 1) - 3K 2] 

- 18K 4 + 6K2[5/(1 + 1) - 3] 

- 12/2(1 + 1)2 -72/(1 + 1) 

- 3(JL -K)(JL +K + 2)[/(1 + 1) - 3K 2] 

- 3(JL + K)(JL - K + 2)[1 (I + 1) - 3K 2], 
(3.5) 

AK±2K = 6[(JL +K)(JL ± K + 2)(1 ± K + 2)(1 ± K + 1) 

X(I +K)(I +K _1)P/2(U +JL+3K), 

AK±4K = O. 

Considering again the case of even A>2 and JL = 2 we 
readily obtain that the Q g eigenvalue is zero, that for 
1= 3, 5, ••• , A + 1, A + 2 it is given by the formula 
2(/- 3)(1 + 4)(4A 2 + 20A - 12) - (12/4 + 241 3 

- 86/ 2 

- 981 + 960), whereas for I = 2, 4, ••• , A the diagonalization 
of the two-dimensional A matrix leads to Q? eigenvalues 
expressed as 

2[(1- 2)(1 + 3)(U + 5)2 - 6(/2 + 1+ 1)(/2 + 1+3)] 

± 12[(U + 5)4 + 2(/4 + 2[3 - 91 2 - 101 + 3)(U + 5)2 

+ 9(21 + 1)2] 1/2. 
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These results, which to our knowledge have never been ob­
tained so far by any other method, are of particular interest 
to the extension of the interacting boson model for nuclei in 
the rotational limit, which we actually propose. 9 
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Recently, boundary conditions governing the asymptotic behavior of the gravitational field in the 
prese~ce of a negative cosmological constant have been introduced using Penrose's conformal 
techmques. The subsequent analysis has led to expressions of conserved quantities (associated 
with asymptotic symmetries) involving asymptotic Weyl curvature. On the other hand, if the 
~derlying space-time is equipped with isometries, a generalization of the Komar integral which 
~ncorpora~es the cosmological constant is also available. Thus, in the presence of an isometry, one 
IS faced WIth two apparently unrelated definitions. It is shown that these definitions agree. This 
~herence s~pports the choic~ ?fboundary conditions for asymptotically anti-de Sitter space­
tImes and reInforces the defimtIons of conserved quantities. 

I. INTRODUCTION 

The current observed value of the cosmological con­
stant A is very small «0.003 eV). On the theoretical side, 
however, no "explanation" is available for this experimental 
result. In fact, many models-particularly in supergravity­
naturally predict a very large value for A. This dichotomy 
between theory and observation has prompted several de­
tailed investigations of Einstein's equation with cosmologi­
cal constants. It was hoped, for example, that an analysis of 
stability of the ground state might show that theories with a 
nonzero value of A have intrinsic instabilities and are there­
fore not realized in nature. 

The central idea in these investigations is that, in the 
presence of a cosmological constant, de Sitter space (if A> 0) 
or anti-de Sitter space (if A < 0) replace Minkowski space as 
the ground state of the theory and that physically interesting 
states are represented by space-times which are asymptoti­
cally de Sitter or anti-de Sitter. As in the asymptotically 
Minkowskian context, one expects that the asymptotic sym­
metry groups for such space-times would be the isometry 
group of the de Sitter space [0(4,1)] or of anti-de Sitter space 
[0(2,3)]. One is therefore led to the problem of introducing 
precise definitions of the boundary conditions which capture 
these ideas and of investigating the structure that results 
from these conditions. Now, since the space-like sections in 
the de Sitter space are compact, the asymptotically de Sitter 
space-times admit only timelike infinity. The analysis of con­
served quantities in these space-times is therefore physically 
uninteresting. In the anti-de Sitter case, on the other hand, 
the spacelike sections are noncompact and, as in the asymp­
totically Minkowskian case, there is a rich asymptotic struc­
ture. Therefore, much of the literature is focused on asymp­
totically anti-de Sitter spaces. In this paper, we shall restrict 
ourselves to this case. Our purpose here is to show that, in 
the presence of isometries, the conserved quantities defined 
at infinity using the asymptotic Weyl curvature reduce to 
(certain multiples of) the appropriately generalized Komar 
integrals. This reduction strengthens one's faith in the choice 

aj Detachee du Ministere des Relations Exterieures, Paris, France. 

of boundary conditions as well as in the definitions of con­
served quantities thereby putting many of the previous anal­
yses on a sounder footing. 

Section II is devoted to preliminaries. We recalp,2 the 
definitions of asymptotically anti-de Sitter spaces, first in 
terms of a conformal completion (Sec. II A), then in terms of 
the behavior of metric components in suitable charts, and list 
some of the consequences of these boundary conditions (Sec. 
II B). Recently, the two sets of conditions have been shown 
to be equivalent. 3 In Sec. III we display the generalization of 
the Komar integral which incorporates the presence of a 
nonzero cosmological constant. Section IV is devoted to axi­
symmetric space-times, Sec. V to static space-times, and Sec. 
VI to stationary space-times. In all cases, we show that the 
conserved quantity associated with the asymptotic symme­
try corresponding to the isometry, defined in terms of the 
asymptotic Weyl curvature, is a multiple ofthe generalized 
Komar integral. More precisely, we show that the general­
ized Komar integral yields the correct value for the "angular 
momentum" but! the correct value of "energy." A priori, 

one would not have expected such a simple relationship to 
hold. For, whereas the conserved quantity at infinity de­
pends sensitively on the choice of the boundary conditions, 
the generalized Komar integral can be evaluated anywhere 
in the interior (outside sources). In five-dimensional Kaluza­
Klein theories, for example, the boundary conditions are 
such that the Komar integral for "energy" can vanish identi­
cally even when the asymptotic "energy" is nonzero. The 
fact that we can obtain the same relation as in the asymptoti­
cally Minkowskian case reinforces the belief that the bound­
ary conditions used here are natural generalizations of the 
standard asymptotically flat ones. 

II. BOUNDARY CONDITIONS FOR ASYMPTOTICALLY 
ANTI-DE SITTER SPACE-TIMES 

A. Covariant formulation 

An analysis of the structure of asymptotically anti-de 
Sitter space-times based on Penrose's conformal treatment! 
has been proposed.2 We shall summarize it briefly. (We as­
sume that all manifolds and fields are C <X> .) 
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Definition 1: A space-time (M, gab) will be said to be 
weaklY asymptotically ~ti-de Sitter if there exists a mani­
fold M with boundary 8M, equieped wj!h a metric gab and a 
diffeomorphism from M onto M - 8M such that (i) there 
exists a function n on M such that gab = n 2 gab on M, (ii) 
I ==aM is topologically S 2 X R, and on I, n = 0, and (iii) gab 
satisfies Rab -! R gab = 81T Tab - A gab' with A < 0, where 
n-3Ta b admits a smooth limit to I. 

Remarks: (i) Schwarszchild anti-de Sitter and Kerr anti­
de Sitter space-times satisfy Definition 1 if one sets n = 1/ r. 
(ii) Let na = Van. It is easy to check2 that nana reduces to 
- A/3 on I. Hence I is a time-like cylinder. 1 When A = 0, 

the above definition reduces to that of asymptotic flat~ess at 
null infinity. (iii) Given a conformal completion (M, gab) 
which satisfies Definition 1, (M gab) also satisfies it if and 
only if gab = oigab , where w is a smooth nowhere vanishing 

'" function onM. Using this conformal freedom, it is easy to set 
Vanb ~ 0, where from now on, ~ will denote "equals at 
points of I to." It follows that the conformal freedom is re­
stricted by n~n, where £nw ~ O. Note that, unlike in the 
asymptotically Minkowskian context, and since na is a 
spacelike normal to I, this last condition does not restrict w 
to be a function of 0 and rp only, on I. It has been proven in 
Ref. 2 that 

D E'" ab ~ _ 1 li n-4"'T cAaAb a ~ mu anqc' 
_I 

(2.1) 

where Eab = ( - 3/ A)n -I Cambn nmnn is the electric part of 
the asymptotic Weyl curvature and D is the intrinsic deriva­
tive operator on (I,qab) induced by gab' (iv) In the asymptoti­
cally Minkowskian context, the space of generators of I, be­
ing topologically S 2, admits a unique conformal class of 
metrics. Since I is ruled by null generators (the integral 
curves of na) the pullback of these metrics yield, on I, a 
unique class of degenerate conformal metrics. In the present 
case, since na is not tangential to I, I does not have a fiber 
bundle structure and S 2 X R admits many conformal struc­
tures; hence the asymptotic symmetry group is the diffeo­
morphism group of I. The reduction of this group can be 
obtained by strengthening the asymptotic conditions. It is 
natural to require that the three-manifold I admits, as its 
conformal group, the anti-de Sitter group. This is achieved 
by imposing that the Bach tensor 

A ",,"'" A. A. 

{Jabc = D[a (Rb lc - ! Rqb lc) (2.2) 

of qab vanishes, i.e., that I be conformally flat. This leads to 
the following definition. 

Definition 2: A space-time (M,gab) will be said to be as­
ymptotically anti-de Sitter if, in addition to Definition 1, one 
has the condition that I be conformally flat [or equivalently 
that the conformal group of (I,qab) is 0(2,3) or the anti-de 
Sitter group (or covering group)). For this class of space­
times, there are2 ten "conserved quantities" 

(2.3) 

where sa is a conformal Killing field on (I,qab) and C is a 
cross section of I. The fluxes Fs of these quantities are com­
pletely determined by matter terms: 
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Fs(.1) = (161T)-lllim(n-4Ta c1]aqc b)tb d 3I, (2.4) 

where .1 is a three-dimensional region of I, and 1]a is the unit 
normal to I with respect to gab' 

B. A reformulation using asymptotic charts 

The above boundary conditions can be reformulated us­
ing admissible charts in the neighborhood of infinity. In Sec. 
n A, a conformal rescaling of the physical metric was intro­
duced, 

(2.5) 

which brings I, the surface at infinity defined by n = 0, to a 
finite distance. The available conformal freedom enables the 
choice of a chart in which the induced metric on I is given by 

dSfI = - dt 2 + dO 2 + sin20 drp 2 gab dy" dyb. (2.6) 

This chart is then extended off I in such a way that in the 
coordinates n,t,o,rp, the metric is given by 

ds2 = dn2 + gab(n,y)dya dyb. (2.7) 

Analytic solutions of Einstein's equation in the neighbor­
hood of I have been investigated in Ref. 3. The result is the 
following. Let 

It is shown that 

:uO) - 1 Sit - - , 

...(1) -0 
Sab - , 

:uO) 1 
!SOB = , 

g~;) = - 1, g1;b = - 1, g1~ = - sin2 O. 

(2.8) 

(2.9) 

The other three components being O. Furthermore, there are 
as many analytic solutions to the Einstein's equation as there 
a,re coefficients g1;6 (y) = Eal;.! which are traceless 
(Eabg1~6 = 0) and transverse (DbEba = 0) fields on I. In other 
words, Eab , the electric component of the asymptotic Weyl 
curvature, governs the existence of solutions to the field 
equation. A further transformation of the radial coordinate, 

r = n- I -! n, (2.10) 

gives the physical metric ds2 as a deviation from the anti-de 
Sitter background (with metric dro) compatible with the 
chart on I: 

(2.11) 

These results will be useful for the next sections. In these 
admissible charts it has been checked that (i) The Kerr anti­
de Sitter metric is a prototype of these asymptotically anti-de 
Sitter space-times, (ii) The boundary conditions are invariant 
under the anti-de Sitter group 0(2,3), and (iii) The charge 
integrals, generators of 0(2,3), are finite. If the admissible 
chart is that in which the anti-de Sitter metric reads 

dro = - [1 + r/R2]dt 2 + [1 +r/R2]-ldr+rdw2, 
(2.12) 

where R, the radius of curvature, is related to the cosmologi­
cal constant A by R = (3/ - A)I/2, and dw2 is the usual 
spherical element in coordinates O,rp, it can be shown that if 
one considers deviations h).,., more precisely metrics ds2 
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= dro + h..t p dxt dx P which behave asymptotically as r-I, 
the invariance under the 0(2,3) group is not fulfilled. The 
appropriate falloff requires that h, p should be of the order 
r-4 and h" of the order r-s, the other components behaving 
as r- I • 

III. GENERALIZATION OF KOMAR'S INTEGRALS TO 
SPACE· TIMES WITH A NONZERO COSMOLOGICAL 
CONSTANT 

Recall that in the case A = 0, if the space-time (M,gab) 
describing the gravitational field admits a Killing field 5 a, 

the Komar integral4 

Qk(5) = 1!1T 1, EabcdVc5
d 

dS
ab 

(3.1) 

represents a conserved quantity: This integral does not de­
pend on the particular choice of the two-sphereS2 surround­
ing the matter sources if these sources have compact sup­
port. [Here Eabcd and Va are, respectively, the alternating 
tensor and the derivative operator on (M ,gab)'] If the matter 
sources are allowed to go to infinity, I, with the falloff de­
scribed in Sec. II, Qk(5) will be evaluated on a particular S2' 
now a cross section of 1. However, for simplicity we can 
restrict ourselves to an isolated system and consider matter 
with compact spatial support. If 5 a is a stationary Killing 
field, Q represents the total energy of the system, while if 5 a 

is an axial Killing field, it has the interpretation of the com­
ponent of the total angular momentum along the responding 
axis. 

We now show how the Komar integral can be extended 
to space-times with a nonvanishing cosmological constant. 
In this case Einstein's equation is given by 

Rab -! Rgab = 81TTab - Agab' (3.2) 

Let the space-time (M,gab) furthermore admit a Killing vec­
tor field 5 a. It follows from the affine colineation equation 
Va Vb5c = R mabc5m , and the field equation 

(3.3) 

that VOVa5b = 81T5m[ - Tmb +!gmbT] - A5b' Hence 
the current Jb = VOV as b is conserved: Vb Jb = O. A straight­
forward calculation making use of Stokes' theorem implies 
the following equality: 

_1_ r (V £0 )~b dS cd 
161T Ja~ a~b cd 

= L 5 m[ - Tmb + ~ gmb T ]dl:
b 

- ~ L 5b dl:
b
, 

(3.4) 

where l: is a spacelike three-surface which intersects the 
matter tube, al: being outside the matter. In this equality, 
each integral is independent of a particular choice ofl: which 
spans a given al: lying outside sources. The quantity 

Q (5)= _1_ r (V 5 )~b dS cd + ~ r 5 dl:b 
kA 161T Ja~ a b cd 81T J~ b 

(3.5) 

is to be considered as a generalization of the Komar integral. 
One can imagine using the Kerr-anti-de Sitter space-timeS 
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to evaluate the integral iii (3.5) explicitly. Results ofsuch an 
evaluation were reported in an independent analysis6 of the 
generalized Komar integrals. However, in this case, the pres­
ence of a horizon requires some care since formula (3.5) has 
been derived for solutions with matter contents, and since 
the integral on the right now involves a volume term which is 
absent in the more familiar A = 0 case. 

Hence, when an isometry 5 a is available on a space-time 
with nonvanishing A, one is faced with two apparently unre­
lated definitipns of the corresponding conserved quantity. 
The first is provided by the charge integral involving the 
asymptotic Weyl curvature,2 the second is Qk (5). Since in 

A 

the generalized Komar integral, the two-sphere S2 surround-
ing the matter sources can be located anywhere inside the 
space-time, one might have expected that it would be local 
and insensitive to the asymptotic behavior of the gravita­
tional field, i.e., unrelated to the integral at 1. If this were the 
case, the notion of energy would have been ambiguous and 
the stability arguments 7 based on the behavior of conserved 
quantities would have inherited these problems. Fortunate­
ly, as we shall see in the next sections, the two definitions do 
agree. 

IV. AXISYMMETRIC SPACE· TIMES 

In this section, we shall assume that the space-time 
(M,gab) is asymptotically anti-de Sitter and admits a rota­
tional Killing vector field 5 a. The orbits of 5 a are topologi­
cally S I lying on a family of nested two-spheres S2' Since 
these two spheres generate a surface l:, which is the Cauchy 
surface for some diamond-shaped region of the compactified 
space-time,I,8 S ~ 5b dl:b = 0, and the Komar integral re­
duces to the surface integral: 

Qk
A
(5) = lim _1_ i (Va5b)~bcd dS cd 

S._I 161T S. 

(4.1) 

We want to relate Qk (5) to the corresponding conserved 
A 

quantity at I: 

( 
3)1I2jA A A 

Qs(C) = - (81T)-1 ~ JcEab5a dS b, (4.2) 

where C is the cross section of I corresponding to the bound­
ary al: ofl:, andEab is the electric compo~ent of the rescaled 
Weyl tensor, as described in Sec. II. Let (M,gab = 02gab)bea 
conformal completion of (M ,gab) satisfying Definition 2, 
such that £50 = O. Since 5b = 0-2tb and tb dS··· = 0, 
one has 

f AAAb cd 
161TQk,,(5) = lim 0-2(Va5b)~ cd dS 

0-+0 S.(O) 

= lim A (0)/02
, 

0-+0 

say, where S2(0) = l:n{ 0 = const}. On the other hand, this 
last integral is equal to 
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1617" LSm[ - Tmb + ~ gmbT ]dl:b, (4.3) 
A 

which is finite provided .0 - 3 Ta b admits a smooth limit to l. 
As a result, A must vanish when .0 ~ 0, and one can make 
use of I'Hopital's rule. Let fJm denote the vector field induc­
ing the unit normal at I, and such that V(afJb) ~ o. Thus 
fJmv m fJa ~ O. Let furthermore fJ[at bl be the two-fiat orthog­
onal to the two-spheres S2(n) (fa can be chosen such that 
£TJt ~ 0). We shall consider a neighborhood of I sufficiently 
small so that A = A (.0) converges uniformly to zero as .0 
goes to zero. We thus have 

lim A /.02 = lim (fJmv mA )(2nfJmV m .0)-1 
O~O O~O 

= (- A/3)-1/2Iim (1/2.0) fJmVmA, 
O~O 

where 

lim fJmV mA = lim,( (fJmv m VJ·b)dS···. 
O~O 0~o1,(0) 

We have used the equality fJmV m (t [afJb 1) ~ O. Hence 

lim A /.02 is equal to 
O~O 

lim,( fJmR p mabtp [2n( - ~)II2] -I dS.·., (4.4) 
0~o1,(0) 3 

where we have used the fact that £sn = 0 implies that t a is a 
Killing vector field for gab and thus satisfies the affine colin-

AA.,.. A. A 

eation equation Va VbSc = RcbaPSp ' On the other hand, one 
has 

A. A. A. A. 

Rabcd = Cabcd + ga[cSd lb - gb [cSd la' 
A A A 

where Sab = (Rab - i Rgab ). Hence (4.4) splits into three in-
tegrals: 

(4.5) 

(4.6) 

A3 = lim _,( fJbgb[CSd1at a[2n( _ ~)1/2] -I dS.cd. 
O~O 1,(0) 3 

(4.7) 
The definition of Eab , the electric part of the asymptotic 
Weyl curvature, implies that AI = - ( - 3/ A)I/2 
X ficEabta dS b. TheintegralA2 vanishes duetothefactthat 
t·t = 0 and t·fJ = O. Finally A3 can be expressed using 

A. -1 ........ A. A _2A m A. 

Sab=Sab-2n VaVbn+gabn vnvmn. 

Note first that since, by field equations, Sab is a mUltiple of 
gab and since the vectors t,fJ,( are orthogonal, the onl~ t~s 
which contribute to the integral inA3 are terms in Vc van 

A A 

and V d van, respectively. A straightforward calculation re-
ducesA3 to 

lim J..'( n-2(Vatb)E"bmn ds mn, 
O~O 2 1,(0) 

i.e., to 817" Qk(S)' The result follows immediately 
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QkA (S) = Qs(C}. 

Hence we have the following theorem. 
Theorem: If an asymptotically anti-de Sitter space-time 

(in which matter sources are spatially compact) admits a ro­
tational Killing vector field S a, the Komar integral QkA (S) 
and the charge integral Qs (C) at I are related via QkA (S ) 
= Qs (C), where C is any cross section of l. 

V. STATIC SPACE-TIMES 

We shall now assume that the space-time (M ,gab) is stat­
ic, i.e., is equipped with an everywhere timelike hypersurface 
orthogonal Killing vector field S a, and i~ asymptotically 
anti-de Sitter, with conformal completion (M ,gab)' The static 
foliation will be denoted by Y t. On the same manifold M, an 
anti-de Sitter metric gab can be introduced with the same 
static hypersurfaces Y t and hypersurface orthogonal Kill­
ing vector field t a = sa. In addition we shall require that 
(M,gab) and (M,gab) belong to the same 0(2,3) invariant­
equivalence class.9 According to Sec. II, this is equivalent to 
requiring that, in the usual anti-de Sitter chart (t,r,O,cp ) asso­
ciated with gab , the components of gab - gab are of order r- I 

with the exception of gtr - g,ro gre - gre, and gnp - gnp' 
which are of order r-4, and grr - grr' which is of order r-5

• 

The generalized Komar integrals associated with S a 

=t a in (M,gab) and (M,gab) are, respectively, 

QkA(S)= lim _1_ r (VaSb)E"bcddScd+ ~ rSbdl:b 
a~~I 1617" Ja~ 817" J~ 

(5.1a) 

and 

QkAlt) = lim _1_ r (Vatb)€"bcd ds cd + ~ r tb dl:b, 
a~~I 1617" J~ 817" J~ 

(5.1b) 
where l:(l: C Y" for some value of t ) is a compact volume 
spanning al:, a two-sphere surrounding the matter sources. 
Note that, in the expression of Qk

A
, the volume integral as 

well as the surface integral, are both infinite in the limit. The 
first step of our analysis will consist in the elimination of the 
volume integral in Qk (S). In these volume integrals, the 

A 0 0 

integrands are, respectively, Sb€bijk==F'ijk and SbEbijk==F'ijk, 
which, being nondegenerate three-forms on l:, are propor­
tional to one another. Thus, Fabc = a(r,O,cp )Fabc for some 
nowhere vanishing, smooth function a. Now, we can per­
form a diffeomorphism f/! on (M ,gab) such that (a) the bound­
ary conditions [i.e., the 0(2,3) equivalence class of asymp­
totically anti-de Sitter space-times] are preserved, (b) the 
vector field sa=t a is mapped to itself, and (c) {M,f/!Wab} 
= gab} is an anti-de Sitter space-time with Fabc = Fabc . (Re-

call that under any diffeomorphism f/! an anti-de Sitter space­
time is transformed into another anti-de Sitter space-time 
since 0 = f/![ Rab - !Rgab + Agab] = !f(Rab) - ~!f(R) 
X ¢'(gab) + Af/!(gab)=Rab - !Rgab + AKab)' Thus we have a 
new anti-de Sitter background (M Jab) for which the volume 

integral in Qk (S) coincides with that in Qk !t). Subtracting 
o A A 

QkA!t) from QkA (S) and using the fact that all generalized 
Komar integrals vanish identically in any anti-de Sitter 
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space, we have 
o 

QkA (5 ) = QkA (5) - QkA!l ) 

= _1_ lim r [(Va5b)E"bcd 100 a~_I Ja~ 
o 

- (Vatb)~bcd ]ds cd. (5.2) 

From now on, we shall drop the tilde on quantities associat­
ed withkab' 

Let gab5 a5 b= -A (resp. gabtat b= -Ao) and gab 
= 02gab (resp. taR = .(Vgab ), where, for further con­
venience, 0 (resp. 0) will be chosen equal to A -1/2 (resp. 
1 -1/2). Then, t a 5 a (resp. t a=t a) is a Killing field also of 
gab (resp. tab kFurthermore, it has unit norm: 1 = gabt at b 
=A - 1 (and 1 = - 1). Therefore, using the fact that t a 

o A A A 

==5 a is hypersurface orthogonal, we have Va5b =A -I 
" A " ~ ~ 

X5"la Vb ]A := 0 and similarly Va5b = O. Now, since V[a5b ] 
= V[aO-25b]' the expression QkA (5) in (5.2) reduces to 

QkA(5) = - _1_ lim 0-3 r [(VaO)tbE"bcd 
817" 0_0 Ja~(o) 

- 030-3(tO)tb~bcd ]ds cd, (5.3) 

where al:(O) = S,n( 0 = const}. Since we have assumed 
that the matter has compact support, QkA (5) is finite. This 
implies that, although the integrand of the integral in (5.3) 
might not go to zero when 0 _ 0, the integral itself does so, 
and the limit can be evaluated using I'Hopital's rule. Let r,a 
denote the vector field inducing the unit normal to J, and let 
hab =gab +A -15a5b . From now on (since the conformal 
freedom allows it) we shall assume that Var,b ~ O. The ac­
tion ofl'Hopital's rule on the expression (5.3) yields 

Let us evaluate the integrand in (5.4). A straightforward cal­
culation gives us the Ricci curvature of (S, ,hab ) in terms of 
the norm A ==0 -2 and the twist llJa ofthe Killing field 5 a: 

f!lIab = Ahab + (l/U)haPhbllVpVqA 

- (l/4A 2)DaADbA + (l/U 2)(llJallJb - habllJmllJm), 

(5.5) 

where D is the derivative operator compatible with hab . (The 
twist terms, of course, vanish in the static case now under 
consideration. They will be important in the stationary case, 
to be discussed in Sec. VI.) Hence, we have 

r,ar,bVa VbO=r,ar,~a Vb A -1/2 

= A -1/2[(l/U 2)DaADbA + Ahab - f!lI ab ]r,ar,b. 

(5.6) 

The idea now is to relate the right side of(5.6) to the electric 
part of the Weyl tensor. Recall, first, the identity which 
holds on any time symmetric slice .Y,: 
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'if ab=Cambntmtn = f!lI ab - Hha mhb nLmn + habLpqhpq}, 

(5.7) 

where t m is unit normal to .Y, and where Lab = Rab 
- ! Rgab . ('if ab is the electric part of the Weyl tensor of the 

physical metric gab' relative to .Y, .) Using the field equations 
outside sources, we have 

If ab = f!lI ab - (2A/3)hab , 

hence 

(5.8) 

r,ar,bf!ll ab = 0(0 -ICambn ); m; nr,ar,b + r,ar,b((2A/3)hab); 

(5.9) 

here (O-ICambn r,ar,b);m;n = Emn;m;n, where Emn is the 
electric component of the Weyl tensor with respect to the 
unit normal r, to J, as introduced in (Ref. 2) [; m denotes the 
unit normal to (S, hab )]. One immediately deduces from 
(5.6) and (5.:9) that r,mr,nVm V"A -:':2 = - 02Eab;a;b 
+ 0-I(A/3)hab r,ar,b + 20- I r,ar,i>VaOVbO. A straightfor-

A 

ward calculation using Vakb = Vakb + Cab mkm, where 
Cab m = - 0 -I [2<5m(a Vb) 0 - gab VmO ] , finally gives us 
AmAav V A -1/2 7J7J m a 

_ 02Emn; m; n + ( ~ )( ~ )r,ar,b 

+ ~(DbO)(DbO), 
o 

A A 

(5.10) 

where D is the derivative operator compatible with hab . This 
last equality enables us to transform the expression (5.4) into 

Qk
A
(5) 

1 ( 3 )112 1 . i {[ A A m
A 

n = - - - - - hm - Emn5 t 
817" A 3 0_0 a~(o) 

+ ~ 0-3'j, AaAb + 0-3D bOD 0] 3 ab7J7J b 

[
A A A A A 

- - Emnt m; n + 3 0 -3j,ab ~a~b 

+ AO-3bbObbO ]}dV~. (5.11) 

(Actually Emn = 0 since anti-de Sitter space is conformally 
fiat.) We shall now be concerned with the integrand in (5.11). 
Let us first evaluate the quantity QI = (A/3)[0 -3 - 0 -3]. 
Recall that we have chosen 0 =A -1/2 = (gOO)-I12 
= (goo + (h tt lr)(8,fP) + 0 (l/r2))-1/2. A straightforward ex-

pansion of QI = (A/3)[Woo + httlr + 0 (l/r2W/2 - (gOO)3/2] 
with respect to r- I provides us with the following result: 

QI = 3( - A/3)3/2(htt l - 2) + o (l/r). (5.12) 

Let us next evaluate the qU8}ltity Q2 = R - Ro 
=0-3(DbO)DbO - (O)-3(DbO)(DbO). Recall first that 
g" =grr + r-Ih rr + o (r-2), g99 = g66 + r-Ih 66 + o (r-2), 
r = fP'" + r-Ih rprp + 0 (r- 2). A somewhat long but direct 
calculation provides us with the leading terms in the expres­
sion 

R = ! A -1/2Dr(too + h;, y(grr + h
r
") + 0(+), 

(5.13) 
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where it must be noticed that terms in h ee and h ."." and cross 
terms will not contribute to the surface integral due to their 
falloff on the domain of integration. The result is the follow­
ing: 

Q2==R - Ro = ( - A/3)3/2(ht,l- 2) + 0 (lIr). (5.14) 
Remark: note that in the case of the Schwarschild anti­

de Sitter metric goo = 1 - 2M Ir - (A/3)r, and therefore 
htt = -2M. 

Finally, the radius of the cross section at/being - 31 A, 

QkA (5) = - 11817"( - 31 A)1/2 

X.! lim r {-Em"tm~" 
3 0_0 Ja:I.(o) 

+ 4( _ ~ )112 ~t2}dV:I.' (5.15) 

Ifwe return to the notations introduced in (Ref. 3, Appendix 
D), 

A. A A A 

- ! htt = goo(3) = Eoo = Em,,; m; ", 
the result follows immediately: 

QkA(5) = ! Qc(5), 

where C is the cross section induced on Jby the static slice :I. 
We thus have the following theorem. 

Theorem: If an asymptotically anti-de Sitter space-time 
(in which matter sources are spatially compact) is equipped 
with a static Killing vector field S a, the corresponding gener­
alized Komar integral QkA (5 ) is related to the charge integral 
QC!s) at J, via QkA (s ) = ! Qc(5 ). 

VI. STATIONARY SPACE-TIMES 

Let us now suppose that the space-time (M,gab) is sta­
tionary. The situation is then analogous to that in the static 
case; the only difference is that the Killing vector S a is not 
hypersurface orthogonal. 

Recall that the generalized Komar integral associated 
with S a in (M,gab) is given by 

Qk (5) = lim {_l_ r (VaSb)€,bcd ds cd 
A a:I._I 161T Ja:I. 

+ ~isaEabcd d:IbCd }, 
81T :I. 

(6.1) 

whereVasb =A -IS[b ValA +!A -1 EabcdS c(i)d, A and (i)a be­
ing, respectively, the norm and the twist of sa in (M,gab)' 

Let us focus on the integrands in (6.1). The integrand in 
the volume term, SaEabcd satisfies £s(SaEabcd = 0 and is or­
thogonal to sa. It can be therefore naturally identified with a 
three-form on the three-manifold tJ, the manifold of orbits 
of S. In the surface integral, A-IS b (VaA )€,b cd is also a two­
form on tJ. We shall now show that the term involving the 
twist of S does not contribute to the surface integral in 
QkA (s ), so that the calculation can be performed entirely on 
tJ. In the anti-de Sitter chart (t,r,8,qJ ) available in the neigh­
borhood of J, S a:I.Sa(i)b dS ab = S a:I.Sc(i)d8 [cqJ d I d8 dqJ, 
where 8 C and qJ d are dual to the one-forms d8 and dqJ, re­
spectively. Using the asymptotic behavior near J, displayed 
in Sec. II, we have 
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S"'I'( =go,.)-r- 1
; s·8( =goe)-r- 1

; 

(i)a 8a = £eo '''(aq>go, - a,go,.)-fl(8,qJ); 

and 

(i)aqJ a = £q>o e'(aego, - a,goe)-h(8,qJ). 

[It is straightforward to check that £eo q>' -rf(8,qJ ).] As a 
result, the twist term does not contribute to the surface inte­
gral in QkA (5); the only nonzero contribution to QkA (s ) 
comes from integrals on forms on the manifold of orbits. 

We can therefore proceed as in the case of static space­
times, replacing the static slice by the manifold tJ of orbits of 
S a in the calculation. The availability of ditfeomorphisms on 
this manifold enables us to choose "data"-a three-metric 
qab and scalar field 1-on tJ which, when ~volved give rise 
to an anti-de Sitter solution (MJab,Sa) such that 
S :I.Sb~ Ijk d:Iljk equals htb~ Ijk d:Iljk. The evaluation of 
Qkc(5) is then obtained as in the static case with the follow­
ing modifications: (i) It is straightforward to show that the 
twist terms in (5.5) do not contribute to the surface integral; 
and the terms involving the extrinsic curvature in (5.8) and 
(5.9) do not contribute because, due to the falloff of 1T ab (stud­
ied in Ref. 3), all these terms are at least of order r- 2

, except 
1T" which cancels in (5.9). Hence the resulting expression 
falls off like r-4

• We thus have the following theorem. 
Theorem: If an asymptotically anti-de Sitter space-time 

(in which matter sources are spatially compact) is equipped 
with a stationary Killing vector field sa, the corresponding 
generalized Komar integral QkA (5) is related to the charge 
integral Qc(5 ) at J via QkA (s) = !Qc(5 ), where C is any cross 
section of J lifting the boundary a:I of the manifold of orbits 
ofs· 
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The solution of Einstein's field equations is studied for a metric written in the form 
(8i=r)d~ = - a 2(t,r,B,(fl )dt 2 + e2{J(t,r) dr + e 2y(t,rj dB 2 + e26(t,r) M2(B )d(fl 2. A perfect fluid, which 
flows orthogonally to the hypersurfaces t = const, is considered as matter content. These 
hypersurfaces admit a translational Killing vector, which will not be, in general, a Killing vector 
of the whole space-time. All the possible solutions are obtained when a depends on the variable (fl. 
These solutions represent either a perfect fluid without expansion or vacuum with a cosmological 
constantASO. Some particular inhomogeneous solutions are obtained for a independently of (fl. 
These solutions are physical, the fluid obeys an equation of statep = p (stiff matter), and the space­
time admits, apparently, only a group G2 ofisometries, A vacuum family is also obtained in this 
case. 

I. INTRODUCTION 

Collins l has proposed the idea of "intrinsic symmetries" 
as an alternative approach in order to obtain inhomogeneous 
cosmologies. He and other authors2

-4 have used this tech­
nique, applying it to different space-times. In the present 
paper, we start from a metric with one translational symme­
try on the hypersurfaces t = const, This metric can be writ­
ten as (8 i=r) 

d~ = - a 2(t,r,B,(fl )tit 2 + e2{J(t,r) dr + e 2r(t,r) dB 2 

(1) 

The form of this metric is very similar to one previously 
analyzed by Martinez and Sanz.4 The difference is that we 
assume 8 i=r, whereas they only studied the case {) = r, 
which included the spherical, planar, and hyperbolic intrin­
sic symmetries. 

The only Killing vector admitted by the spatial part of 
the metric (1) is a",. This Killing vector constitutes the only 
"intrinsic symmetry" of the metric; in the case a", a = 0, this 
vector will be a Killing vector of the whole space-time. 

We shall assume that the source of the gravitational field 
is a perfect fluid whose flowlines are orthogonal to the hyper­
surfaces t = const-we shall analyze the vacuum case, too. 
This fluid will not be, in general, geodesic and its shear will 
be different from zero, whereas its vorticity will be always 
equal to zero. This can be easily computed from the metric 
(1), taking into account the definitions of the kinematical 
quantities. 5 

In order to solve Einstein's field equations we use the 
ADM equations6 as they have been written by York. 7 This 
enables us to separate the equations into constraint equa­
tions on the hypersurfaces and evolution equations. 

In this formalism, a general metric reads 7 

d~ = - (a2 - 13 'l3;)tit 2 + 2/3; dt dx; + r ij dx; d~ 

(iJ, ... = 1,2,3), (2) 

where rij is the metric of the hypersurfaces t = const, 13; is 
called the shift vector and moves the spatial coordinates as 
the data are evolved from one slice to the next, and a is called 

the lapse function and measures the orthogonal proper time 
between neighboring slices a8t. 

Following the notation established in the reference men­
tioned above 7 we write the corresponding equations for our 
metric in Sec. II. First, we impose the condition a", a i= 0 and 
obtain the general solution for this case. We calculate the 
density, pressure, and expansion scalar, finding that for all 
the solutions the density is constant and the expansion van­
ishes. In several cases the fluid obeys a nonphysical equation 
of state p = - p. However, these solutions can be interpret­
ed as vacuum solutions with a cosmological constant 
A = P = - p. In Sec. III we study the equations when 
a",a = 0, aoai=O. Now, the space-time will admit at least 
one Killing vector a",. We obtain some particular solutions 
with a group G2 of isometries acting on two-dimensional 
orbits. The two Killing vectors are orthogonal and the corre­
sponding space-time belongs to the class Bii in the classifica­
tion scheme developed by Wainwright8 for inhomogeneous 
cosmologies. Moreover, the equation of state satisfied by the 
fluid is p = P (stiff matter) and one of the solutions is a sub­
case of one found by Wainwright et al.9 Some vacuum solu­
tions are also obtained in this case. 

II. BASIC EQUATIONS. CASE a",ai=O 

In this section, we will write and solve Einstein's field 
equations for a metric written in the form (1), using for it the 
ADM formalism. The general equations of this formalism 
can be written in the following way: 

2r=R + (trK)2 -KijKij' 

/=Dj(Kij - yjtr K), 

atrij = - 2aKij + D;Pj + DjP;. 

atKij = - D;Dp + (2' pK)ij 

+a[Rij -2KilK~ 

(3) 

(4) 

(5) 

+Kij trK -Sij +!rij(trS-r)]. (6) 

We use the corresponding definitions of the quantities ap­
pearing in these equations as given in Ref. 7. Equations (3) 
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and (4) are the constraint equations and (5) and (6) are the 
evolution equations. Besides, we can use the following two 
equations, which emerge from the conservation law of the 
energy-momentum tensor: 

:i i} K):i {31'D atT + a'DJ = a(S 'Ki} + T tr - 2J'Dia + IT, (7) 

al + a'DjSi} = a(2Klfjj + l tr K) 

-Si}'Dja - TDia +.!/ p,l. (8) 

For the metric (1), if we calculate the quantities that appear 
in these equations, we can write the equivalent set 

p = -M/J6M- Ie- 2y + e- 2fJ ( - y" -~" + y'{3' + ~'{3' 

- ~'y' - y'2 _ ~'2) + KIK2 + KIK 3 + K~3' (9) 

(K2 + K 3)' + y'(K2 - K.) + ~'(K3 - K I) = 0, (10) 

(KI +K3)e + MeM - I(K3 -K2) =0, 

(KI + K2l<P = 0, 

p= -aKI' 

r= -aK2' 

8= -aK3, 

ae - y'ae - aMeM -I(y' - ~') = 0, 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

a~ -~'a", =0, (17) 

ae." - MeM -Ia ", = 0, (18) 

KI = e-
2fJ

( - a" + {3'a' + aR l1 ) + aKI tr K +!a(P -pI, 

K2 = e - 2y( - a ee - ely - 2fJy' a' + aR22) 

+ aK2 tr K + !a(p - pI, 
K3 = e26M- 2( - a""" - eU-2fJM2~'a' 

- eU - 2YMMea e + aR33) 

+ aK3 tr K +!a(P -pI, 

(19) 

(20) 

(21) 

where ('==ar , e ==ae , '" ~"" ' =at ),p is the pressure andp is 
the density of the fluid, Ki ~ i are the mixed components 
of the extrinsic curvature-which is diagonal, Ri) is the 
three-Ricci tensor ofthe hypersurfaces, and R is the curva­
ture (R = i j 

Ri})' A direct calculation leads to the values 

- RII = r" + y'2 +~" + ~'2 -{3'(y' + ~'), (22a) 

-R22 = e2Y - 2fJ (r" + r,2 + y'~' - y'{3') +MeeM- I, 

- R33 = e26-2PM2(~1I + ~'2 + ~'y' - ~'{3') 

+ e26-2YMMee, 

R12 = (y' - ~')MeM -., R13 = R 23 = 0. 

(22b) 

(22c) 

(22d) 

Finally, the conservation equations can be written as 
follows: 

p = alp + p)tr K, 

a ajp = - (p + p)ap. 

(23) 

(24) 

If we calculate the kinematical quantities, we obtain, taking 
into account that the fluid is orthogonal to the slices 
t = const, that the vorticity is identically zero and the expan­
sion scalar (0 ), shear (CT all)' and acceleration (5) are given by 

0= - tr K, (25) 
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aDo = aDi =0, eli = -(Ki +0/3), 

SO = 0, Si = a-lij ap. 

(26) 

(27) 

So, the fluid is irrotational; it will be geodesic, according to 
(27), if and only if the lapse function only depends on time, 
and it will be shear-free provided that 
KI = K2 = K3 = -!O as we can easily see from Eqs. (25) 
and (26). This implies, taking into account the expression of 
the extrinsic curvature in terms of the metric, that 
p= r=8. 

These results are general for a diagonal metric, with the 
only assumption of a matter content, which is a perfect fluid 
flowing orthogonally to the slices t = const. Therefore, a so­
lution of this type will be a Friedmann-Robertson-Walker 
model if and only if a(t ) and P = r = 8. 

Now, we will begin to solve Eqs. (9)-(24). First, we only 
consider the case a", #9, if we ,take into account Eqs. (12)­
(14): KI = - K2 and {3 = - r. So, {3 = - r + F(r) and, 
with a suitable change of frame, redefining the coordinate r, 
we find{3 = - r. 

If we tum our attention to Eqs. (17) and (18) and inte­
grate them, we obtain the general expression for the lapse 
function 

a = (J (t,tp }Me6 + H (t,r,O). (28) 

Substituting this value into Eq. (16) and taking the derivative 
with respect to tp, we find 

(~' - y')(J", Me = 0. (29) 

Therefore, two possibilities arise from this equation, either 
~' = - {3' or Me = 0. In the second case, the hypersurfaces 
will admit two "intrinsic" Killing vectors ae and a",. We 
shall consider separately the two cases 
A (Me#O, ~'= -{3') and B (Me =0). 

Case A (Me#O. ~' = -{3'): If we develop Eq. (16), we 
obtain the following expression for H (t,r,O): 

H=L(t,O)e- p +A (t,r). (30) 

If we take into account Eq. (11), this leads to two different 
subcases:AI(8 = -P= r)andA2(a- Ia e =M-IMe )· The 
subcase AI has been treated exhaustively by other authors,4 
so we will only consider A2• The general solution for a corre­
sponding to A2 will be 

a = (J(t,tp}Me- p
• (31) 

We know that ~' = - {3', so ~ can be expressed as 

~= -{3 +G(t) 

and the general metric can be written as 

dr = - (J 2(t,tp }M2e - 2fJ dt 2 + e2fJ dr 
+ e- 2P(d0 2 + e2GM2 dtp2). 

It is very easy to conclude that Eq. (10) is equivalent to 

P' = P{3'. 

(32) 

(33) 

(34) 

On the other hand, introducing the expression (33) for the 
metric into Eqs. (9) and (19H21) and substituting the values 
of the extrinsic curvature given by (13H15), and the value of 
the three-Ricci tensor, we obtain a set off our equations (two 
of them can be considered as definitions of the density and 
pressure). If we subtract Eqs. (19) and (20) we find 
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(-Pa- I). = !e- 2P ( - a" - a/3,2 + a/3") 

+ !e2P(aee + aM-'Mee ) + a-Ip(G -P), 
(35) 

and substituting Eq. (31) into the previous equation and tak­
ing the derivatives with respect to (), r, and ip, we obtain 

(M -2¢J -I~p )9'1' = 0, (36) 

which implies necessarily one of the two possibilities P' = 0 
or (¢J -I~)'I' = O. The first one leads-see Eq. (34)-to P = 0 
or /3' = 0, but if /3' = 0, we can easily prove, interchanging 
the coordinates rand (), that Me = 0 (this corresponds to 
case B, to be studied later) so P = 0 and then Eq. (35) is 
equivalent to 

M ee = kM, e - 4{J (fJ II - /3 '2) = - k, k = const. 
(37) 

The other possibility (¢J -I~)'I' = 0 leads to P = 0, after a te­
dious calculation taking into account Eqs. (34) and (35). 
Therefore, it is a particular case of the previous one. 

Integrating Eqs. (37), we obtain the following values for 
M and /3 (after rescaling the variables () and r): 

{

sin (), k = - I, 

M= (), k=O, 

sinh (), k = + I, 
k = 0, e - 2P = A 2r, 

(38a) 

(38b) 

{
A #0, e- 2P =Ar + kA -I, k = ± I, 

k #0, 2P 
A = 0, e - = 2r, k = - I, 

(38c) 
whereA is a constant which appears in the integration. Now, 
we subtract Eqs. (19) and (21). A straightforward calculation 
leads to the following relation between ¢J and G: 

¢J-I~G - G - G 2 = - (¢J2 + ¢J¢J<p<pe- 2G
). (39) 

k= ± I, dr=3lA I-It -¢J2M~(r+k)dt2 
+(r+k)-'dr 

+ (r + k )(d() 2 + e2GM~ dip 2). (45) 

For A = 0, we obtain a vacuum solution without a cos­
mological constant. By calculating the Riemann tensor,? we 
prove that this solution is the Minkowski space-time. In all 
the cases ¢J and G are related by Eq. (39). 

In conclusion, we have surveyed exhaustively case A, 
obtaining the general solution, which is a new-as far as we 
know-vacuum solution with cosmological constant, de­
pending on two arbitrary functions ¢J and G related by Eq. 
(39). 

Case B(Me =0): Now, we are going to consider the case 
Me = O. Taking into account Eqs. (16HI8), we can write the 
lapse function as 

a = I(t,r) + g(t,() leY + h (t,ip )e.5 , (46) 

where /3 = - r. If we regard Eq. (11) and develop it, taking 
into account Eqs. (13) and (15), we find 

(r-8)ae =0. (47) 

Therefore, either ae = 0 or r = 8. If we now use Eq. (10), 
substituting into it the value of a given by (46) and taking the 
derivative with respect to ip, this equation leads to 

(8 + rl' = - 2rr'. (48) 

Reintroducing this expression into Eq. (10), we obtain 

(8 + r)(a' - ~ 'a) = O. (49) 

Therefore, we have to deal with four different subcases [see 
Eqs. (47) and (49)]: 

B,:ae#O,8+r=0 

(=>r(r), ~(r), K, = K2 = K3 = 0), (50) 
Our next step is to calculate the density and pressure to es- ~ . 

B2: ae #0, u + r#O 
tablish if the solutions are physical. The final result for the 
density, see Eq. (9), is (=>a' = ~ 'a, r = 8, y' = ~', f' = ~'f), (51) 

k = 0, p = - 3A 2, 

k=O, A #0, p= -3A, 

k #0, A = 0, P = O. 

(40) 

(41) 

(42) 

Taking into account Eq. (23), sincep = 0, we find that either 
p = - p or 8 = O. This last possibility leads to ~ = r (the 
case studied in Ref. 4). Therefore, we deduce that the only 
possible equation of state satisfied by the fluid will be 
p= -po 

However, we can reinterpret it as a vacuum solution 
with a cosmological constant A = P = - p. From Eq. (38), 
we see that when A < 0 and k = I, e - 2P < 0, which is impos­
sible. Then, in the case A > 0, the only solution will read after 
an appropriate change of coordinates, 

dr = 3A -, { - ¢J 2 sin2 () (1 - r)dt 2 + (1 - r) -, dr 

+ (1 - r)(d() 2 + e2G sin2 () dip 2)}. (43) 

When A < 0, we have three possible solutions: 

B3: ae = 0, 8 + r#O (=>g = 0, a' = ~'a, I' = ~'f), 
(52) 

(53) 

Subcase Bdae¥(J, 8 + r=O): By writing Eqs. (19)­
(21) and combining them in an appropriate way, we find 

alP - p) + 2e2y ( - a" - y'a' + aR II ) = 0, (54) 

aee - aR22 + e4y (aR II - a") = 0, 

e2.5 - 2y (aee + e4y a' y' - aR22) 

= a<p<p + e26+2Ya'~' - aR33, 

(55) 

(56) 

and we have another equation as definition of the density 
[Eq. (9)], 

P = - e2Y (r" + 2r,2 +~" + ~'2 + 2r'~'). (57) 

Now, if we calculate the third derivative of Eq. (56) with 
respect to the variable ip, it is deduced that 

h;; 'h<p<p<p = e26+2Y(2y'2 + r" -~" - ~ '2) = a, 

h<p<p =ah +B(t), (58) k=O, ds2= -¢J2()2rdt 2+3(IA Ir)-'dr 

+ r(d() 2 + e2G () 2 dip 2), (44) where a is a constant and B (t ) is an arbitrary function of its 
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argument. Doing the same with respect to 0, we find a simi­
lar relation for g, 

gi Ig9(/6 = - e4Y [(8' - r')2 + ae- 28 - 2Y] = b, 

g(J8 = bg + D (t), (59) 

where b is a constant and D (t) is an arbitrary function of its 
argument. If we substitute Eqs. (58) and (59) into (56), this 
equation can be written as 

(r' - £5')((' - £5'1) + fae- 28 - 2Y = Be- 8- 2y - De -3y. 
(60) 

Equation (55) can be reduced to the following set: 

£5" +£5'2=0, be- 4Y =r" +r'2, f" =De- 3y. (61) 

From Eqs. (58), (59), and (61), we obtain 

b = r'(8' - r')e4Y . (62) 

Now, we will consider different subcases depending on the 
value of the constant b: b =1=0. 

Integrating Eqs. (61) for £5 and r, we find 

8 ely = kr + bk - \ k =1=0, (63) 
e =cr+d, 2 Ibl l / 2 e Y= 2r , b<O, 

where c, d, and k are arbitrary constants. 
Let us consider the case k =1= O. Substituting rand £5 given 

by the previous formulas into Eq. (62), one obtains that 
d=O. 

For b < 0, an appropriate change of coordinates leads to 
the following expression for the metric: 

ds2 = - (( + geY + he8)dt 2 + k -I(r - 1)-1 dr 

+ k (r - l)dO 2 + r dlP 2. (64) 

Moreover, we obtain from Eqs. (58) and (59) that a = k, 
b = - k 2, so hand g must satisfy the differential equations 

htp<p =kh+B(t), gee = -k 2g+D(t). (65) 

Integrating these equations and the corresponding ones forf 
[Eqs. (60) and (61)]: 

k<O: a = [R cos(lk 11/2lP ) +Ssin(lk 11/2lP )]e8 

+ (T cos kO + Q sin kO )eY + W, (66a) 
k>O: a=(Relkl'lZq> +Se-lkl"zq»e8 

+ (TcoskO+ QsinkO)eY + W. (66b) 

All the arbitrary functions appearing in these expressions are 
only time dependent. For, b > 0, the metric can be written as 

d~ = - a 2 dt 2 + k -I(r + 1)-1 dr 

+ k (r + l)dO 2 + r dlP 2. (67) 

But in this case, k must be always positive, and the only 
possible value for a will be 

a = [N cos(k l/2lP) + 0 sin(k 1/2lP )]e8 

+ (Peke + Ue-ke)eY + W, (68) 

taking into account that a = - k and b = k 2 from Eqs. (58) 
and (59). Calculating the density and pressure according to 
Eqs. (57) and (54) for the two cases b~O, we find 

p= -3k, p= -~+2Wka-I). (69) 

So, the solution will be physical when k < O. Therefore, the 
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only physical solution will be given by [see Eqs. (64) and (66a) 
and write k = -A 2, A >0] 

d~=A -2{ -a2dt 2+(I-r)-ldr 

+ (1 - r)dO 2 + r dlP 2}, (70a) 

a = r(B sin lP + C cos lP) 

+ (1 - r)1/2(D sin 0 + E cos 0) + F, (70b) 

P = 3A 2, P = -p + 2A 2Fa- l
• (7Oc) 

The density is always constant and the only kinematical 
quantity different from zero is the acceleration [see Eqs. 
(25)-(27)]. 

We could obtain a vacuum solution with a cosmological 
constant provided that F =0. All the solutions with F =0, 
could be interpreted in this way since the fluid will obey an 
equation of state p = - p in this case and defining 
A = P = - p, we introduce the cosmological constant in 
Einstein's field equations. 

Other results can be obtained assuming that k = O. In 
this case, the solution for ris e2y = 21b 11/2r. We can find the 
value of a, integrating the relations for J, g, and h and the 
final result is (k =Ib 11/2) 

a =!BlP 2 + LlP + [R cos(kO) + Tsin(kO)]eY 

+Bk-lr+W, (71) 

and the values of the density and pressure are 

p=O, 

P = 2Ba- l. 

(72) 

(73) 

For B =1=0, we have an unphysical solution sincep = O,P=1=O. 
Therefore, B must be equal to zero and then the solution is 
Minkowski space-time as can be easily proven by a direct 
calculation of the Riemann tensor. 

For b = 0, we obtain a solution with the same character­
istics that appear in the solution studied before. In particular 
the density and the pressure have the structure (72), (73). In 
the same way, the vacuum solution can be proven to be Min­
kowski space-time. 

Subcase B2 (ae:;FO, 8 + Y=l=O): In this subcase £5' = r' 
and 8 = y, so £5 = r and we do not consider it since it only 
gives solutions that can be found in Ref. 4. 

Subcase B3 (ae =0, 8 + Y=1=O): In this subcase 
(ae = 0, 8 + y=l=O) we can write the lapse function as 
a = he8

, because g = 0 and f' = ft', subtracting Eqs. (19) 
and (20), and combining Eqs. (19)-(21) algebraically, we ob­
tain a couple of equations which read [we shall consider Eq. 
(19) as the definition ofthe pressure] 

yhh -I - r = e28 + 2Yh 2(£5" + £5'2), (74) 

;5 - 8hh -I = e28 + 2Yh 2(8'2 - r" - 2r'2) + htp<ph. (75) 

A tedious manipulation ofEqs. (48), (74), and (75) leads to the 
simple relations 

Yr' = 0, 8' = O. (76) 

Therefore y = 0 or r' = O. The second possibility with 
r=1= const leads to an unphysical solution ~ < 0) and the first 
one allows us to integrate easily the function £5, through Eqs. 
(74)-(76), 

e8 =A(t)r+B(t), (77) 
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where A and B are arbitrary functions. 
For A (t)#O, the variable rcan be redefined and without 

loss of generality we can take B =0 (we use the property 
BA = AB deduced from 8 ' = 0). 

By using Eq. (75), taking the derivative with respect to 
the variable r, we find the following expression for r: 

e2y = ar- I + br + c, (7S) 

where a, b, c are constants. Then h and A will be related by 
Eq. (75): 

AA -I -A 2A -2 -AA -Ih -I;' =A 2ch 2 + hh'l"l" (79) 

The density will be given by 

p = - rY (r + 2y'2 + 2y' 8'). (SO) 

Developing this expression, we easily prove that the density 
is constant, p = - 3b, and using Eq. (19) we obtain an equa­
tion of state for the ftuid of the form p = - p. This equation 
is unphysical and can be again interpreted as a vacuum solu­
tion with.li # O. The metric can be written as 

d~= _h 2A2r dt 2+(ar- l +br+c)-ldr 

+ (ar- I + br + c)dO 2 + A 2r dqJ 2. (SI) 

If p = 0, the constant b vanishes and we obtain a vacuum 
solution with.li = O. If we compute the Riemann tensor, we 
find that it is different from zero if a # 0, i.e., we have found a 
family of nonftat vacuum solutions. It admits, at least, one 
Killing vector ae as can be seen by simple inspection. 

Summing up, two new families (as far as we know) of 
vacuum solutions emerge: the metric given by Eq. (SI), being 
A (t ),anarbitraryfunction,andh (t,qJ ),satisfyingtheditferen­
tial equation expressed by Eq. (79). For b #0 the cosmologi­
cal A term needs to be incorporated. 

Next, we shall briefty discuss the case where A (t )=0. 
The integration of Eq. (75) leads to 

e2y = ar + br + c, hh'l"l' - h -1;'8 = ~ + arc5, (S2) 

where a, b, and c are constants. Now, a direct calculation of p 
and p through Eqs. (9) and (19) gives p = - a and p = - p. 
The particular case a==O is ftat space-time and for a#O, we 
can reinterpret the solution as corresponding to Einstein's 
equations with a.li term. 

Subcase B4 (ae =0, 8 + r = 0): Now, we can write the 
lapse function as 

a = I(t,r) + h (t,qJ )ec5 . (S3) 

According to Eq. (4S) two possibilities emerge: r = 0 or 
y' = O. If y' = 0, it is easily proven that this generates a solu­
tion with 8 = r, so we will only consider the subcase 
r=O (~=O). 

Developing Eqs. (19H21) and combining them in an ap­
propriate way, we find 

hec5(8" + 8'2) = - Hf" +/(8" + 8'2)], (S4) 

- e2y +c5h (8" + r" + 2r,2) + e-c5h'l"l' 

+ r Y [ -I" + W - y')f' - I(r" + 2y'2 - 8'y')] = 0; 
(S5) 

integrating the first equation we obtain 

8 = In(dr + e), 1= Ar + B, (S6) 
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where d and e are constants and A (t) and B (t ) are arbitrary 
functions of their argument. 

For d #0, the variable r can be redefined and without 
loss of generality we can take e = 0 and d = 1, i.e., ec5 = r. 

Taking the derivative with respect to qJ and r in Eq. (S5), 
we can solve for r as 

rY = ar- I + br + c, (S7) 

where a, b, and c are arbitrary constants. We realize that 
when B = 0 this solution will be a particular case of solution 
@1)withA = I, because we can reexpressa ash (t,qJ )ec5 with 
h=A +h. 

If we analyze the case B #0, we find that it has the same 
structure as the metrics found before in the subcase BI with 
p = const,p = - (p + 2Wka- I

), andge = O. 
For d =0 the only vacuum solution is obtained if we 

have ftat space-time and for nonvacuum we obtain nonphy­
sical solutions withp = 0 andp#O. 

In conclusion, we have obtained all the possible solu­
tions for a metric written in the form (1) provided that a<p # 0 
and8 # r. We have found a family of solutions representing a 
perfect ftuid without expansion, irrotational and shear-free, 
satisfying a nonbarotropic equation of state. This solution 
cannot be considered as a cosmological model, since the nat­
ural physical interpretation of perfect-ftuid solutions with 
zero expansion is as models of perfect ftuids in equilibrium. 

We have also found several families of vacuum solutions 
with a cosmological constant.li #0 and a non-Minkowskian 
vacuum solution with.li = O. 

If alP = 0, ae #0, and Me = 0, interchanging 0 and qJ, 
we easily see that this case is equivalent to the one (case B) 
considered before. So, we have found the general solution for 
the metric (1) with Me = 0, ae, or a<p #0 and 8 #r. This 
type of metric admits two "intrinsic Killing vectors" on the 
hypersurfaces t = const, but these vectors will not be Killing 
on the whole space-time, due to the 0 or qJ dependence of a. 

III. PARTICULAR SOLUTIONS WITH atp =0 

In this section, we will study the case atp = 0, ae #0, 
and Me #0. In the general case, the equations are too com­
plicated and no general solution is obtained. We will only 
obtain some particular solutions, assuming that rand 8 are 
only time dependent. This assumption simplifies the equa­
tions, allowing us to integrate them. 

Equation (16) is written now as ae = O. On the other 
hand, Eq. (10) is equivalenttoa'(r + 8) = O.ltisveryeasyto 
prove, taking into account Eq. (11), that the possibility 
r + 8 = 0 leads, after a redefinition of the coordinates, to a 
particular case of the metrics studied in Sec. II. Therefore, 
we shall consider that a' = 0 and the integration of Eq. (11) 
leads to 

a = G(t)M(O)F(t), F(t) = (8 - r)(8 +P)-I, Pit), 
(SS) 

after a redefinition of the coordinate r. 
The only remaining equations to be solved are Eqs. (9) 

and (19H21). The difference between Eqs. (19) and (20) and 
(19) and (21) can be written as 
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r - iJ + (]., - /3)lf3 + r + 8 - Fin M - GG - I) 

=G2e-2YM2F-2[(1 +F)MM/1/1 +F(F-1)M~], 
(89) 

8-iJ + (8-/3)lf3 +r+8-FlnM-GG-' ) 

= G2e-2YM2F-2(MM/1/1 +FM~), (90) 

and if we subtract Eq. (89) minus (1 + F) times Eq. (90) and 
take two derivatives with respect to the variable () and one 
derivative with respect to t, we obtain 

e-'=F=const#O, M=OC, (91) 

after a redefinition of the variable (). Moreover, Eq. (88) can 
be rewritten as 

a = G (t )(), e(8 - r) = 8 + /3. (92) 

The particular case e = 1 leads either to an unphysical 
solution II' < 0) or to a flat space-time. 

For e# 1 it is more convenient to combine algebraically 
Eqs. (89) and (90), taking into account Eq. (92), in the follow­
ingway: 

iJ + /3 lf3 + r + 8 - GG - 1) = 0, (93) 

(94) 

We will consider two different cases. The first one appears 
for /3 = 0 and we can always take, without loss of generality, 
y = t, because r#O [see Eq. (92)]. This last equation can be 
integrated in the form lj = e(e - I)-It and from Eq. (94) we 
obtain the general solution for G, 

G = [(e - We- 2t + ke(2-4c)(c-I)-'t] -1/2, k = const. 

(95) 

For k #0, calculating the density and pressure [from 
Eqs. (9) and (19)], interchanging the variables r_(), and do­
ing a time translation, we find 

(96) 

so, the fluid satisfies a stiff equation of state and the metric 
reads 

ds2 = _ [(e - We- 2t + (1 _ e- l)e(2- 4c)(C-I)-'t] -Ir dt 2 

(97) 

For k = 0, we obtain a vacuum solution that is Min­
kowski space-time. The metric (97) admits two orthogonal 
Killing vectors a/1 and a",. The new solution (as far as we 
know) is inhomogeneous as regards the definition given by 
Wainwright8 and it belongs to the class Bii apparently in his 
classification scheme. 

Now, let us consider the case /3 #0. We can always 
choose /3 = t and integrating Eqs. (92)-(94) the following is 
obtained: 

G = ae[(2c-l)y+ct](c- w', (98) 

lj = (ey + t)(e - I)-I, (99) 

y2_4a2e2e" =k, y==2e(y+t)(e-1)-', (100) 

where a and k are arbitrary constants. 
The case k = 0 will not be considered because it leads to 

an unphysical solution II' < 0). 
On the one hand, for k #0, Eq. (19) implies a stiffequa­

tion of state, Le., 
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p=p. (101) 

On the other hand, for k> 0 the integration of Eq. (100) 
leads to the metric-after redefining the variables (t,(),tp)-

ds2 = _ e-2[t(t _ 1)-2]2-C-'t S- 2()2dt 2 

+ [t(t - 1)-2]' -C-'t S d()2 

+ t - S dr + [t (t _ 1)-2]t S() 2c dtp 2, (102) 

where s is an arbitrary constant. A direct calculation of p, 
through Eq. (9), gives 

p = le(e - 1 - es2)t - S [t (t _ 1)-2]C-' - 2 () -2. (103) 

It is interesting to remark that a single change r_() and a 
redefinition of the variables (r-e', t-+[coth(~et W) allows us 
to write the solution (102) in a form which is a particular case 
of a family found by Wainwright et al.9 (n = ± 1, 
m= =F2s,/3=O,e= -2q,andlm2+~a2=1-e-'). 

For k < 0 the integration of Eq. (100) leads to (after a 
redefinition of the variables) 

ds2 = _ e-2e2st(cos t )2C-' - 4() 2 dt 2 + e - 2st dr 

+ e2st (cos t )2c-' - 2d() 2 + e2s'(cos t)-2() 2c dtp 2, 
(104) 

where s is an arbitrary constant. A direct calculation of p [see 
Eq. (9)] gives 

p = () -2(COS t)4-2C-'e- ste(1_ e - e~). (105) 

The particular relation ~ = e- I 
- 1 corresponds to a 

nonflat vacuum solution with the metric given by [see Eq. 
(104)] 

ds2 = _ (1 + ~)2e2st(cos t )2s' - 2() 2 dt 2 + e - 2st dr 

+ e2St(cos t)2s' d()2 + e2st(cos t)-2() 2(1 +s')-'dtp 2, 

(106) 

where s is an arbitrary constant. 
For S2 < e- I 

- 1 the metric (104) represents a new (as far 
as we know) physical solution of Einstein's equations, appar­
ently inhomogeneous, corresponding to stiff matter. 

Taking into account Eqs. (25)-(27), we can easily calcu­
late the kinematical quantities corresponding to the new me­
trics (97) and (104). These quantities read, respectively, 

()=(2c-l)(e-1)-la -" 
(107) 

u=3- ' /2[c(e-l)+ 1]1I2(2c-l)-la- l, s=(etr)-I, 

() = [s + (2c - l)e- 1 tan t ]a- I
, 

s=e-st(cos2t)I-C-'r- l, (108) 

u = [4~ + (4 - 2c- ' )s tan t + (e - 1 + e- I
) tan2 t] 1/2a- l

• 

We comment that the relative distortion u /() is a constant for 
the metric (97) according to (107). 

IV. CONCLUSIONS 

We have surveyed the solutions of Einstein's field equa­
tions for a metric written in the form (1), which admits one 
translational Killing vector on the hypersurfaces t = const 
and we have assumed a perfect fluid as matter content. 

The general solution is obtained for the case a", #0 and 
several different families emerge. These families can repre-
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sent either a perfect fluid without expansion and shear-free 
[Eq. (70)] or a vacuum with a cosmological constant A [Eqs. 
(43H45), (81), and (82)]. In the former case the fluid obeys a 
nonbarotropic equation of state and satisfies the standard 
energy condition p > O. All the solutions are apparently in­
homogeneous. 

We have found some particular solutions in the case 
atp = 0, af} #0 [Eqs. (97), (102), (105), and (106)]. All the 
solutions are apparently inhomogeneous (i.e., admit a group 
G2 of isometries) and the fluid satisfies in this case a stiff 
matter equation of state with expansion and shear different 
from zero. Equation (106) represents a vacuum solution. We 
comment that the metric given by Eq. (102) is,in fact, a 
particular case of a family of inhomogeneous solutions given 
by Wainwright et al.,9 but all the other metrics found in this 
paper are new physical solutions as far as we know. 

Finally, we would like to mention the "intrinsic symme­
tries" technique, which allows us to obtain inhomogeneous 
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solutions by imposing certain structures on the spatial part 
of the metric. 
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Anisotropic cosmological models are considered in the light of the scalar-tensor theory of 
gravitation proposed by Nordtvedt. Special attention is paid to Bianchi type I models. The models 
consist of perfect fluid with the equation of state p = Ep. The solutions are obtained in Dicke's 
conformally transformed units for empty space, as well as for E = 1 and !, assuming two separate 
functional relationships between (tJ and ¢>. Their properties are also compared with those of the 
models given in Brans-Dicke theory. 

I. INTRODUCTION 

In view of the recently verified large magnitude of the 
constant parameter (tJ in Brans-Dickel (BD) theory it is ar­
gued that the experimental results in this theory should not 
differ much from those in Einstein's theory. In this back­
ground, the generalization of BD theory with the parameter 
(tJ as a variable quantity has oflate drawn much attention. It 
has been claimed by Nordtvedt2 that an accurate light de­
flection experiment and also the data on the rate of advance 
of perihelion of mercury could require (tJ' #0. Static solu­
tions in this theory have been considered by Banerjee and 
Duttachoudhury,3 Vanden Bergh,4 and Rao and Reddy.s 
Barker6 argued that there was no a priori reason to exclude 
the introduction of a long-range scalar field in the evolution 
of the universe with the possibility of (tJ being small at some 
stages of the evolution, making the results differ appreciably 
from those in Einstein's theory. Cosmological solutions in 
this theory for isotropic and anisotropic models were studied 
later by Vanden Bergh,7 Bishop,s and Banerjee and San­
toS.9•1O 

In the present paper a homogeneous anisotropic model 
such as a Bianchi type I model is being reviewed in the back­
ground of the generalized scalar-tensor theory of Nordt­
vedt. The calculations are comparatively simple in Dicke's 
revised units, I I which is the conformally transformed ver­
sion of the original scalar-tensor theory of gravitation, I 
where the so-called gravitational constant is variable. In 
these units the standard Einstein's equations are satisfied. 
The scalar field plays the role of an additional material 
source, which, however, may formally be said to constitute a 
stiff fluid with density equal to the pressure. In this theory 
the equation of motion of a test particle is nongeodesic with 
varying rest mass. The scalar field is to be found from a 
separate equation and the knowledge of the exact solution 
for the scalar field ¢> is necessary to obtain solution in the 
original version with varying gravitational constant. It is 
also shown that for a homogeneous universe in the absence 
of rotation and for (2CtJ + 3) > 0, the Raychaudhury equation 

leads to the appearence of the singularity in the model. This 
is because Hawking's energy condition is satisfied for 
(2CtJ + 3) > 0 irrespective of whether (tJ is a constant as in 
Brans-Dicke theory (RaychaudhuriI2) or (tJ is a function ~f 
the scalar field as in Nordtvedt's theory. The contribution of 
the scalar field to the energy density in some cases becomes 
even more dominant than the matter part near the singular­
ity. 

In the following sections we have made some general 
observation on the properties of homogeneous universes in 
Nordtvedt's scalar-tensor theory and then obtained exact 
solutons for Bianchi type I models in matter-free space, stiff 
fluid, and radiation. All these cases are discussed for two 
different choices of CtJ--One being Schwinger's relation (see 
Vanden Bergh4) and the other that of Barker. The results are 
analyzed in the background of those existing in Brans-Dicke 
theory. Particularly in the stiff fluid case Ip = p) it is ob­
served that in Nordtvedt's theory, with the special choice of 
(tJ either due to Schwinger or to Barker, the matter density 
under no circumstances remains finite as the singularity of 
zero volume approaches. This result is unlike the solution in 
Brans-Dicke theory with (tJ = const. 

In Sec. II we write the field equations in Dicke's revised 
units and discuss the behavior of the homogeneous aniso­
tropic models in general. In Sec. III we integrate the field 
equations for a Bianchi type I model and analyze the solu­
tions. 

II. FIELD EQUATIONS 

The field equations for Nordtvedt's scalar-tensor the­
ory in the revised units of Dicke are 

Gap RaP -! RgaIJ 

_ kT _ (2CtJ + 3) _1 (A.. A.. .J' 
aIJ 2 ¢> 2 'f'.a'f'.p -! gaIJ¢> ¢>'J')' 

(2.1) 

The corresponding wave equation for the scalar field ¢> can 
be written as 
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O(In tP )=(In tP );tt;tt 

_ 1 [kT _1- A. .tttP dOJ ] (2.2) 
- (2OJ + 3) tP 'I' .tt dtP . 

In the above, the constant k stands for the usual 817Go with, 
however, the choice C = 1. It is interesting to note that the 
field equations look like those in Einstein's theory with Go 
being a universal constant. Here Taf3 , representing the ener­
gy momentum tensor of a perfect fluid, is given by [with 
signature (- + + +)] 

(2.3) 

with the four-velocity satisfying, in comoving coordinates, 
the following conditions: 

Vttvtt = - 1 and if = 8b . (2.4) 

Thep andp in (2.3) represent the fluid density and the pres­
sure, respectively. 

In view of the Bianchi identity, the divergence of the 
field equation (2.1) yields 

kTf3. + tP.a [1- A. A..f3 dOJ 
a;/J tP 2 'I'.f3'1' dtP 

+ (2OJ: 3) (otP _ ~ tP.f3 tP,(3)] = 0 , (2.5) 

which, with the use of the wave equation, yields 

k [(p + P).f3vf3va + (p + p)va + V1 + p){}va 

+ P.a +! (tP.a/tP )T] = 0 , (2.6) 

where {} stands for the usual expansion scalar vf3;/J and 
va = va;/Jvf3 is the acceleration vector. For a rotation-free 
spatially homogeneous space-time, the vorticity scalar 
OJ = 0 and also 

P.tt =avtt , P.tt =bvtt , tP.tt =cvtt , 

where a, b, and C are scalar functions and vtt is the velocity 
vector, which is hypersurface orthogonal (see Raychaud­
huri'2). From (2.6) it immediately follows that vtt cc vtt and 
since ifv tt = 0 and rl'v tt = - 1 along with if = 8b for a co­
moving system, we have the acceleration vector vtt vanish­
ing. The Raychaudhuri equation,13 therefore, reduces for a 
homogeneous nonrotating universe to 

(2.7) 

where u is the shear scalar. Now since we have written 
tP.tt = cVtt it follows that tP .tttP.tt = - c2 and in view of (2.1) 
one can write 

Rttv - ! Rgttv 

= - k [V1 + p)vttVV + pgttv 

+ [(2OJ + 3)/2ktP 2](C2Vtt VV + !gttVC2)] 

- k [V1 + p", + P + p",)vttVV + gttv(P + p",)], (2.8) 

where 

(2OJ + 3) tP.tt tP .tt 
4k tP 2 

(2.9) 

From (2.8) it is not difficult to get the following relation: 

Rttvifvv = - (k /2)V1 + P", + 3p + 3p",) . (2.10) 

For (2OJ + 3) > 0, P", and P", are both greater than zero and 
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thus, along with the conditions that the fluid density and 
pressure are both positive, we have 

Rttvrl'vv < 0, 

that is, Hawking's energy condition14 is satisfied. It follows 
from (2.7) that 

{}.ttif < 0, 

which, in comoving coordinates, reduces to the condition 
iJ < O. It means that there is no minimum volume and one 
cannot avoid the singularity. These results will be apparent 
in specific models discussed in the following sections. 

Before going onto the exact solutions in some special 
cases we make a few general observations about the nature of 
the solutions. The splitting of the energy momentum tensor 
into two different parts-one due to the perfect fluid and the 
other due to the scalar field in the field equations (2.8)­
enables us to write the effective density p and the effective 
pressure p as (see Ruban and Finkelstein15

) 

p =P +p", and p=p +P",· 

Now,p", andp", being equal in magnitude, the solutions for 
the metric in otherwise empty space will be formally identi­
cal with the stiff fluid solutions up to a solution for the scalar 
field itself from the wave equation for the scalar field. The 
p = P solutions in the scalar-tensor theory, being considered 
here in this paper, may also formally be identical with the 
stiff fluid solutions in general relativity. The scalar field con­
stituting p", and P", does, however, satisfy a separate field 
equation. It is shown later in special cases that near the sin­
gularity the fluid density P and the energy density p", due to 
the scalar field exhibit different time behavior. Moreover, 
the simple solutions, which are obtained in Dicke's revised 
units in Einstein's framework, pass over to the original 
Nordtvedt or Brans-Dicke solutions in atomic units by con­
formal transformations involving the scalar field, that is, 
gttV = (1/ tP )gttv' These are more natural with the principle of 
geodesic motion being fulfilled (mo = const). When p and 
fi-the effective density and pressure-are treated as un­
known along with the metric components and if there is a 
sufficient number offield equations to determine them, solu­
tions can be obtained independently of any particular choice 
of OJ as a function of the scalar field tP. But this specific rela­
tionship is required to be known explicitly before finding the 
solution for tP and thus in consequence to obtain solutions in 
original atomic units where G, the so-called gravitational 
constant, is no longer a constant. Solutions are more compli­
cated in the original theory but can be generated from the 
solution obtained in the following sections when the explicit 
solutions of tP for different functional forms of OJ are known. 

We will now show that in general for all spatially homo­
geneous nonrotating universes where the trace of the energy 
momentum tensor for matter vanishes, the expressions for 
P", and P", are independent of any particulilr choice of the 
parameter OJ as a function of tP in Nordtvedt's theory. When 
rotation vanishes, the homogeneous varieties are orthogonal 
to "t" lines in a suitable system and the metric can be written 
as 

(2.11) 
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where i,j = 1,2, 3. Thus from (2.2) one gets, in view of the 
spatial homogeneity, the relation 

_ [!f... [3] _ 1
3 

[kT + ¢i dw] (2.12) 
t/J ,0 - (2w + 3) t/J dt/J ' 

where 13 stands for ~ - g . Now, in general, for homogen­
eous universes withp, p both constants on the homogeneous 
varieties, one can express I asl = R (t) W(x i

), where the Xi 's 
stand for space coordinates only (Banerjp6) and so (2.12) re­
duces to 

(!f...)R 3 = -J kT R 3 dt-J (~/t/J) dw R 3 dt. 
t/J (2w + 3) (2w + 3) dt 

(2.13) 

When the energy momentum tensor is traceless we get the 
relation 

!f... R 3 = _ J R 3(~ / t/J) dw 
t/J (2w+3) , 

which also can be written in the form 

~ (!f...R 3) _ _ 1 (!f...R 3) (2.14) 
dw t/J - (2w + 3) t/J . 

Integration of (2.14) yields 

((~ /t/J ) R 3)(2w + 3)1/2 = const , 

and, using this, one finally arrives at the result 

(2w + 3) (~)2 A 
p~ =p~ = 4k if; =Ji6' (2.15) 

where A is an arbitrary constant. The expression (2.15) is 
therefore valid for matter-free space Ip = p = 0) and also for 
radiation Ip = 3p). Equation (2.13) cannot, in general (T :f 0), 
be integrated without any knowledge about the integrand as 
a function oftime. We will see that the same relation (2.15) 
appears in the special case of the Bianchi I model discussed 
in what follows in appropriate situations. 

III. INTEGRATION OF THE FIELD EQUATIONS AND 
BEHAVIOR OF THE MODELS IN A BIANCHI TYPE I 
UNIVERSE 

The metric for the Bianchi type I homogeneous cosmo­
logical model is 

(3.1) 

where y, 8, and 1/1 are functions of "t " alone. The nontrivial 
field equations, according to (2.1) and (2.2), will be 

Gg =~(R/R)2_!(y+02+tP) 
= kp + [(2w + 3)/4] (~/t/J f, (3.2a) 

G I = 0 + fir + l (R / R )(ti + 0 - r) + ! (y + 02 + tP) 
= - kp - [(2w + 3)/4](~/t/J)2, (3.2b) 

Gi = r + fir + ~ (R /R)(r + ti - 0) +! (y + 02 + tP) 
= - kp - [(2w + 3)/4](~/t/J)2, (3.2c) 

G~ = r + 0 + l (R /R)(r + 0 - til +! (y + 02 + tP) 
= - kp - [(2w + 3)/4](~ /t/J f , (3.2d) 
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D(lnt/J) = - (In t/J) - (3R/R )(lnt/J) 

_ 1 [k (3 ) ~ 2 dW] 
- (2w + 3) 'P - P + if; dt/J ' (3.3) 

with R 3 = exp(y + 8 + 1/1). 
The divergence relation (2.5) will yield for a = 0 the re­

lation 

IpR 3)' + 3pR 2R + ! (~/t/J )R 31p - 3p) = 0 . (3.4) 

It is interesting to note that relation (3.4) in Nordtvedt's the­
ory is identical with the relation obtained in the Brans­
Dicke theory where w = const (see RaychaudhuriI2). 

We have five independent equations (3.2) and (3.3) and 
seven unknowns y, 8, 1/1, p, p, t/J, and w. In what follows, we 
assume two relations, an equation of state relating p with p 
and another equation connecting wand t/J. 

From (3.2b) and (3.2d), subtracting one from the other 
and integrating, we obtain 

0- r = C1/R 3, ti - 0 = C2/R 3, r - ti = C3/R 3 , 
(3.5) 

where C1, C2, C3 are constants satisfying the condition 
C1 + C2 + C3 = o. 

Now we proceed to study the following different cases. 

A. Case I: p = p = 0 

This is a case of empty space, for which Eq. (3.3) reduces 
to 

~ _!f...+ 3R +!(~)=o 
t/J t/J R 2w+3 ' 

integration of which yields immediately 

(~/t/J)(2w + 3)1/2 = DI/R 3 , (3.6) 

where DI is a constant of integration. The same relation was 
obtained in Sec. II. Equation (3.6) is valid independent of the 
nature of w, including the Brans-Dicke case where 
w = const. 

Adding (3.2a), (3.2c), and (3.2d) and subtracting (3.2b) 
from the result we get 

2r+ ~ (R/R )(3R/R + 3r- 0- til = 0, 

i.e., 

r + 3(R /R )r = 0 , 

which integrates to yield 
. 3 
y=al/R . (3.7a) 

From different combination of the field equations, one ob­
tains 

• 3 
8=a2/R , (3.7b) 

ti=a3/R
3

• (3.7c) 

In the above, a I' a2, a3 are constants of integration. Adding 
(3.2a) and (3.2b) and integrating, it is possible to obtain 

r= 3R/R +D2/R 3, (3.8) 

where D2 is another constant of integration. Substituting a 1 / 

R 3 for r in Eq. (3.8) we obtain 

3R /R = (a 1 - D2)1R 3 , 

which in tum on integration leads us, after a suitable choice 
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for the time origin, to the solution 

R3=D3t, (3.9) 

where D3 = a l - D2· 
The solutions for the scalar field ,p can be obtained from 

(3.6) once O)(,p) is known as an explicit function of,p. The 
solution in the BD case, that is, for constant magnitude of 0), 
is simple and straightforward. In the following we examine 
the situation for two different functional forms for 0), men­
tioned previously. 

(a) Schwinger's relation: (See Vanden Bergh.4) Here 
(2OJ + 3) = 1Ia,p, a being a constant quantity. The general 
solution is, in view of(3.6), 

,p-1/2= -(DI/D3)(aI/2/2)[31nR+a] , (3.10) 

where a is a constant of integration. 
(b) Barker's relation: In this case (2OJ + 3) = 1I(,p - 1), 

so that integration of (3.6) yields 

(,p - 1)1/2 = tan [(DI/2D3)(3 In R + b)] , (3.11) 

b being another constant of integration. One should note 
that in Dicke's revised version the solutions for the metric 
tensor and the scalar field as given in (3.8)-(3.11) are quite 
simple. It is not difficult to go back to the original version of 
Brans-Dicke atomic units, where masses remain constant 
and G varies, and find the metric using the transformation 
relations 

gaP = (1I,p )gaP' 

where gaP and gaP are metrics in revised units and the origi­
nal atomic units, respectively. The solutions given above for 
,p in variable G theory can be shown to be identical with those 
given earlier by Banerjee and Santos.9

•
10 When the spatial 

volume vanishes (that is, R is vanishingly small), the shear 
scalar u is infinitely large. The geometric shear is defined in 
the usual way (see Banerjee and Santos9

) and gives the mea­
sure of anisotropy. The effective energy density of the scalar 
field for the p = p = 0 case is found to be 

p", = ((2OJ + 3)/4k)(¢ /,p )2, (3.12) 

which in view of (3.6) shows that p", ex: R -6 . The energy 
density due to the scalar field is infinitely large when R--+O or 
at the initial epoch t = O. Further from (3.9) we see thatR #0 
for any finite value of R and also R < 0 indicating that the 
singularity of zero proper volume cannot be eliminated in 
such models. 

B. Case U:p =p 

This particular case in BD theory was studied by Nar­
iaP7 in atomic units and later by Raychaudhuri l8 in Dicke's 
revised units. It is interesting to investigate ifin Nordtvedt's 
theory there is any distinct change in the behavior of the 
model. 

Proceeding exactly in the same way as had been done for 
the case of empty space, we obtain 

• 3 
r=bl/R , 

iJ = b2/R 3, 

if = b3/R 3, 

(3.13a) 

(3.13b) 

(3.13c) 

where bl, b2, and b3 are constants of integration. Adding 
(3.2a) and (3.2b) we obtain after integration 
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(3.14) 

FI being a constant of integration. Using (3.13a) and (3.14) 
we obtain after integration, with a suitable choice of the ori­
gin of the time coordinate, 

(3.15) 

where F2 = b l - Fl' Using the relations (3.5) and (3.15) in 
(3.2a), 

kp + [(2OJ + 3)/4 ](¢/,pf = F /3R 6 , (3.16) 

where F= F~ - Ci - C~ - CIC3. Another relation con­
nectingp, R, and,p is obtained by puttingp = pin (3.4) and 
integrating in the form 

pR 6/,p = const. (3.17) 

Now using (3.16) in (3.3) and puttingp = p one gets a relation 

- (20) + 3)[(ln,p f' + (F2/R 3)(ln,p)'] 

={_(2OJ+3)+,pdO)}{1n,p)')2+ 2F. (3.18) 
2 d,p 3R 6 

When 0) = const, that is, in the Brans-Dicke theory, Eq. 
(3.18) yields on integration, using (3.15), 

(¢/,p)t=m(l-tm/p)/(l +tm/P), (3.19) 

where p is an arbitrary constant appearing on integration, 
and from (3.16) one gets for the matter density 

k = ~ _ (2OJ + 3) m
2 

(1 - t
m

/ p)2 
p 3R 6 4 t 2 l+t m/P , 

where m2 = (4/3 F~ )(F /(2OJ + 3)) . Taking m > 0 and allow­
ing t--+O one gets a relation 

kp = F _ (20) + 3) m
2 

[1 -.! t m + ... J ' 
3 F~ t 2 4 t 2 P 

and it is clear from above thatp remains finite even when the 
spatial volume at this state (t--+o) vanishes if m = 2. The 
shear and the expansion scalar, however, attain infinitely 
large magnitudes. This feature of the solution was previously 
noted by Nariai and Raychaudhuri. 

For positive values of m other than 2 we have bothp and 
p", increasing infinitely (as t--+O) as 1It 2 or 1IR 6. 

Now considering our problem in Nordtvedt's scalar­
tensor theory, we make two choices for 0) as functions of the 
scalar field-Schwinger's relation and Barker's relation­
exactly in the previous manner and proceed to find solutions 
for the scalar field. 

(a) For Schwinger's choice (20) + 3) = 1I(a,p ), the rela­
tion (3.18) reduces to 

¢ _ 2(i)2 +.!.L (i) = _ ~ F ..!L. (3.20) 
,p ,p R 3 ,p 3 a R6 

Now defining r = R 3 = F2t andjt = 1I,p we can write (3.20) 
in the form 

d 2jt 1 djt a 
dr + -; dr = r ' (3.21) 

with a = 2Fa/3 F~. Now writing y for (djt/dr) Eq. (3.21) 
reduces to a linear first-order differential equation 

dy 1 a 
-+-Y=-, 
dr r r 
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the solution of which is given by 

df.t F3 a y=-=-+-lnr, 
dr r r 

which in tum on further integration yields 

t/J -I = F3 In r + (a/2)(ln rf + F4 , (3.22) 

whereF4 is a constant of integration. Using (3.22) in (3.16) we 
have 

kp = kp = F /3,,-'1 - (FV4a,,-'1)(F3 + a In rf 

X [(F3 + (a/2)ln r)ln r + F4] -I. (3.23) 

In the limit as t-+O we have r-+O (that is, R -+0) and it follows 
from (3.22) that the scalar field t/J vanishes. The singularity 
exists at this limit because (3.23) shows that p-1I(r Inrf 
which increases to an infinitely large magnitude as r-+o. The 
situation is similar to that in the Brans-Dicke case 
(m = const) except for the situation that by a suitable choice 
of some constant parameters we can keep the mass density 
finite in the latter case even when the spatial volume vanishes 
(see Raychaudhuri I8

). In (3.23), for the special case 
F ~ = 2aF4 , the mass density is always zero and we get empty 
space. Again as for the energy density due to the scalar field 
we note that it is, in view of (3.16), equal to (F /3k,,-'1 - pI, 
which, following the previous analysis, goes to infinity (as 
r-+O) as 11,,-'1. Thus near the singularity the scalar field ener­
gy dominates in comparison with the matter density. 

(b) Barker's relation form andt/J is (2m + 3) = 1I(t/J - 1), 
so that the relation (3.13) is now 

: -( ! r + ;23 (!) 
= (! r [~ + 2(t/J ~ 1)] + 3~6 (t/J - 1). (3.24) 

The differential equation (3.24) can be solved proceeding in 
the following manner. We write r = R 3 = F2t and 
b = 2F /3 F~ and define a new variable f.t = (1It/J - 1) so 
that Eq. (3.24) can be written, omitting a few intermediate 
steps, as 

f.t d 2f.t _ ~ (df.t )2 +.!!:.... (df.t) = _!!..- f.t2 . (3.25) 
d,,-'1 2 dr r dr ,,-'1 

Further transformations like y2 = ± f.tr reduces (3.25) to a 
very simple form 

,,-'1 d 2y + (~ + !!..-\ .. = 0 (3.26) 
d,,-'1 4 2 Y , 

which is a simplified version of the Euler differential equa­
tion. The solutions are the following: 

.r= b>O, 

{

A cos { (b /2)1/2 In r} + B sin{ (b /2)1/2 In r}, 

Y/v r = Ar'lb 112)'/2 + Br - (lb 1/2 )'/2, b < 0 , (3.27) 

A+Blnr, b=O. 

The constants A, B in three different solutions are complete­
ly independent and arbitrary. One can obtain the value for t/J 
from (3.27) using the transformation relation ylT = ±f.t. 
The positive or negative sign is to be taken according as t/J is 
less than or greater than unity. In order that the total energy 
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density(p + p~);;;.O, we must have, from (3.16),F;;;.0 and cor­
respondingly b;;;.O. For b;;;.O [that is, for (p + p~) > O],t/J re­
mains always finite because the sine and cosine functions in 
(3.27) are bounded in magnitude and for the same reason it is 
not difficult to show that bothp andp~ explode to infinity as 
1IR 6 as R-+O. For b = 0, we have (p + p~) = 0 and both 
have infinities of the same order as the spatial volume ap­
proaches zero except for their signs. For (2m + 3) > 0 in Bar­
kar's theory, t/J > 1 andp~ > 0, so that the fluid density p < 0, 
whereas for (2m + 3) < 0 we have the reverse situation. 

Lastly, in the stiff fluid case also, since from (3.15) we 
have R < 0 and R # 0 for any finite magnitude of R, there is 
no lower bound and there exists a point of singularity. 

From the above results it is clear that one can find the 
solution for the metric in the case of an empty space and also 
in the case of a stiff fluid without knowing the functional 
dependence of m on t/J. But the functional form of m is neces­
sary for obtaining the solutions for t/J. Moreover, in the stiff 
fluid case, we observe that the behavior of the energy densi­
ties due to the scalar field and matter are different for differ­
ent choices of m. From the results obtained in this section we 
find that for Schwinger'S choice of m, p-1I(rln rf, and 
p~ -11,,-'1 for R-+O, that is, the scalar field dominates over 
matter near the singularity, whereas for Barker's choice, 
both p and p~ explode to infinity as 11,,-'1 as R-+O. These 
results are in accordance with the general discussions in the 
previous section. 

C. Case lII:p = i p 

This is a radiation case. It is possible to integrate Eq. 
(3.3) directly and obtain a relation like 

(¢ /t/J)(2m + 3)1/2 = GI/R 3 , (3.28) 

G I being a constant of integration. This relation had already 
been obtained in Sec. II for a rotation-free homogeneous uni­
verse with T = O. The trace of the field equations (3.2a)­
(3.2d) give 

2(y + e + fi,) + (y + iJ 2 + ill) 

+ ~ (R /R)2 + ~ (R /R)(y + iJ +;p) 
= - [(2m + 3)12](¢ /t/J f . (3.29) 

Using (3.5) and thefactthatR 3 = exp(y + () + t/J), Eq. (3.29) 
takes the form 

~ +3(!Y 
~ GI + Ci + C~ :';2. . (CI - C3 ) 

+ R 6 + J r + 2y R 3 = 0 , 

and consequently y can be written as 

. _~ [_~ (CI - C3 ) {~(CI- C3 )2 

y- 2 3 R3 ± 9 R6 

_ 8 R _ 4(R)2 _ ~}1/2] . 
R R 3R 6 

Again from (3.5) we have 

y=R/R - (CI - C3)13R 3
• 

Equating (3.30) and (3.31) one gets 
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(3.31) 

3129 



                                                                                                                                    

(3.32) 

whereG=~Gi +Ci +C~ and 

G -! (CI - C3)2 =! Gi +~ (Ci + C~ + CIC3) >0 , 

since it can be shown that Ci + C~ + CI C3 > 0 . Now writ­
ing u for R and using derivatives with respect to R in place of 
time, the derivative (3.32) can be written as 

d(u
2

) + ~ (u2) + j [G -! (CI _ C3f] _1_ = O. (3.33) 
dR R R 5 

The general solution of this equation is 

u2 = (R)2 = G2/R 2 + 1[G - i (CI - C3)2]R 4, (3.34) 

G2 being an integration constant. Writing the symbol G3 for 
1[ G - i (CI - C3)2] and integrating (3.34) in the next step, 

_1_{R (G R 2 + G )1/2} -...§...In[RG 1I2 
2G2 2 3 2G2 2 

+ (R 2G2+ G3 )1/2] , G2>O, 

_1_ {R (G R 2 + G )1/2} _...§... 1 
2G2 2 3 2G2 (_ G2)1/2 

Xarcsin[R ( - G2/G3 ) I 12] , G2 <0, 
(3.35) 

G4 being a constant of integration. 
The solutions (3.35) give usR (t) as an explicit function of 

time. Integration ofEq. (3.23) yields 

f (2w + 3)1/2 d: = GJ :t3 . 
Replacing the time variable by the variable R and utilizing 
(3.34) in the above relation we can write 

f ("1-- + 3)1/2 d¢> - G f dR (3 36) 
~ ¢> - I R (GzR 2 + G

3
)1/2 . . 

The integral on the right-hand side of (3.36) is different in 
two different cases G2 > 0 and G2 < O. After integration (3.36) 
yields 

f (2w + W12 d: 
for G2 >O, 

(3.37) 

The integral on the left-hand side of(3.37) can, however, be 
found provided one knows (() as an explicit function of the 
scalar field ¢>. The Brans-Dicke case is simple and one inte­
grates the left-hand side for (() = const to get 
(2w + 3)1/2 In ¢>. Two different cases in Nordtvedt's theory 
are (a) Schwinger'S relation is (2w + 3) = 1/(a¢> ) and the left­
hand side of(3.37) is 

f (2w + 3)1/2 d¢> = __ 2_. 
¢> (a¢> )1/2' 

and (b) Barker's relation is (2w + 3) = 1/(¢> - 1) and we have 
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f (2w + 3)1/2 ~ = 2 arctan(¢> - 1)1/2. 

The above results along with (3.37) express ¢> as functions of 
the variable R and in turn as functions of the time t in view of 
(3.35). In the present case, where the matter content is in the 
form of radiation with the equation of state p = i p, one can 
easily conclude from the general relation (3.4) thatp a: 1/ R 4, 

whereas the energy density due to the scalar field is, from 
(3.28), 

(2w + 3) (~)2 Gi 
p", = 4k """"i = 4kR 6 ' 

so thatp", a: 1/R 6. 

Above analy.sis indicates that at R--+O both the matter 
density and the energy density due to the scalar field increase 
to indefinitely large magnitude-the latter increasing at a 
much faster rate than the former, and as the singularity is 
approached, p", dominates over p. One can remark that the 
situation here is exactly analogous to that in BD theory and 
this is fundamentally due to the fact that Eq. (3.4) and (3.28) 
are valid independently of the choice of ((). From (3.32) we 
observe that, as G - !(CI - C3)2 is positive, R /R < 0 and 
hence (In R 3)" < 0 indicating that there is no lower bound of 
R 3 and one cannot avoid the singularity. This observation is 
in keeping with the discussions in Sec. II, where we observed 
that the singularity is unavoidable from the consideration of 
Hawking's energy condition. 

The case G2 < 0 provides an interesting situation. From 
(3.34), one can have R = 0 at some finite value of R = R I' 
where 

G3/R i = - G2/R i . 
As (In R 3)" < 0, we have a miximum at this point and the 
model recollapses into the singularity after this maximum. 
This happens only if G2 < O. On the other hand, if G2 > 0, 
there is no such maximum at any stage of evolution and 
R--+O is the point of singularity. 
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A treatment of a non-Riemannian geometry including internal complex, quaternionic, and 
octonionic space is made. Then, an interpretation of this geometry for the nonsymmetric theory of 
Einstein-Schrodinger, and for the unified theory of Borchsenius is showed. Finally, field 
equations in the extended octonionic geometry of space-time are obtained through a minimal 
action principle. 

I. INTRODUCTION 

The manifold where general relativity is defined is con­
stituted by the space-time with a locally flat symmetric met­
ric on which, through parallel transport of vectors, a sym­
metrical connection, {~v} = ~I'} is defined, and, as a 
function of that, the space-time curvature.tn nonsymmetric 
theories 1 we define, on the space-time manifold, parallel 
transport of vectors through nonsymmetric connections. 
The metric contains a real symmetric part as in general rela­
tivity and a skew-symmetric part, taken by Einstein 1.2 as 
proportional to the electromagnetic field tensor. Actually, 
the interpretation for the skew-symmetric part for the metric 
as an electromagnetic field tensor have been proved to be 
physically incorrect,3 the objections being overcome in the 
new interpretation developed by Moffat,4 where the non­
symmetric metric is taken as a nonsymmetric gravitational 
field. In spite of this, we use here the interpretation of Ein­
stein, as well as that the skew-symmetric part of the metric 
follows the interpretation given in the Borchsenius theory.s 

The symmetry group acting on the space-time manifold 
is the "manifold mapping group" (MMG). In addition to the 
MMG we can associate to each point objects that, besides 
transforming through space-time mappings, can transform 
by the effect of internal mappings. The symmetry groups 
formed with these internal mappings, called "internal 
groups," are, in many important applications, local Lie 
groups. In the extended geometrical treatment, which per­
mits the inclusion of Yang-Mills fields in unified theory (the 
Borchsenius theoryS), the SU (2) group will be of special im­
portance. The SU (2) algebra can be reinterpreted through a 
quaternionic algebra. 

The main goal of this work is to establish geometrical 
properties of the full space to which we refer above. Next, we 
reinterpret it through a quaternionic algebra. As an obvious 
generalization of the quaternionic geometry we then suggest 
a (split) octonionic geometry.6.7 Each one of these four inter­
nal spaces is allowed through a mathematical theorem, by 
Hurwitz.8 This will be done in Sees. II-V. As a matter of 
completion, we will obtain in See. VI, field equations 
through a minimal action principle. 

·'present address: Physical Department, Universidade de Brasilia, CEP 
70.910, Brasilia, Brazil. 

blDeceased (1931-1985). 

The departure point of the geometrical theory presented 
in this work is, besides general relativity, the nonsymmetri­
cal theory of Einstein-SchOdinger in its complex formula­
tion. However, there is another possible formulation for the 
latter, realized over the algebra of real numbers (see Hla­
vaty9). Indeed, Einstein used the complex formulation only 
in his initial works. 10 In the real formulation of nonsymme­
tric theory, the algebraic structure imposed on the space­
time manifold is realized through the real tensor glw, which 
can be written as 

gl'v = hl'v + kl'v' 

We define 
del 

gl'V = hl'v - kp.v = hvl' + k"l' = g"l" 

(1.1) 

(1.2) 

For the real connection rv J.p.' a function of gl'v, it is assumed 
that the following equation is true: 

a .,gJ.p - ra )..,g,.,. - r a "'I'g,.ta = o. (1.3) 

Then, it is easily proved that 

fWJ.p = Pp.J. (1.4) 

(Einstein assumes this relation), where fJ. I'V is a function of 
gl'v' This is the same as saying that Eq. (1.3) above is true 
even though we substitute ga,B' rJ. I'V for gap, fA. I'V' 

The only remarkable difference between the real and 
complex formulation of nonsymmetric theory is that the 
choice of complex quantities will allow us to obtain the non­
symmetric theories in terms of (complex) vierbeins, which is 
not possible in closed form if the metric tensor is real. ll 

II. A METRICAL GEOMETRY 

Consider the non-Riemannian space-time of the Ein­
stein nonsymmetric theory associated with an n-dimension­
al internal space. Let 

ds'l = (lin) Tr (GI'V dx" dxV), (2.1) 

where 

GI'V = (Gl'vab(X)), a,b = 1, ... ,n, 

is a matrix of internal space such that 

(lin) Tr GI'V =gl'v' 

(2.2) 

(2.3) 

Heregl'v is the metric of the Einstein-Schrodinger asymme­
tric theory (or Moffat-Boal theoryI2). Therefore, (2.1) is the 
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line element on the curved space-time. We further impose 
that 

GZv = GVI" (2.4) 

where the "t" operation is the Hermitian conjugation in in­
ternal space, and the inverse GI'V is defined by 

Gl'aGI'V = 8~ 1 (2.S) 

in this order. Using (2.4) and (2.S) we also obtain 

GVI'Gal' =8~1. (2.6) 

Since GI'V is an object with two matrix indexes in inter­
nal space, we will restrict ourselves from now on to the inter­
nal space of2 X 2 matrices, whose symmetry group is SU (2). 
Every object in this space can be written as a linear combina­
tion of four linearly independent matrices (TI' i = 0, 1, 2, 3), 
where To = 12 and T/ = TI' i = 1,2, 3. With this, the "met­
ric" (2.2) can be written as 

GI''' = GI'v/(X)Tl , i = 0,1,2,3. (2.7) 

The symmetry conditions (2.4) and the restrictions (2.3) im­
ply that 

GI'V =gI'VTO + ql'V/T1, • i= 1,2,3, 

where 

gl'v = gl'v + iKFI'''' 
V 

(2.8) 

ql'vi = !(iE~/h )fl'V/' (2.9) 
v 

In these formulas K = - 2",/ e (e = G = 1) is a universal con­
stant such that, in the limit K-o, the Einstein-Maxwell­
Yang-Mills theory is obtained (see Brochseniuss), e is the 
elementary electric charge, E is the elementary isotopic 
charge, and FI''' is the Maxwell tensor and fll.vt represents 
the Yang-Mills field strength in the Moffat-Boal theory and 
Borchsenius theory. 

III. AN AFFINE GEOMETRY 

Let 

A I'(x) = af(x)rJ> i = 0,1,2,3, (3.1) 

where the af (x) are the components of AI' (x) in the internal 
matrix space. The parallel transport in space-time of an ob­
ject with space-time and internal indices will affect both 
aspects. Since we are working with a non-Riemannian mani­
fold, the resultant space-time connection can be taken as that 
of the Einstein nonsymmetric theory, and the space-time co­
variant derivative is given by 

A 1';" = A 1'." + 0.1' avA a, 

where 

0.1' a'll = 0.°1' va' 

nl'av =nl'a" +iKl'av , 
v 

such that 

(3.2) 

(3.3) 

'A. ,_11 a. y a. 'A. a2 6 
n'A. (x') = ax ~~oafly +~ __ 2-

1''11 aXa ax'l' aX'v _ aX6 ax'l' ax'''' 

K 'A. (x') = ax'A. axB ax
Y 

K a • (3.4) 
1''11 a. a a. 'I' a. 'v fly v X X x- V 
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In the Einstein-SchrOdinger nonsymmetric theory, 1 the 
connection used in the calculation of the field equations is 
the "Schrodinger connection" 

(JPI'V = npl'v - (2/iK~Av' (3.5) 

where the A" are the electromagneticlike potentials, which 
are given in terms of np 

1''11 as 

A" = - !(iK)OP pv • (3.6) 
v 

The OP 1''' is a nonsymmetric connection, and therefore, 
there exist two types of covariant derivatives: a " + " deriva­
tive 

(3.7) 
+ 

and a " - " derivative 

A 1';'11 = A 1'.'11 + 01' vaA a. (3.8) 

The same definition can be used for any type oftensor. 
The space-time curvature can be obtained through the 

difference 

++ ++ 

where AI' is given by (3.1). Performing this difference we 
obtain 

R ul'Vp = (apnUl'v - nUaVnaJlP) - (avnU pp - n u apnal''')' 

(3.9) 

Again we must perform the transition RU l'"p_Ru I'''P To for 
calculations in the matrix notation. We observe that this cur­
vature was obtained using" + +" derivatives, which were 
used by Einstein in his nonsymmetric theory. 2 It is possible 
to find other curvatures with vector covariant derivatives 
using" + " and " - " types of derivatives; however, these 
curvatures are interrelated by algebraic relations to the 
above expression (3.9). 

Defining the internal vector til' = til' (x), a = 1, 2, the 
"internal" covariant derivatives are given by 

tll'III' = tII'.1' + r I' a b VI· (3.10) 

The affinity r I' = (r I' a b (x) ) is the object which makes til' III' 
transform like a vector under transformations in the internal 
space. In the case of an isotopic gauge,13 the physically rel­
evant part of the field r I' is of the form 

rl' = iCI' • l' = - i(E/Ii)bl' • 1', (3.11) 

where E is the elementary isotopic charge. From now on, we 
use this form for r 1" The (internal) transformation law ofr I' 

is 

where the U(x) are the internal transformation matrices be­
longing to the local SU (2) group. In the curved space-time, 
r I' transforms like a vector. 

The internal curvature is defined in the usual form, i.e., 
from the difference 

tll'IIl'v - tll'IIVI' = Pl'v a b VI· (3.13) 

Here PI'V a b is the curvature in the internal space, 

S. Marques and C. G. Oliveira 3132 



                                                                                                                                    

PI'" = r JL.V - r V 'JL - [rJL,rV ]' 

We have 

(3.14) 

(3.15) 

After (3.7) and (3.10), the total covariant derivative of 
the space-time vector AJL (x), defined in (3.1) is 

AJL
1 
a (x) =AJL.a + nJLpaAP + [ra,AJL]. (3.16) 
+ 

With the definition (3.16), we can also obtain a "total curva­
ture" through the difference 

A JL - A JL {3a - lDJL A A _ A JLp _ 2A JL np ap - ll" Aap ap Ip ~ £ aP' 
1+ + 1+ + 

(3.17) 

The RJL Aap is a "mixing" of space-time and internal curva­
tures: 

RJL Aall = (XJL Aa.tJ + XJL ppXP Aa) - (XJL Ap,a + XJL paXP AP) 

(3.18) 

with 

(3.19) 

The dot under the index indicates the covariant derivative 
index. Therefore, RJL A.ap is called the "total curvature" and it 
is this "curvature" that Borchsenius makes use of in his cal­
culations for obtaining field equations in a unified theory of 
gravitation, electromagnetism, and Yang-Mills fields. 5 

IV. QUATERNION INTERPRETATION OF THE 
GEOMETRY 

Let X be a set of numbers. Consider a set X 2 of pairs of 
numbers X, in which the addition is defined in the usual form 
and the multiplication is defined by the equation 

(Xl,yl) . (X2,y2) = (Xl' X2 - Y2 • Yl,yl . x2 + Y2 . Xl)' 

with 

( x,y) = (x, - Y). 

Then the setX 2 is called the "double" of the set X. The "dou­
ble" of real numbers (dim n = 1) gives the complex numbers 
(dim n = 2). The "double" of complex numbers gives the 
quaternions (dim n = 4), and the "double" of quaternions 
gives the octonions (dim n = 8). These four sets of numbers 
are distinguished from all other possible ones by the Hurwitz 
theorem.s 

We can observe the following facts: general relativity 
theory is carried out over the set of real numbers and the 
Einstein-Schrooinger nonsymmetric theory, and so the 
Moffat-Boal theory, can be carried out on the set of complex 
numbers. We will see now that the Borchsenius theory can 
be reinterpreted via quaternions, when these are realized by 
means of the Pauli matrices. This is carried out easily by 
performing the transition 

uj--+-iOJjJ i = 1,2,3, 

where U j =='Tj are the Pauli matrices and 

OJ j = (1/i)uj, i = 1,2,3, 

OJo = U o = 'To = 1 2, (4.1) 
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The "numbers" OJj, i = 1, 2, 3, OJo = 1 2, with a product de­
fined by 

(4.2) 
are the generators of a quaternionic algebra Q. 

Therefore, the collection of tensors that are matrices in 
the internal space with the local symmetry group SU (2) can 
be written as quaternions when we consider the space-time 
derivatives continuing unchanged. Thus the internal covar­
iant derivatives will now be what we call quaternionic covar­
iant derivatives or Q derivatives. Then, if K is a quaternion, 
the Q derivative acting on K is defined by 

KIIJL = K,JL + [r JL,K ], (4.3) 

where 

(4.4) 
As a consequence, the Q-covariant derivative is always rep­
resented by the commutator [r JL' K l. 

In this way, the metric and the curvature will be rewrit­
ten as 

GJLV = gJLVOJO + (1/i)qJLViOJjJ i = 1,2,3, 

PJLV = [( CVk'JL - CJLk,v - 2EijkCJLjCvj )OJk ]· 

(4.5) 

(4.6) 

The space-time curvature obviously retains the same form. 
Therefore, we can see that an interpretation of the geo­

metrical objects of the Borchsenius theory via quaternions is 
a direct one. With the above interpretation we can suppose 
that there exists a more general theory that will be carried 
out on an algebra of dim n = 8, an octonionic algebra (0). It 
is this generalization that we intend to study in the next sec­
tion. (The definition and properties of octonionic algebra are 
introduced in Appendix A.) The present analysis suggests 
that the use of complex quantities in the Einstein-SchrO­
dinger theory is not merely a mathematical artifice. 

V. THE GEOMETRY IN THE OCTONIONIC SPACE 

We consider now a mathematical manifold in which we 
have the non-Riemannian space-time of the Einstein non­
symmetric theory, but with an associated internal space de­
scribed by octonions. We will call this space an "octonionic 
space." We will consider here only the "split octonions." 

Any octonion AIL (x) with a space-time index, can be 
written in terms of the (split) generators as 

A JL(x) = aJL(x)ut + bJL(x)uo + kr(x)ur + lr(x)u j, (5.1) 

i = 1,2,3, 

where the coefficients of AJL (x) transform like vectors under 
space-time transformations. 

Through arguments similar to those used in the treat­
ment of objects that are matrices in the internal space, we can 
conclude that a space-time covariant derivative of AJL (x) 
must be of the form 

A JL+;a = A JL,a + nJLpaA P, 

A JL_;a = A JL.a + n JL apA P, 

where now 
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The 01' pa is the affinity of the nonsymmetric theory and 
I = u~ + Uo is the unity element of the split octonion alge­
bra. The space-time curvature is again given by R U I'''P . 1, 
where RU I'''P is the curvature of nonsymmetric theory. 

Let K be an octonion. The octonionic covariant deriva­
tive, or O-derivative, of K is defined by 

(5.4) 

where ~I' is the "octonionic affinity." This means that ~I' is 
the object which makes Kill' transform like an octonion un­
der 0 transformations [see Appendix B, where the reason for 
the nonappearance of parenthesis in (5.5) is explained] 

K' =VKV-I, 

K'III' = VKIII'V- I
, 

and 

(5.5) 

~' = V~ V-I _ av V-I (5.6) 
I' I' axl" 

where the V(x) are octonions which define local (octonionic) 
transformations, isomorphic to the rotation group 0 3 , which 
means that they are SU (2)-like octonionic transformations. 
The octonion V-I is defined as being identical to D, the 
conjugate of V. See Appendix B for a more detailed treat­
ment on the properties of 0 transformations. 

We are taking the "doubling" of the quaternionic alge­
bra, which forms the split octonions with realization via 
Pauli matrices. Therefore, it is logical to impose that ~I' be a 
trace-free Zorn matrix, which we suppose to be of the Yang­
Mills type: 

i = 1,2,3. (5.7) 

In the limit KI'-+LI' we reobtain the Yang-Mills affinity, as 
should be expected. 

The total derivative of an octonion AI' P , with two space­
time indices, is defined then as 

P 

A I' + la =AI'P.a + OPuaAI' u - OUl'aAuP + [~a,AI'P], 
+ 

(5.8) 

The octonionic curvature is obtained by a similar pro­
cess, by performing the difference 

Kill''' - KII"I' = PI'"K - KP"I' + {~I',~",K}, (5.9) 

where {~I" ~'" KJ is the associator of fields ~I" ~'" K, and 

PI''' =~I"" -~"'I' - [~I"~"] (5.10) 

is called an octonionic curvature, or "0 curvature." In terms 
of components it is given by 

PI''' = (LI',K", - L",KI')u*o + (KI',L", - K",LI')uo 

+ (K"k.1' - Kl'k." - 2EijkLl' jL"j)uk, 

i,j,k = 1,2,3. 

(5.11) 

In the limit KI' -+LI' we reobtain the quaternionic expres­
sion. 

If AI' is an arbitrary octonionion with a space-time in-
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dex, the total octonionic curvature is obtained through the 
difference 

AI' a{3 -AI' IJa =RI'Aa{3AA+ [Pa{3,AI'] 
1+ + 1+ + 

+ 6{~a '~P' A I'} - 2A I' P OP a{3' (5.12) 
1+ v 

where OP a{3 = ! (OP ap - OP 1Ja). The curvatures RI' A.a{3 and 
v 

PaP can be put together in a same expression as we will see 
below. 

Defining 

(5.13) 

(the dot under the index v recalls the covariant derivative 
index that was used), we can rewrite (5.12) in the form 

AI' a{3 -AI' IJa 
1+ + 1+ + 

= (HI' A.a(3)A A + A I'P a{3 + {~I' pa'~P AP,A A.} 

- {~I' pP,:tPAa,A A} + 4{~a,~p,A I'} 

- 2A I' ;p OP a{3 . (5.14) 
+ v 

Here, RI' A.a{3 is the "octonionic total curvature tensor" 

HI' Aa{3 = (~I' ,ta,fJ + ~I' pP~P Aa) - (~I' AP.a + ~I' pa:tP AP)' 

(5.15) 
Expanding (5.15), we obtain 

W'AaP =RI'Aap· 1 +D~PaP' (5.16) 

We define the "line element" on the octonionic space as 

ds2 = !Tr(GI''' dxl'dx"), (5.17) 

where GI''' is the "octonionic metric tensor" on the octon­
ionic space. This can be written in a more general form as 

GI''' = sl'''o(x)u*o + sl'",(x)u*j + rl'''o(x)uo + rl'",(x)u j 
(5.18) 

or 

( 
s,," G = r 0 

1''' r. ro 
1''' 

(5.19) 

in the Zorn matrix notation. With the above definition for 
GI'''' the line element may be written, from (5.17), as 

(5.20) 

which gives the line element of the nonsymmetric theory 

when rl'''o -+sl'''o' 
The octonionic conjugation is defined in Appendix A. 

We will define now the "Hermitian conjugate" of any octon­
ion A as 

At = a*uo + b *u*o - x*ju*j - j*ju j 

( 
b *w x* jW j) 

= - Y*j:j a*wo ' (5.21) 

where we take the complex conjugate of the coefficients of A. 
The octonionic Hermitian conjugate of the "metric" 

GI''' is 

S. Marques and C. G. Oliveira 3134 



                                                                                                                                    

(5.22) 

Considering, as in the case of nonsymmetric and quater­
nionic theory, that the fields sand r are such that 

S·/Wo = s"l'o' r!V = rvl-'o ' 

s· !-'V = s!-'v = - sv!-, ' r· !-'v = r!-'v = - r v!-' ' 
(5.23) 

V V V V V V 

we find a symmetry relation for G!-'v: 

(
r "I'o())o - Sv!-,,());) = G~, C). Gt!-,v(s,r) = 'r 

rv!-',())/ SVI-'o())o 
(5.24) 

[Here the notation (~) remembers simply the column places 
of fields rand s in the Zorn matrix G!-'v'] In our case, we want 
to have r !-,Vo = s!-'vo' because we are studying the octonionic 
space, which consists of a non-Riemannian space-time of 
nonsymmetric theory associated to internal octonionic 
space. We have then 

r!-'vo = s!-'vo = g!-'v + iKF!-,v' 
V 

(5.25) 

and we can say that the fields s!-'v and r!-'v are of the Yang­
Mills form, but are different from each other. In the limit 
r-+s we reobtain the quaternionic case. Ifwe take (5.25), the 
symmetry condition (5.24) can be written as 

Gt!-,v(s,r) = Gv!-, (s,r). 

There exists an inverse Gl-'V ofG!-'v such that 

G!-'aGJ'v = G!-,a(s,r)GI-'V(r,s) = 8 ~ I, 

(5.26) 

(5.27) 

in this order, as in quaternionic case. The expression (5.27) 
also can be written, because of the property (5.24) [or (5.26)], 
in the form 

or, if we take (5.25), 

GV!-'(s,r)Ga!-, (s,r) = 8~. 

(5.28) 

(5.29) 

Herewith we complete the principal geometrical consid­
erations for an octonionic space. Table I summarizes the 
principal geometrical objects of Riemannian space-time, 
non-Riemannian space-time of the nonsymmetric theory, 
quaternionic space-time of the Borchsenius theory, and oc­
tonionic space-time defined above. 

VI. FREE FIELD EQUATIONS IN AN OCTONIONIC 
UNIFIED THEORY 

Bonnor and Moffat-Boal l2 suggested a modification in 
the Einstein Lagrangian of the nonsymmetric theory by in­
troducing a new term 

!-'v 
2' MB = 2' ES + (41rG Ik 2c4 )[9' vg",.., (6.1) 

where 2' ES is the Einstein-SchrOdinger Lagrangian.2 The 
obtained field equations reduce themselves to the Einstein­
Maxwell equations in the limit k-o. Borchsenius has 
worked an extension to a theory that includes the Yang­
Mills field. 13 The Lagrangian in this case is 
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!-''' 
2' KB = Tr( [9'I'VRl'v + [1/(iK)2] [9' v gl'v)' (6.2) 

v 

where the objects in (6.2) are now 2 X 2 matrices. The density 
[9'l'v is 

[9' 1''' = wit''', 
(6.3) 

Again he uses here a universal constant iK = - 2ili! e as a 
result of which, in the limit K-o, he obtains, besides the 
Einstein-Maxwell equations, the Yang-Mills field equa­
tions. 

We saw in previous sections the interpretation of the 
geometry of the Borchsenius theory via a quaternion alge­
bra, as well as its extension to an octonionic-split geometry. 
We will obtain now the free-field equations for this octon­
ionic-split geometry. 

The "metric tensor" GI'V was defined as 

Gl'v = (gl'v + iKFl'v) (uo + u·o) + sl',,· u· + rl'v· u, (6.4) 
v v v 

where r!-'v and sl'V are fields of the Yang-Mills type. There-
v v 

fore, 

sl'V = - Kftkl'v' rl'v = - Kft1I'V' (6.5) 
v v v v 

where iK is the universal constant used by Borchsenius, 
JL = - EI e, e and E being the elementary quantum of electri­
cal and isotopic charge, respectively. The "density" (W'v is 

(6.6) 

(6.7) 

where the trace operation (Tr) is carried out on the Zorn 
matrix of Gl'v' and the determinant of the matrix in the 
world index is taken, ft, v. 

The free-field octonionic Lagrangian is taken as 
I'V 

2' = Tr(@Y''Rl'v + [1/(iK)2]@} v G I'v), (6.8) 
v 

where Hl'v is given by (5.15). This Lagrangian is invariant 
under an Einstein A transformation (see Borchsenius5). Be­
sides, there is also invariance under octonionic local trans­
formations. By the use of the Palatini variational method 
over an action constructed with the above Lagrangian, 

.!if = J 2' d 4X , (6.9) 

we obtain the field equations 

R·l'v =0, (6.10) 

- @}I'va - OV..ta@}/'A - 01' a,t@}AV + OAa,t@}I'V 

- ~ 8v
aO P .<p@}/'A - [~a'@}I'V] = 0, (6.11) 

v 

where 

(6.12) 
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TABLE I. General table for symbols used in the text. 

Line 

element 

Affinity 

General relativity 
theory 

(Ralgebra) 

Nonsymmetric 
theory 

(Calgebra) 

F,.v = Maxwell tensor 

P _(}P _~ P o ,.v -,.v . 8,.Av 
IK 

Av = -!(iK)O':" 
v 

() P,.v = Schriidinger connection 

(}~=O 

If, in (6.11), we use the SchrOdinger connection, (J P ,.,,' 

OP,." = (J P,." - ~ 0,,8P,. , (6.14) 

0 .. = (3/iK)A" , (6.15) 

A" the electromagnetic vector potential, and (J P,." a space­
time connection such that 

(J,. = (J P lAP = 0 , 
v 

we obtain, 

_ @}"",a - (J" Aa@}J&A. _ (J ,. a;l @},t" 

+ (J,t a;l@}"" - [Xa,@},.,,] = 0, 

or, in Einstein notation, 

,." 
@)+ -;a + [Xa ,@}""] = 0, 

equivalently, 

,." 
~+ -Ia =0, 
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(6.16) 

(6.17) 

(6.18) 

(6.19) 

Borchsenius or 
quaternionic 

theory 
(Qalgebra) 

dsl =! Tr (G,.v fix" fix") 

"Tr" acting upon Q matrices 

G,.v = (g,.v + iKF,.v)tuo 
v 

+f,.v·(J) 
v 

f,.v = Yang-Mills field 
v 

Gt,.v = G ... 

"t" acting upon Q matrices 

Cv • (J) = Q affinity 

= R "",w(OP,.v)tuo + 8; P,.v 

P,.v = Q curvature 

Octonionic 
theory 

(0 algebra) 

''Tr'' acting upon Zorn matrices 

+ .,.v· u· + r,.v·U 
v v 

G,.v(s, r) 

s,. ... ' r,. ... : nonsymmetric-theory-like 

S,.v' r,.v: Yang-Mills-like 
v v 

Gt,.v(s, r) = G,.v(s·, r*) 

= G",,(s,r), 

when s"vo = r,.vo = g,.v + iKF,.v 
v 

"t" acting upon Zorn matrices 

Lv • u· + Kv • U = 0 affinity 

= R" Pl'v(O",.v)("~ + "0) 

+8; P,.v 
P,.v = 0 curvature 

the O-total-derivative of@}"". For X,. we have, according to 
Borchsenius, and from (5.7), 

L,. = ( - €/1i)C,. , 

K,. = ( - €/1i)d,. . 

Also placing (6.13) in (6.12) we obtain 

R * ,.,,(8) = 0, 

R *,.,,(8) + ~(O,.,,, - O",,.)(uo + u*o) - P,." = O. 
v v 

(6.20) 

(6.21) 

(6.22) 

with P ,. .. given in (5.10). Antisymmetrizing (6.17) in J.t and 'V 

v 
and contracting in J.t and a, we obtain 

,." [ ""] @}V,,, + X",~v =0. (6.23) 

Again we have 
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p,v p,v p,v p,v 

G V =iKFV(uo+u*o)+sv ·u*+rv .u, (6.24) 

which gives, for (6.23), 

(wFV) =0 .v , (6.2S) 
p,v p,v 

(WSV).v - 2Kv 1\ rVw = 0, 

(6.26) 

which are the "current components" of the Maxwell equa­
tions, in the case of(6.2S), and Yang-Mills-like equations for 

p,v p,v p,v 

(6.26). In the limit s v _r v = - Kpfv, and Kp, _ Lp, 
= ( - €/Ii)bp,' we reobtain the quatemionic Borchsenius 

equations. 

VII. CONCLUSION 

Table I shows a collection of objects, namely, the metric, 
the affinity, and the curvature. We can observe there that 
these objects maintain their "forms" when we go from gen­
eral relativity to the Einstein nonsymmetric theory, and then 
go to quaternions (Borchsenius theory) and octonions. The 
automorphism group of quaternions is SU(2), which is ho­
momorphic to the rotation group 03' In the case of split 
octonions, the automorphism group is the split G2 (an excep­
tional Lie group). We showed by means of what we called 
"octonionic transformations" that these are homomorphic 
to the rotation group 03' These "0 transformations" are 
necessary to obtain the octonionic field equations, (6.19) and 
(6.21)-(6.23). The component equations (6.2S) and (6.26), of 
Eq. (6.23), decompose in Maxwell equations and two equa­
tions of the type of Yang-Mills. These last ones are a sort of 
"doubling" of the quatemionic Yang-Mills equations, but 
with a symmetric mixing of component terms. Equation 
(6.18), or (6.19), is the octonionic generalization of the corre­
sponding (quaternionic) Borchsenius field equations [see Eq. 
(3.20), Ref. (5)]. The Moffat-Boal theory has proved to have 
ghost poles and tachyonsl4 in the weak-field approximation. 

UiUj = €ijkU*k , 
uiuo=O, 
UOUi = Ui , 
U0

2 = Uo , 
uiu*o = Ui , 
u*oui = 0, 

I 

U*iUj = - {jiju*o, 
U*iU*O = 0, 
U*OU*i = U*i , 
U*o2 = u*o, 
U*iUO = U*i , 
UOU*i = 0, 

It is to our interest to find a convenient realization for 
the basis elements {uo,u/,U*O,U*I} through the use of Pauli 
matrices. This is possible by the identifications 

(0 0) * (wo 0) 
Uo = 0 w' U 0 = 0 0 ' 

i = 1,2,3. (AS) 

* _ (0 -WI) U .- , 
'00 
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The same must happen with non-Abelian theories, like that 
of Borchsenius (quaternionic theory) and again, with the ex­
tension to the split-octonion field theory, developed here, 
but the analysis of this part is out of the scope of this paper. 
An important aspect of Q and 0 field theory that may be 
remembered here is the relation to local quaternionic and 
octonionic spinors. ls For example, under the SU(3) sub­
group of split-G2, leaving Uo and u~ invariant, the three split 
octonions (U VU2'U3) transform like a unitary triplet (quarks) 
and the complex conjugate octonions (uT, u!, urI transform 
like a unitary antitriplet (antiquarks).16 

APPENDIX A: THE CAYLEY ALGEBRA. REALIZATION 
VIA ZORN MATRICES 

The octonions algebra has eight dimensions and its base 
vectors, eo, eo i = 1, ... ,7, satisfy the product law 

(AI) 
elej = - {jijeO + €ijkek . 

Now €ijk is an object completely skew-symmetric with seven 
nonzero elements: €123' €SI6' €624' €43S' €471' €S72' and €673' 
This algebra is also called the Cayley algebra. 8 It is neither 
commutative nor associative, but belongs to the class of al­
ternative algebras, with the property that for any three oc­
tonions the associator of x,y,z, is given by 

{x, y,z} = (xY)z - x( yz) . (A2) 

This changes sign when any two of its arguments change 
position. The quantities x, y,z, are called Cayley numbers. 
The Cayley algebra with the case given in (A 1) belongs to the 
class of division algebras (real base), but it can also be pre­
sented as a "split algebra" if we use a new basis defined on the 
complex field. This is given as 

Uo = !(eo + ie7), u*o = !(eo - ie7) , 

i = 1,2,3. 

(A3) 

From this definition follows the multiplication table 

i,j,k = 1,2,3 

(A4) 
I 
Wo and Wi are given in (4.1) and (4.2). For an arbitrary split 
octonionA, we have 

A = au*o + buo +XiU*i + YiUi = (; b- x). (A6) 

The operation of octonionic conjugation is defined as 

A = bu*o + auo - XIU*i - YIUi 

=(a_: b)' (A7) 
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The norm of A in then given by 

AA = AA = (ab + x' y) ·1 , (AS) 

where 1 is the identity element of algebra, 1 = I·u· 0 + I·uo' 
The "matrices" written above are called "Zorn matrices" or 
"vectorial matrices." 17 Ifwe define the product of two Zorn 
matrices as 

= (ac - x'V - (au + dx + y 1\ V)) , 
cy + bv + x 1\ u bd _ y'u (A9) 

the multiplication table for the u's is reproduced in this Zorn 
matrix notation. Besides, we have the following properties 
for octonions: 

(AW) 
A + A = Tr(A ) " Tr(AB) = Tr(BA ) , 

where the trace operation (Tr) is performed on Zorn matri­
ces. From (AW), and using the definition of the associator 
given in (A2) we have that 

Tr[(AB)C] = Tr[A (BC)] = Tr[ABC] , (All) 

and thus the trace operation on a product of Zorn matrices 
follows the cyclic order of factors. 

In general, the Cayley complex (split) algebra contain 
seven Euclidean vectorial subalgebras, as well as seven sub­
algebras of quaternions. This property follows from multi­
plication rules of the complex (split) base given in (A4) and 
from the definition (A3). 

Finally we must observe that we are always using 
A = Z (A ), the Zorn matrix of the octonion A, because the 
Zorn algebra is isomorphic to the split ocotonionic algebra. 

APPENDIX B: INTERNAL TRANSFORMATIONS FOR 
QUATERNIONS AND OCTONIONS 

1. Quaternlonlc transformations 

Ifwe have a complex unimodular matrix A, 

A=(~ ~, 
then 

A -I = (8 - fl) . 
-r a 

The conjugation operation of quaternionions and octonions 
is equivalent to the inversion of a unimodular matrix. 

Let U be a quaternionic transformation matrix, or Q 
transformation, 

(BI) 

which is at the same time a transformation matrix of the 
SU(2) group, i.e., it satisfies the condition 

U- I = ut, (B2) 

where U t = U T. is the Hermitian conjugate of U. It is easy 
to show that 

(B3) 
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where U is the quaternionic conjugate of U, defined as 

(B4) 

Thus U, being a unimodular matrix, must satisfy the proper­
ty of the inverse unimodular matrix expressed above, i.e., 
U -I=:=U, which, with the condition (B2) for matrices of the 
SU(2) group, results in the coefficients mo' m i , i = 1,2,3, 
from expansion (Bl), being real. Therefore 

UU = UU = U -I U = UU -I = (m~ + mi)wo = 1 , 
(B5) 

because 

m~ + mi = det U = 1 . (B6) 

We must have then 

U iA"a -A'O) =e =e , (B7) 

where A = (AI' A2, A3) are real parameters. 
The Q transformation of a quaternion r/J is defined by 

r/J' = Ur/JU- I
• (BS) 

If 

r/J = aoWo + aiwi , (B9) 

v/ is given in terms of components, after (BS), 

r/J' = (moaomo + moakmk + mkaomk - mkakmO)wO 

+ [moapmo - moaomp + mpaomo + mkakmp 

+ Ek/p(mka/mO - moakm /) 

(BW) 

The symmetry group of this transformation is SU(2), which 
is homomorphic to the rotation group 03' This is given 
through the relation l8 

UW i U -I = Rijwj , i,j = 1,2,3 . (Bll) 

In terms of components it is 

m~8iP + mimp - 2Eijpmomj + EijkEk/pm/mj = RiP' (BI2) 

For the local Q transformations, which are used in the 
space-time connected to internal quaternionic space, we 
must have 

(B13) 

and 

U(x) = e- A(X)''', (BI4) 

where now, },,(x) = (A I (X)A.2(X), A3(X)) are real functions. Also, 
in this case, the coefficient of r/J in (B9) are functions of space­
time coordinates. 

2. Octonlonlc transformations 

When we consider octonions, we may define an octon­
ionic transformation, or 0 transformation, by means of the 
octonion V, in our case, split 

V = Pouo• + PiU·i + qouo + q/ui , i = 1,2,3, (BI5) 

where Po, Pi' qo, qj> i = 1,2,3, are real coefficients. Then, 

(BI6) 
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is the conjugate of V. Comparing with quatemions, we can 
define 

V-I=U. (B17) 

Actually, 

UV = VV = V-IV = V-IV = (Poqo + p;q;)"l, (B18) 

which will be equal to I if 

Poqo+ p;q; = 1. (B19) 

In this case we have for V, 

V = e- 6
•
u

• - Y'u, (B20) 

where band yare real parameters. 
For an extension of the case valid for quatemions, the 0 

transformation of an octonion 'I' is defined by 

'1" =! [(V'I')V- I + V('I'V- I)] . (B21) 

We can show easily that 

(V'I')V- I = V('I'V-I), 

which simplifies the relation (B21) above to 

'1" = V'I'V- I . 

If if! is given in terms of components by 

if! = Pou*o + p;u*; + KoUo + K;U; , 

we have, after (B23), 

'1" = (PoPcIlo + POPkqk + PkKcIlk - PkKkqO)U*O 

+ [Popp Po - PoPoPp + PpKoPo + PpKk Pk 

+ €klp(PO Klqk - qoKkqIl- €ijk€klp P; Pjql ]u*p 

+ (qoKoPo + qo Kk Pk + qk PoPk - qk Pk Po)uo 

+ [qo Kpqo - qo KcIlp + qp PcIlo + qk Pkqp 

(B22) 

(B23) 

(B24) 

+ €kIP(Pk Plqo - POPk PI) - €ijk€klpq;Kj PI] up . (B2S) 

We can obtain a relation similar to (B8), for 0 transfor­
mations: 

V(u*; + u;)V- 1 = kiju*j + lijuj , i,j = 1,2,3. (B26) 

In terms of components it is 

P6{);p + P; Pp - €i/pqj(Po + qo) + €ijk€klp Pjql = kip , 

(B27) 

q6{);p + q;qp - €i/p Pj(Po + qo) + €ijk€klpqj PI = lip , 

with the additional condition 

(B28) 

From (B27) we see clearly that in the limit qo,;- Po,;' the 0 
transformation, through V, is equivalent to a Q transforma­
tion, through V. Therefore, the 0 transformation is homo­
morphic to the rotation group 0 3 and so it must be SU(2)-like 
(in our case). This is due to a mixture of terms observed in 
(B27). Besides we observe a certain symmetry, with regard to 
the positioning of components terms, in expressions (B2S) 
and (B27). 

For the local 0 transformations, which are used in the 
octonionic space, we must have 
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'I' = 'I'(x) = Po(X)U*o + p;(X)U*; + Ko(X)Uo + K;(X)U; , 

V = V(x) = Po(X)U*o + p;(X)U*; + qo(X)Uo + q;(x)u; , 

and 

V(X) = e - 6(x)·u· - Y(X)'u , 

where b(x) and y(x) are now real functions of the space-time 
coordinates. 
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The construction of eigenstates of the square of annihilation operators for a two-mode para-Bose 
system is reported. Bose coherent states can be deduced from these eigenstates as a special case. 
These states are termed para-Bose coherent states. These states are degenerate. The expansion of 
the coherent states in terms of two-mode para-Bose energy eigenstates has been obtained and their 
salient properties are discussed. Also discussed is the uncertainty product of the square of position 
and momentum operators in the para-Bose coherent states for a two-mode system. 

I. INTRODUCTION 

We discuss in this paper the construction and properties 
oftwo-mode para-Bose coherent states. These states are de­
fined as eigenstates of the square of annihilation operators. 1 

It may be recalled that for normal Bose and one-mode para­
Bose systems,2 the coherent state is defined as the eigenstate 
of the annihilation operator aj , i.e., 

a j IZI' Z2 .. 'Zj .. .) = Zj IZI' Z2" 'Zj ... ) 

(normal Bose case) and 

alz, L) =zlz, L) 

(l.1a) 

(l.1b) 

(one-mode para-Bose case). Here L is a positive integer 
known as the order of parastatistics.3 For bosons, L = 1, 
while for parabosons, L > 1. The minimum energy of a para­
Bose system depends on L. For a Bose system (L = 1) the 
operators belonging to different modes commute among 
themselves, i.e., 

(1.2) 

As a result it is possible to find simultaneous eigenstates of 
adi = 1,2, ... ). For a one-mode para-Bose system it is again 
possible to define a coherent state as an eigenstate of a [cf. 
Eq. (Lib)]. However, for a para-Bose system with two or 
higher modes, we are confronted with the problem of the 
non-commuting nature of the annihilation operators belong­
ing to different modes. Therefore simultaneous eigenstates 
of annihilation operators cannot be constructed. On the oth­
er hand, the square of annihilation operators and J jk 

= Uak ,a J] commute among themselves for a multimode 
para-Bose system, i.e., 

[af,a~] = 0, [a~, J jk ] = 0, (1.3) 

and we define para-Bose coherent states as the simultaneous 
eigenstates of af and Jjk (i,k = 1,2, ... ). We shall discuss only 
the two-mode para-Bose coherent state, a representative of 
the multimode system. The contents of the paper are ar-

8) Permanent address: Department of Physics, Indian Institute of Technolo­
gy, Hauz Khas, New Delhi· 1 JO 016, India. 

ranged as follows. In Sec. II we shall define the two-mode 
para-Bose coherent state and obtain its expansion in terms of 
energy eigenstates. The matrix elements of Hamiltonian and 
the squares of the position and the momentum operators will 
be obtained in the coherent state, and the familiar results of 
the normal Bose and one-mode para-Bose cases will be de­
duced as special cases. In Sec. III, the uncertainty relation 
for the squares of position and momentum operators with 
their expectation values in the coherent state will be dis­
cussed. 

II. DEFINITION OF PARA-BOSE COHERENT STATES 

We define the two-mode para-Bose coherent state 
IZl' Z2' Z, L ) as an eigenstate of a commuting set of operators 
aLai, and J = Ha2,ad (J = ° for normal bosons) with 
eigenvalues zI

2,zi, and z, respectively, i.e., 

and 

a~ IZl' Z2' Z, L) = ~ IZl' Z2' Z, L), 

ai IZl' Z2' Z, L ) = zi IZJ> Z2' Z, L ), 

(2.1a) 

(2.1b) 

J IZl' Z2' Z, L) = ZIZl' Z2' Z, L). (2.1c) 

We shall see that coherent states IZJ> Z2' Z, L) arenotorthog­
onal. The expansion of Iz I' Z2' Z, L ) will be obtained in terms 
of energy eigenstates,4,5 Inlm) for the two-mode para-Bose 
system. The energy eigenstate In,l,m) is defined as 

1 
Inlm) = ~ ({at ,a2}nat)IJ +nIO) (l>m). (2.2) 

vNnlm 

Here 10) is the vacuum state such that 

{aj,a/}IO) =L8jj I0), (2.3) 

with L being the order of the parastatistics. Here J + is the 
Hermitian conjugate of J, andJ + creates one particle each in 
both the modes. Its nonvanishing nature for parabosons 
gives rise to antisymmetrical states. For the state Inlm) the 
number of excitations of first and second modes are n + m 
and 1+ n - m, respectively. Hence there is degeneracy if 
only (m + n) and (I + n - m) are fixed. It is becauseJ + #0. 
The Bose energy states are nondegenerate as J + = 0. The 
normalization constane N n1m is given by 
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Ilml(/-A/)II(n + I + I-An+/)!!(n + I +L - 2 +An+/)II(n -A .. )!I(n +L - 3 + A .. )!! 
N .. lm = , 

(I + I - A/)U(/- m)I(L - 2)1 
(2.4) 

I 
where Ak is the projection to odd k values, Le., degenerate eigenstates of a; (i = 1,2) and J because of invar-

Ak = H 1 - ( - I)k] = 0, if k is even, (2.5) 

Ak = HI - ( - l)k] = 1, if k is odd. 

The states Inlm) are orthonormal, Le., 

iance ofthe subspaces with respect to a;. It will be a trivial 
exercise to verify that even for bosons and the one-mode 
para-Bose system the eigenstates of a; are degenerate. But if 
the eigenstates of the square of the annihilation operator are 
allowed to be eigenstates of the annihilation operator as well 
for bosons and the one-mode para-Bose system then the de­
generacy vanishes. By definition, the two-mode para-Bose 
coherent state is an eigenstate of ai ,a~, and J. It can be veri­
fied that, on putting n = 0 in the expansion (2.7), the eigen­
value,z,ofJ for the eigenstate IZI' Z2, Z, L) becomes zero and 
the states Iz I' Z2' Z = 0, L ) span the subspace of the Hilbert 
space. Therefore for the two-mode para-Bose coherent state 
IZI' Z2' Z, L ) to span the complete Hilbert space, it is neces­
sary that it should be an eigenstate of three commuting oper­
ators aLai, and J. These three operators ensure the com­
pleteness ofthe two-mode para-Bose coherent states, 

(n'I'm'lnlm) = ~""'~II'~mm" (2.6) 
Let us define the expansion of IZI' Z2' Z, L ), in terms of ener­
gy eigenstates Inlm), as 

IZl> Z2' Z, L ) = L C"lm Inlm) (I> m). (2.7) 
,,1m 

Here Cnlm is the expansion coefficient and is a function of 
z I' Z2, Z and L. The Hilbert-Fock space of our two-mode 
system spanned by states I nlm) is composed of the following 
subspaces, which are invariant with respect to all the genera­
tors of symplectic SP4,R algebra: (i) the subspace SI(L) 
spanned by all the vectors Inlm) having both n and I even; (ii) 
the subspace S2(L ) spanned by all the state vectors having n 
odd and I even; and (iii) the subspace S3(L ) spanned by all the 
vectors having I odd. 

Thus the expansion of IZI' Z2' Z, L ) in Inlm) will yield 
I 

Now let us consider the expansion of states Iz I' Z2' Z, L ) 
in terms of basis Inlm) using Eq. (2.2), (2.4), (2.6), and (2.7). 
In the process of expansion we obtain the following recur­
rence relations. 

3141 

(I) For even n and I values, 

r.C _ [(m + 2)(m + I)(n + I +L)(n + I + 3)]112 C 
I .. 1m - (I + 3)(1 + I) .. ,1+2,m+2 

_ [(m -I + I)(m -/)(n + 2)(n + L - 1)]112 C 
(I + 1)(/- I) n+2,1-2,m' 

~C _ [(n + L + I)(n + 1+ 3)(/- m + 2)(1- m + I)] 112 C 
2 .. 1m - (I + 3)(1 + I) .. ,1+2,m 

_ [m(m - I)(n + 2)(n +L - I) ]1I2C 
(I + 1)(/- I) .. +2,1-2,m -2' 

zC .. lm = [(n+L+ 1)(L+n-I)F/2C"+ 1,I,m' 

(II) For even n and odd I, 

ifC,,/m = 1(1: 2) [(m + 1)(/- m)(n + 1+ 2)(L + n - 1)]1/2Cn+ I ,I,m + I 

+ (I + 2)-I[(m + 2)(m + I)(n + 1+ 2)(n + L + I + I)P/2C",1+2,m+2 

_1-1[(/_ m)(/- m - I)(n + 2)(n + L - I)] 1/2C .. + 2,1_2,m, 

~C .. lm = 1(/~22) [m(/- m + 1)(1 + n + 2)(L + n - 1)F12Cn+ 1,I,m-1 

+ (I + 2)-1[(/_ m + 2)(/- m + I)(n + I + 2)(n + 1+ L + I)] 1I2C .. ,I+ 2,m 

-I-I[(n + 2)m(m - I)(L + n - I)] 1/2C .. + 2,1_2,m_2' 

zC .. /m = - [In + L - I)(n + 1+ 2)] 1/2C .. + 1,I,m' 

(III) For odd n and even I, 

z2C _ [(m + 2)(m + I)(n + 1+ 2)(n + I +L + I) ]112 C 
I .. 1m - (I + 1)(1 + 3) .. ,1+2,m+2 

_ [(/- m)(/- m - 1)(n + I)(n +L )]112 C 
(/_ 1)(/ + 3) .. +2,1-2,m' 

J. Math. Phys., Vol. 26, No. 12, December 1985 G. M. Saxena and C. L. Mehta 

(2.8) 

(2.9) 

(2.10) 
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~C _ [In +L + I + 1)(n + I + 2)(/- m + 2)(/- m + 1)]112 C 
2 nlm - (I + 1)(1 + 3) n,l+2,m 

[
m(m - l)(n +L)n + 1)]112 C 

- (/-1)(/+ 1) n+2,1-2,m-2' 

zCnlm = [(n + 1)(n + 1+ 2)] 1/2Cn + 1,I,m' 

(IV) For odd n and odd I case, 

Z~Cnlm = I (/ ~ 2) [(m + 1)(/- m)(n + I + L )(n + 1)] ~12Cn + 1,I,m + I 

+ (I + 2)-I[(m + 2)(m + 1)(n + I +L )(n + 1+ 3)j112Cn,I+2,m+2 

-1-1[(1- m - 1)(/- m)(n + I)(L + n)] l/2Cn +2,1-2,m' 

z;Cnlm =~ ((n + l)(n + I+L)m(/- m + 1)]I12Cn+llm_1 
1(1 + 2) .. 

_I-l[(n + 1)(n + L )m(m - 1)] 1I2Cn + 2,1_ 2,m-2 

+ (I + 2)-1[(1- m + 1)(/- m + 2)(n + L + I)(n + 1+ 3)] 1/
2Cn.l+ 2.m' 

zCnlm = - [In + 1)(L + I + nJP/2Cn + I,/,m' 

On solving the recurrence relations (2.8)-(2.19) we obtain, for all even and odd values of n and I, 

[ 
(/+I-A/)!!(/+L-2+A/)!!(L-3)!! ]112 

C =(1-2Jl)z" C 
n,l,m (n _ An )11(1 + n + 1 - An + I )!!(n + L - 3 + An )11(1 + n + L - 2 + An + I)!! O,I,m' 

where Jl is defined as 

Jl = 0, for any combination of n and I when both are not odd; 

Jl = 1, when n and I both are odd. 

We can also write CO,l,m for all values of I and mas 

Co,l,m = (Zl)m(Z2)/- m 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

x[ r(((l+ 1)/2] +UF(L/2)F(!) ]112 
2Ir([m/2] + 1)F([(l- m)/2] + I)F([(/- m + 1)12] + ~)F([(m + 1)/2] + ~)F([(I + 1)/2] + L 12) 

X Cooo FI,m (z, Z I' Z2) . (2.21) 

Here, 

CO,2,I ra(zlz2/.JL)Cooo 

is taken and [Y] stands for the largest integer smaller than or equal to Y. 
The Flm (z, z\> Z2) are defined as 

~ 2Pml(2/- 2p - 1)11(/- m)! ( z )2P 
F212m = 1 + ~ -- , 

, P= 1 (m - p)!P!(2/- 1)11(/- m - p)1 ZlZ2 

~ 2Pml(2/- 2p - 1)11(/- m - 1)1 (Z )2P 
F212m+l =1+ ~ -- , 

, P= 1 (m - p)!P1(2/- 1)11(/- m - p - I)! ZlZ2 

(2.22a) 

(2.22b) 

m-I 2P+ Im!(2/- 2p - 1)11(1- m)! (z )2P+ 1 m 29m!(2/- 2q + 1)11(/- m)1 (z )19 
F21 + 12m =l+ L -- + L -- , 

, p=o (m - p - 1)!P1(21 + 1)11(/- m - p)1 ZlZ2 9= I (m - q)!ql(21 + 1)11(/- m - q)1 ZlZ2 
(2.22c) 

~ 2Pml(2/- 2p + 1)11(/- m)! ( Z )2P ~ 29+ Im!(2/_ 2q - 1)11(1- m)1 (z )19+ I 
F2J+l2m+1 =1+ ~ -- - ~ -- . 

, P= I (m - p)!P!(21 + 1)11(/- m - pI! ZIZ2 q=O q!(m - q)I(21 + 1)11(1- q - m - 1)1 ZlZ2 

(2.22d) 

From Eqs. (2.20) and (2.21) and the above derivations we may obtain Cnlm for all values of n, I, and m. 
The Cooo can be evaluated using the normalization property ofthe state IZl' Z2' z), i.e., 

(2.23) 

Up to an arbitrary phase it comes out to be 
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[

2m 2/-2m 2" { !1-~)(/+ l-A/)!!(L+I-2+A/)!! 
Cooo = Iz.1 IZ21 Izl ~ (n -A,,)!!(I + n + l-An+/)!!(L + n - 3 +A,,)!!(I + n +L - 2 +An+/)!I 

X (L - 3)!!r([(1 + 1)/2] + !)F(L 12)F(!l } r([(1 + 1)12] + L 12)] -.12 
2Ir([mI2] + 1)F([(/- m)/2] + 1)F([/- m + 1)12] + !)F([(m + 1)12] +!) 

(2.24) 

If we put L = 1 in the above equation with n = 0, and Fl,m = 1, then 

C - [Liz 12m lz 1
2/ - 2m { (F(!lf }] -112 

000 - I,m I 2 2Ir([m/2] + l)r([(/- m)/2] + l)r([(I- m + 1)12] + !)F([m + 1)/2] +!) 

(2.25) 

which is the familiar expression of the normal boson case. 
We shall now obtain the matrix elements of energy (free Hamiltonian), square of position, and momentum operators in 

these para-Bose coherent states. 
First we shall express the Hamiltonian, square of position, and momentum operators in terms of annihilation and creation 

operators. We have for two-mode para-Bose system, 

H = Ha.,at J + Ha2,at J , 

q; = !({aj>a/ J + a; + a/ 2
), 

p; = !({aj>a/ J - a; - a/ 2) (i = 1,2). 

(2.26) 

(2.27a) 

(2.27b) 

Using Eqs. (2.7), (2.26), and (2.27) we obtain the matrix elements of H, q;, and p;, which are given by the following 
equations: 

and 

(z., Z2, zlH Iz., Z2' z) = ') IC"/m 12(2n + 1+ L) , :rm 

(Zl' Z2, zlqi Iz., Z2' z) = ~ (zt + ZT2) + L ICnim 12(n + m +~) , 
2 nlm 2 

(Zl' Z2' zlq~ IZI, Z2, z) = ~ (~ + Z!2) + L ICnlm 12(n + 1- m +~) , 
2 ~m 2 

(z., Z2' zl pi IZI' Z2' z) = L ICnlm 12(n + m +~) - ~ (zi + ZT2), 
nlm 2 2 

(2.28) 

(2.29a) 

(2.29b) 

(2.30a) 

(2.30b) 

The Cn,l,m can be substituted from Eqs. (2.20) and (2.21). Here we have also made use of the fact that Inlm) is an eigenstate of 
H a.,at J and H a2,at J with eigenvalues (n + m + L 12) and (n + 1- m + L 12), respectively. 

We shall now deduce the familiar results of the normal Bose system and of the one-mode para-Bose system from the two­
mode para-Bose system as special cases. 

(i) Normal Bose system: In the normal Bose case, L = 1, n = 0, and J = ~ [a2,a.] = O. On putting these values in Eqs, 
(2.20)-(2.22), we obtain 

Co,l,m =z7'z;-m [(FH)f/2Ir([m]l2 + l)r([I- m/2] + l)r([I- m + 1]12 + !)r([m + 1]12 + m1l2. (2.31) 

We know that 

Kl = 2Kr([K]l2 + l)r([K + 1]12 + !)lr(!). 
So Eq. (2.31) can then be rewritten as 

CO,l,m = z7'z;- m [l/ml(/- mIl] -112 Cooo . (2.32) 

This is the familiar result obtained from the expansion 

Iz., Z2) = ~CI,m I/,m) 

for the normal Bose system. The constant Cooo is given by (2.25). 
(ii) One-mode para-Bose system: If we put either m = 0, or I = m (and L i= 1), we can realize the one-mode para-Bose 

system. Here again n = 0 and Flm = 1. We obtain from Eqs. (2.20) and (2.21) the relations 
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(i) for m = 0, 

CO,I,O = ~ [F (L /2)121 F ([I /2] + 1)F ([I + 112] + L /2)r !2Cooo ; 

(ii) for I = m, 

(2.33a) 

CO,I,I = i,. [F(L /2)/21 r([1 /2] + 1)F([1 + 112] + L /2)]1!2COOO ' (2.33b) 

These results are in agreement with the results of the 
one-mode para-Bose system.2 

We just observed that the eigenstates of a; (i = 1,2) for 
the two-mode para-Bose system readily give the familiar re­
sults for normal and one-mode para-Bose coherent states. 
We can, therefore, say that the above deductions also fulfill 
the requirement for the states Iz I' Z2' Z, L ) to be the coherent 
state. 

III. POSITION-MOMENTUM UNCERTAINTY RELATION 

For a multimode para-Bose system the position qi (mo­
mentum Pi) operators belonging to different modes do not 
commute. Consequently their simultaneous eigenstates can­
not be constructed. However, the square of the position q; 
(momentum p;) operators commute and we consider them 
observables. Their simultaneous eigenstates can be defined. 
The commutator of the square of the position (q;) and the 
momentum (p;) operators is not a Cnumber, i.e., 

The operator within the curly bracket on the right-hand side 
(rhs) is a Hermitian operator. We know that for the Hermi­
tian operators A, B, and C, which satisfy the commutator 
relation 

[A,B] = 1JC, (3.2) 

the uncertainties «(.1A f) and «(.1B )2) satisfy the inequality6 

(3.3) 

As a consequence for the operators q; qand P; we have the 
inequality 

(3.4) 

Taking the averaged value of the uncertainties in the square 
of the position and momentum operators in the para-Bose 
coherent states IZI' Z2' Z, L ) for a two-mode case, we should 
have 

«(.1Q;)2) «(.1p;)2) > - (z r2 
- z;)2 (i = 1,2) . (3.5) 

The rhs of the inequality depends on the state and it is a 
positive quantity. The para-Bose coherent states will be min­
imum uncertainty product states only if relation (3.5) is an 
equality and «(.1q;)2)«(.1p;)2)/121J(z; -z7ll is a minimum. 
In the para-Bose coherent states 

(IZ1' Z2' Z, L) = 2: C"lm Inlm») 

the uncertainties (.1qi f) and «(.1pi )2) have the values 
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I 
«(.1qi)2) = (qt) - (qi)2 

= [) IC"lm 12(n + m)2 + } IC"lm 12(n + m) 
:rna :r:. 

X {I - 2: IC"lm 12(n + m)l +zi +zT2 +~] , 
,,1m 2 

(3.6) 

and 

«(.1pi )2) = (pt) - (pD2 

= [2: ICnim 12(n + mf + 2: IC"lm 12(n + m) 
nlm nlm 

X {l- 2:ICnlm 12(n + m)l -zi _ZT2 +~] . 
nlm 2 

(3.7) 
Similarly «(.1q~)2) and «(.1p~)2) can be evaluated. The un­
certainty products «(.1q;)2) «(.1p;)2) (i = 1,2) in the para­
Bose coherent state are then given by 

«(.1qi )2) «(.1pi )2) 

= [{2:ICnlm 12(n + m) 
nlm 

X(1 + n + m - 2:ICnlm 12(n + m)) + ~12 
nlm 2 

- zt - ZT4 - 21z114] , (3.8) 

and 

«(.1~ f) «(.1p~ )2) 

= [{~ IC"lmI2(n+l-m) 

X (1 + n + 1- m - ~ICnlm 12(n + 1- m)) + ~ r 
-z~ _Z!4 - 21z214] . (3.9) 

The values of IC"lm 12 can be substituted from Eqs. (2.20)­
(2.22). 

The value of «(.1Q;)2) «(.1p;)2) (i = 1,2), obtained from 
Eqs. (3.8) and (3.9), when substituted in the relation (3.5), will 
not make it an equality. The rhs of the relation (3.5) depends 
on the state. Therefore the uncertainty product 
«(.1q7)2) «(.1p;)2) or the quantity «(.1q7)2) «(.1p;)2) 
X [I (21J(a/ 2 - a;) I] -I will not be the minimum for the 
two-mode para-Bose coherent states. The above product de­
pends on the state even for the normal coherent state since 
the commutator [q;, p;] is an operator. However, for the 
normal coherent state (defined as an eigenstate of a; and ai ) 

the uncertainty product «(.1q;)2) «(.1p;)2) is the minimum. 
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But for two- or higher-mode para-Bose coherent states the 
uncertainty product «(~qj )2) «(~qj )2) does not have any sig­
nificance, as for a para-Bose system q; and p; are considered 
observables. 

IV. CONCLUSION 

We have defined in this paper eigenstates of ai, ai, and 
J and called them two-mode para-Bose coherent states. The 
nomenclature "para-Bose coherent states" has been used for 
these states as normal coherent states, and the one-mode 
para-Bose coherent states can be deduced from them as spe­
cial cases. The two-mode para-Bose coherent state is an ei­
genstate, not of two but three operators, as otherwise these 
states are not complete and will span only a subspace of the 
Hilbert space of the para-Bose system. We also observe that 
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because ofthe operator J, different modes are not indepen­
dent of each other, unlike in the normal coherent states. For 
the para-Bose coherent state the uncertainty product or the 
quantity «(~qW) «(~pW)/1 (27](a/ 2 - am I is not the mini­
mum. It depends on the state and L, the order of parastatis­
tics. 
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The energy-time conjugation is discussed in terms of mutually Laplace conjugated positive 
variables. The quantum statistical distribution functions in the energy are thus put into 
correspondence with "draw" distributions in the time, represented by sums of Dirac ~ 
distributions. Time averages on correlation functions correspond to ensemble averages in energy. 
Conversely energy coupling of systems can be represented by a special operation on the ~ 
distributions in time. For this aim, the connection of distributions is introduced, which enables one 
to take into account in some "multiplicative" way their simultaneous and cooperative effects. The 
Appendix is entirely devoted to the definition and properties of these connections and to some 
aspects of their algebra that make them suitable for treating some fundamental problems bound to 
the necessity of accounting interactive effects of singularities. 

I. INTRODUCTION 

In quantum mechanics, the use of the Fourier transform 
is very frequent, leading to the consideration of mutually 
conjugated variables. 

For instance, the momentum components of a quantum 
object (Px,Py,Pz) appear to be conjugated to the position 
components of this object (x, y, z); or in other terms, the reci­
procallattice of wave-vector components kx,ky,kz appears 
to be the conjugated one of a space lattice with fundamental 
vector components x, y, z. Expressing i 1 correlations 
between Fourier conjugated variables leads alSO to the well­
known uncertainty relations I (~Px~x>Ii, ... ). 

The situation is quite similar (as suggested by the relativ­
istic point of view) to that between the energy and the time 
variables, but the physical meaning of this conjugation is not 
exactly the same: energy is a dynamical variable of the con­
sidered system and the time is a parameter. 

Therefore, if position and momentum playa symmetric 
role in the description of the system, being measurable at the 
same given time t, energy and time in contrast do not play the 
same symmetrical role: the uncertainty on the energy (~E ) is 
related to a duration (~t), which is characteristic ofthe evo­
lution of the system (for instance, a quantic transition or a 
lifetime of a resonance). 

Moreover, we have to consider that the time variable, 
due to its possible irreversible character, does not present the 
same symmetry features as the position ones. Such a remark 
can also be related to the fact that the energy, for its part, has 
to be considered as essentially positive (excluding of course 
the case of the antiparticles for which, if one may speak of 
negative energies, we also have to speak of past-oriented 
time, as in Feynman time-oriented graphs). 

Given these considerations, it could be interesting to 
raise the following question: if to a particular distribution of 
positions (like a lattice) there corresponds a conjugated dis­
tribution in momenta-or wave vectors-(like a reciprocal 
lattice) by the means of a Fourier transform, which involves 
all the relevant space (from - 00 to + 00), what type of 
distribution in a temporal space would correspond to a dis­
tribution in energy of an ensemble of particles, both spaces 

allowing only positive values for their variables, using for 
this aim, for instance, a Laplace transform2 (which can be 
considered as a particular, restricted, Fourier transform)? In 
order to answer such a question two approaches are possible, 
which lead, of course, to the same results. Either we consider 
a special distribution in time variables and we "Laplace­
transform" it (in the same manner as special positions of a 
lattice permit by the means of a Fourier transform to con­
struct, for instance, Brillouin's zone in a reciprocal lattice), 
or we choose a particularly significant energy distribution 
for our quantum objects and we "inverse-Laplace-trans­
form" it. The physical meaning of this second way is more 
evident and for this reason we will use it in the following. 

II. ENERGY DISTRIBUTIONS AND THEIR INVERSE 
LAPLACE TRANSFORMS 

Indeed we know quite natural relationships between the 
distribution in energy of quantum objects and their available 
energy levels, which are represented by their statistical dis­
tribution functions. 

Considering the particles as indistinguishable, the func­
tion !pIE,) representing the occupation number of the rth 
energy level E, is 

!pIE,) = (e(E,-I-')/J + E)-I. (I) 

Here !pIE,) obeys the normalization condition ~,!p(E,) = N, 
where N is the total number of particles; {3 = (kB T) -I is 
related to the temperature T(kB is the Boltzmann constant); 
p, is either the Fermi level (for fermions) or the chemical 
potential (for bosons), both related to the condition 
~,!p (E,)Er = E (the total energy); E is a constant, + 1 or 
- 1, depending on the type of the statistics: Fermi-Dirac for 

fermions (submitted to the exclusion principle) and Bose­
Einstein for bosons, respectively. 

In the case of a distinguishable particle statistics, !p(E,) 
takes the form ~e -f3E, (Maxwell-Boltzmann distribution). 
It is clear that such an expression can be derived from (1) 
putting E = 0 directly in it or considering a degeneracy when 
(E, - p,)/3 > 1; but it is worthwhile to remark that the impor­
tant fact lies in the physical (and conceptual) aspect of the 
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difference between discemability or undiscemability of the 
elements themselves much more than in a limiting procedure 
for the distribution function. 

Developing (1) for a Bose-Einstein distribution 
(E = - 1 and,u.;;;;O) we obtain 

lPB(Er) = f c!(k+ I)v.- E,). 
k=O 

(2a) 

In the case of a Fermi-Dirac distribution (E = + 1), the 
situation is a little more complicated, because we have to 
distinguish between two possibilities: Er >,u and Er <,u. 

In the first one (lP == lPF+) we have 

lPF+ = f (- l)kc!(k+ I)v.- E,) (2b) 
k=O 

and in the second (lP = lPF _ ): 

lPL = f (- l)kc!k(E,-J.<). (2c) 
k=O 

For a Maxwell-Boltzmann distribution we simply have 
-fJE 

lPM~e '. 
Now we have to choose a relevant so-called Laplace 

variable in such a way that, as far as possible, these expres­
sions are mutually comparable. Choosing the energy Er di­
rectly would work without difficulty for (2a) and (2b) because 
of the minus sign in the exponential in front of the argument 
Er , but it would cause trouble in (2c), which shows another 
formal behavior. (In the following, however, we will some­
times make this choice in order to illustrate some examples 
in the two restricted cases.) To be more general, we will 
choose Sr = I.JEr I = IEr -,ul for this Laplace variable to 
which correspond, respectively, the functions 

VlB(sr) = f e-fJ(k+I)s" 
k=O 

VlFJSrJ = f (- l)ke -fJ(k + I)S,+, 
k=O 

VlF_ (sr_) = f (- We -fJks
,_ 

k=O 

(and of course VIM ~e - fJs
'). 

(3a) 

(3b) 

(3c) 

At this point it may be asked how to distinguish basical­
ly the two eventualities (3b) and (3c) for which the variable Sr 
does not mean exactly the same physical quantity (Er -,u in 
the first case and,u - Er in the second). We propose here a 
physical answer coming from the fact that for a zero tem­
perature (T --0, {3-- 00) VlF + has to be equal to zero and VlF_ 
to 1 (Fermi degeneracy). This feature has a clear correspon­
dence in the "reciprocal space" we introduce now. 

Let us consider indeed the functions VI as Laplace trans­
forms (with variablesr ) of some functionsf (with variable t). 
It is easy to obtain by inverse Laplace transformation the 
following results: 

00 

fB(t) = L 8(t - a{3(k + 1)), (4a) 
k=O 

00 

fF.!t) = L (- 1)k8(t - a{3(k + 1)), (4b) 
k=O 

00 

fF_ (t) = L (- 1)k8(t - a{3k), (4c) 
k=O 
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where 8 is the Dirac distribution. 
We write the operation of the Laplace transformation as 

VI(sr) = 100 

e-S,J/af(t)dt. 

Therefore a is a constant with the dimension of an action (it 
may be bound to Ii, the Planck constant). From this point of 
view of the dimensionalities, it is to be noted that the "func­
tions" f have the dimension of the inverse of a time, i.e., a 
frequency (through the 8 Dirac distribution), and that their 
transforms VI (occupation numbers) have no dimension as 
requested by our conventions. [We have also fM 
~8 (t - a{3).] The "functions" fare represented in Fig. 1. 

The two following remarks may be made at this stage. 
(1) The distinction between the situations generated by 

VlF+ and VlF_ is very easy to specify in the t-variable space: it 
corresponds indeed to the impossibility or possibility of the 
"occupation" (0 or infinite value for f), respectively, of the 
t = 0 state. This point will be discussed in the next para­
graph. 

(2) The values of the integrals off, depending on t, are 
interesting to calculate. We have, with G = f~f(t )dt, 

GB(t)=k, for k.;;;;t/a{3<k+ 1, (Sa) 

---
---

(a) 

'" ~'T"'t --- +~~ ---

(b) 

o--~~-------------

(c) 

FIG. 1. (a) Inverse Laplace transform for Bose-Einstein statistics (-) and 
its integral (- - -). (b) Inverse Laplace transform for the Fermi-Dirac statis­
tics in the two cases mentioned in the text: (+ + + +), under the Fermi 
level; (-), above the Fermi level and their integrals (+ + +) and (- - -), 
respectively. (c) Inverse Laplace transform for the Maxwell-Boltzmann sta­
tistics (-) and its integral (- - -). 
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Gp.!t) = 0, for 2p<t la/3 < 2p + 1, 

GpJt) = 1, for 2p+ l<tla/3<2p+2, 

and conversely 

Gp_ (t) = 1, for 2p<t la/3 < 2p + 1, 

GpJt) =0, for 2p+ l<tla/3<2p+2, 

GM(t)= Y(t-a/3), 

where Y is the Heaviside distribution. 

III. COMMENTARY 

(Sb) 

(5c) 

From these results it is conceivable to consider the t 
space as the space of the drawings of the different particle 
species according to their possible assignations at definite 
states to which correspond the energy levels in the "recipro­
cal" energy space. Denoting the different combinations of li 
distributions as "draw functions" (Fig. 1) their integrals G 
can be interpreted as the possibility for a given species to be 
characterized by the corresponding occupation number for 
the available states. Thus the Fermi-Dirac statistics permit 
only the repeating of the numbers 0 and 1, according to the 
exclusion principle, while the Bose-Einstein statistics autho­
rize all the possible numbers, draw after draw, for one state. 
The Maxwell-Boltzmann statistics, for their part, permit 
numbers 0 and 1, but once only, due to the fact that its ele­
ments are all distinguishable; so when a draw has taken place 
for one of them, then no more is possible for the considered 
species. 

Coming back now to the question of the distinction 
between two situations for the-Fermi-Dirac statistics (fp + 

andfp_), it is easy to interpret it in the drawings space we 
have introduced. Indeed it may be considered that the differ­
ence lies essentially in the initial state at t = 0: has a draw 
taken place or not initially? If yes, then the state is full what­
ever the temperature [T = 0, /3---+ 00, cf. (4c)); if not, then the 
state is empty whatever the time (as measured by k ), because 
a/3 is infinite at T = 0 [cf. (4b)]. In the energy space it corre­
sponds to the fact that at the absolute zero temperature all 
the energy states under the Fermi level have a probability 
equal to 1 to be occupied, and the energy states above the 
Fermi level have the same probability to be empty. 

IV. ENERGY AVERAGING AND TIME CORRELATIONS 

From a statistical distribution point of view, what we are 
interested in is also mainly the possibility of taking averages 
for physical quantities. In this way some important remarks 
can follow from the results we have presented here. 

In the energy space the individual operations for taking 
averages are (1) to multiply the statistical function by some 
other one corresponding to the quantity to be averaged, and 
(2) to integrate the product over the relevant energy values. 

What types of operations correspond to these ones in the 
reciprocal t space of draws? 

To the first corresponds no more a multiplication but a 
convolution, which can be interpreted as the establishing of a 
time (or draw) correlation. If g(t ) is the inverse Laplace trans­
form of a function y(s), then the correspondence 
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y(s~ (sJ---+ f g(rlf(t - rjdr = gc(t) 

holds. 

(6) 

The second operation (integration in thes space) is relat­
ed to another one in the t space depending on the limits of the 
integral, for instance, 

i
oo 1 

y(s)q:J (sjds---+ - gc(t). 
s t 

(7) 

It is interesting to note that to an ensemble average (on 
the energy) in (7) (left-hand side) corresponds something like 
a time average (or a drawing average) in the right-hand side. 
This fact could be possibly related to the ergodic properties 
for such systems. 

Taking into account the special form off (as sums of a 
weighted li-distribution), gc can be expressed as 

K 

gc(t) = L ak g(t - a/3k), K<t la/3 <K + 1. 
k=O or I 

The coefficients ak depend on the nature of the statis­
tics; so does also the lower bound for k. 

Being careful in the regularization of the involved inte­
grals, it is then possible to show that to a density of states 

D (E,) proportional to.jE; -in order to define the number of 
particles as N = SoD (E,)tp (E,jdE, and in this way the Fer­
mi level or the chemical potential-corresponds a distribu­
tion in the t space of the form l:kbdt - a/3k )-3/2. It is then 
possible to represent in this manner different particular phe­
nomena such as the Bose-Einstein condensation in this spe­
cific case. 

V. ENERGY COUPLING AND DISTRIBUTION 
CONNECTIONS IN TIME 

Conversely it may be asked if some correlation in the 
energy space may arise from a specific process in the draw 
space. Of course usually there is no particular problem to 
create such correlations in the Laplace conjugated variable. 
It is sufficient indeed to consider the direct product of two 
functions, say fl(t ) Xf2(t) in the time coordinate and its La­
place transform can be written in the form of a convolution 
product like (1!2i1T)S~ ~:: tpl(Z~2(S - zjdz, tpl(S) and tp2(S) be­
ing the Laplace transforms offl(t ) and};(t), respectively, all 
the poles of the functions being at the "left" of c. 

But in the specific case of our distributions we have two 
reasons to consider such a procedure as irrelevant. 

( 1 ) Direct product of functions in the time coordinate are 
not possible because we have no more functions but Dirac 
distributions, the products of which are not defined. 

(2) It would be more interesting and useful to be able to 
assign some operation in the time coordinate system leading 
to a coupling like sgtp (E'~ (E - E 'jdE' between the energy 
probability functions, for instance, or for any other functions 
developable as a series of exponentials of the energy, i.e., 
involving a Dirac distribution in time. It is possible to specify 
such a combination defining an operation between Dirac dis­
tributions, which we call connection (see the Appendix where 
the definitions and properties are given and results are ob­
tained that we will use here). 
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For our purpose it is sufficient to know that given a 
connection (indicated by a dot .) between t3 (x - xo) and 
t3 (x - XI)' then, if XO,x1 E [a,b], 

[ t3(x - xo) • t3(x - xI)f(x)dx = f(xo) - f(xI) (Sa) 
a XO-XI 

[cf. Eqs. (A 7a) and (A 7b) of the Appendix] and that at the 
limitxc~xo, for instance, we have indeed,fbeing a "good" 
function, 

Lb t3(x - xo) • t3(x - xo)f(x)dx 

= Lb t3 [2/(X - xoif(x)dx 

= - Lb t3'(x - xoif(x)dx = !'(xo) 

[cf. Eq. (A5) of the Appendix], which means that the expres­
sion (Sa) is true for all XO,x1 E [a,b] (also when Xl = xo). 

Taking the Laplace transform of connections is then 
equivalent to calculating 

i
eo e-PXo - e-Px, 

t3(x - xo) • t3(x - X de - px dx = , 
o Xo -Xl 

(Sb) 

for all xl,xo;;;'O. 
Let us apply this procedure in our case of the draw dis­

tribution. To be specific (and also because it is less complicat­
ed) we choose the Bose-Einstein function as the basic statis­
tical distribution with E, as the Laplace variable [cf. Eq. 
(2a)]. 

In the time coordinate we have then the corresponding 
distribution: 

eo 

fIB(t) = L eP(k+ 1l/J,t3(t - a{3(k + 1)). 
k=O 

(9) 

Suppose that some function I (t ) is developed under the form 
eo 

I(t) = L amt3(t - a{3m), 
m=O 

to which corresponds by Laplace transform, in the energy 
space, the exponential development 

eo 

A. (E) = Lam e - mPE. 
m=O 

Then coupling I (t ) to,l;B (t ) by means of the connections leads 
to the expression 

Cit) = I(t) .fIB(t) 

= i: i: amePlL(k+1)t3(t-a{3(k + l)).t3(t-a{3m). 
m=O k=O 

(lOa) 

Laplace-transforming (lOa) and taking into account Eq. (Sb), 
we obtain r (E) as3 
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eo eo e-PE(k+ I) e-PEm 
r(E) = L L a ePI'(k+ I) -

m=O k=O m a{3(k + 1- m) 
eo eo e-PE(k+ I) 

= L L ameP!J(k+I) __ -
m=Ok=O a 

X IE e-PE'(m-k-l) dE'. (lOb) 

And finally performing the summations over k and m, we get 

riEl = ~ rE 
fPB(E')A. (E - E')dE'. (Ua) 

a Jo 
Equation (lla) is the desired expression for a correlation in 
energy. Of course, if A. (E) itself corresponds to a Bose-Ein­
stein distribution fPB(E), i.e., if am = ePl'm for m#O and 
ao = 0, then (lla) takes the form of a self-correlated statisti­
cal distribution: 

~ rE 
fPB(E')fPB(E - E')dE'. (Ub) 

a Jo 
VI. CONCLUSION 

These examples are easily extended to other cases. The 
important feature lies in the fact that we have been able to 
construct correlations in both mutually conjugated spaces: 
energy and time. 

We have to remark that relations like (lla) and (lIb) are 
typical of results for coupled systems, each of them having 
independently its definition and individuality before the cou­
pling process, if we neglect the proper interaction param­
eters.4 

Thus it appears that the use of the connections in the 
draw space (i.e., in the time coordinate) between the Dirac 
distribution plays the role of establishing such a coupling 
between the systems represented each one by their own dis­
tributions developments. This method enables us to repre­
sent the coupling directly in the space where the draw takes 
place (or where the relevant time variable is flowing). 

In particular it is to be noted that (lla) and (lIb) play an 
important role in passing, by coupling between systems, 
from a microcanonical ensemble to a canonical ensemble in 
statistical mechanics (and thus also in defining a system in 
interaction with a thermostat4

). 

Saying it in another way, to the question, "What would 
correspond, in the time coordinate space, to the coupling in 
energy of physical systems?," we may answer in terms of 
distribution connections. 

Only a few special energy distribution functions in ener­
gy have been considered in this paper and their inverse La­
place transforms physically interpreted. However, we want 
to point out the fact that in principle every distribution func­
tion in energy, developable as a series of decreasing exponen­
tials of the energy (or of some simple function of the energy 
as Laplace variable), may be transformed and interpreted in 
the same way by the means of t3 distributions and their con­
nections in the time, as it appears considering the general 
method we have used here. 

Indeed, writing, for instance, (whatever Pn) 

fP (E) = LPne - pnE, 
n . 
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leads to an inverse transform in time of the shape 

I(t) = LPnc5(t - af3n), 
n 

and then all the considerations we have developed above can 
be applied. 

More generally these types of results hold for any corre­
spondence between energy and time through the Laplace 
transform, but the interesting fact of having to introduce 
connections for c5 distributions may disappear. 

Before terminating this conclusion we want to discuss a 
last important point: What happens with the uncertainty 
relation between time and energy in this representation? 

Of course this relation is a physical one directly associat­
ed with the existence of the action constant and is not bound 
to a special representation of the correspondence between 
energy and time, but it may be interesting to discuss briefly 
how it appears in our particular representation. To do it we 
will follow two different, but corresponding, types of consid­
erations. 

Usually in the frame of the Fourier transform represen­
tation a qualitative argument is to be found in accounting the 
rate of periodic oscillations contributing to plane monochro­
matic waves in a wave packet and it is shown that there is a 
relationship (whose notations are evident) such as.1&::::::.(aE I 
apjljp. 

As aE lap = v and .1t~xlv, one obtains then 
.1E.1t~x.1px ~ h (the last inequality having been demon­
strated earlier). 

In our case such a qualitative argument can be used too, 
but we have now to consider the relevant contributions in 
evolutive, nonstationary processes. Such processes are well 
represented, for instance, by an exponential decreasing evo­
lution in the time involving a relaxation time (or a lifetime) T 

(~e-t/1· 

Similar considerations as above for stationary oscillat­
ing situations show that these relevant contributions to such 
processes are indeed fulfilling the same types of conditions 
and so .1E..1t must be greater than h. (A more precise and 
deeper discussion applicable in our case may be found also in 
Ref. 5.) 

However, a more rigorous result can be established, 
starting from another point of view. 

Considering, indeed, the well-known quantum mechan­
ical commutators or their classical counterparts, the Poisson 
brackets, these operators obey, for time t and energy E, the 
obvious relations 

[! ,t ] = [:E ,E ] = 1. 

Now we recall that in our Laplace transformations the 
operator a lat is transformed into a multiplicator (E) (drop­
ping out an inessential additive constant for the transformed 
function at t = 0) and that, conversely, the operator a laE is 
inverse-transformed into the multiplicator ( - t) (cf. also the 
rules of the symbolic operational calculus and similar corre­
spondences for Fourier transformations). 

We obtain thus, as in the usual representations where 
these commutators take place (neglecting here the dimen­
sional factor h ), 
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[E,t] = - [t,E] = 1. 

Now, as discussed by most of the authors on quantum 
mechanics (see also Ref. 7), the "fourth" uncertainty rela­
tion, between time and energy does not possess the same 
status as the three others (between position and impulsion), 
for if the energy represents, indeed, a physical observable of 
the system to which corresponds a quantum Hermitian oper­
ator, the time for its part is by no way such an observable but 
much more an external parameter with no corresponding 
operator. 

Thus in order to derive mathematically such a relation, 
it is necessary to come back to the earliest bases of the opera­
tor algebra of quantum mechanics, i.e., the classical Pois­
son's brackets, which describe precisely the evolution in time 
of some physical quantities and to take into account directly, 
as done for instance by Morse and Feshbach,8 the effect of 
such commutation relations on the mean square deviation of 
the considered quantities. 

LetA andB be such quantities; then, to the value k of the 
Poisson's bracket between them ([A,B] = k ) corresponds the 
value k 12 of the product of their mean square deviation 
(..1A..1B>kI2)with..1A = [(A 2) - (A )2r /2 andsimilarlyfor 
..1B (the ( ... ) 's indicate an average). 

Thus we can consider that our representation is conser­
vative with respect to the uncertainty relation for energy and 
time, due to the structure of the Laplace transformation. 
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APPENDIX: CONNECTIONS OF DISTRIBUTIONS 

In the text we have encountered the need for, but also 
the difficulty in having to define something like a "multipli­
cation" of distributions (in the drawing space), which could 
lead to energy correlations for the probability functions in 
the energy space. 

In order to construct such correlation functions in ener­
gy we have been lead to introduce the operation of connec­
tion between distributions. 

In all the following this connection will be noted by a dot 
e, z represents a complex variable, x a real variable (with 
valuesxo,x l , ... ), andlis a function of the complex variable as 
good as desired. 

1. Connections at one point 

Given a point on the real axis x o, characterized as a pole 
singularity, we define the connections at this point. 

Let r be a closed path in the complex plane. If Xo lies in 
its interior it will be noted as ro and as re otherwise. Let us 
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consider Xo as a pole of order k + 1 in the plane. Denoting by 
f (k I(xo) the k th derivative off in Xo (the superscript (k ) will 
always denote a k th derivative), we have 

f(kl(xo) = (_.l)k ~ f(z) (_l_)(kl dz (AI) 
2m Jro z - Xo 

(for F = Fe' the integral is, of course, zero). 
Similarly if [a,b ] is a closed interval on the real axis con­

taining xo' we have 

f(kl(xo) = (- l)k f 8(k l(x -xo)f(x)dx (A2) 

(if the interval does not contain xo' the integral is again zero). 
Comparing (AI) and (A2) suggests associating a Dirac 

distribution at Xo on the real axis to a pole at Xo in the com­
plex plane and at the same time the interval [a,b ] to the path 
F. 

Consider now the expression (1/(z - xOllk + P + 2. We 
can interpret it either as a product, (1/(z - xollk+ I 
X (1/(z - xolY'+ I, or as a (k + p + l)th derivative of 1/ 
(z-xo), 

(_ l)k+p+ I ( __ l_)(k+P+ II. 

(k + p + I)! z - Xo 
Under the first aspect we have then 

(
_I_)k+P+2 = (_l)k (_l_)(kl 
Z-Xo k! z-xo 

X ( - 1)P (_l_)IPI 
p! z-xo 

(A3a) 

and under the second one 

( 
__ I_)k+P+2 = (_ l)k+p+ I ( __ I_)(k+ P+ II . 

z - Xo (k + P + I)! z - Xo 
(A3b) 

Associate now, as suggested by the similarity of (A 1 ) and 
(A2), the distribution 8(k l(x - xo) to (1/(z - xo)Jlkl as opera­
tors, and similarly for the others; we define then the oper­
ation of connection • such as (A3a) = (A3b), and conse­
quently 

( - W 8(kl(x _ xo). ( - If 8IPI(x - xo) 
k! ~ 

( l)k+p+ I 
_ - 8(k+p+ II(x -x ). (A4) 

(k +p + I)! 0 

The sign - denotes an operational equivalence. 
In particular we have, with k = p = 0, 

8 (x - xo) • 8(x - xo) = 8[21(x - xo) - - 8'(x - xo). 

And, more generally reiterating the operations, we ob-
tain from (A4), 

8[nl(x _ X )_ (- l)(n-11 8(n-ll(x _ x) 
o (n _ I)! 0 , (AS) 

the superscript [n] (n> 1) represents the n times reiteration of 
the connection at Xo and of course 8[ Il(x - xo) = 8(x - xo). 
[Considering such an operatorial equivalence makes the 
connections 8 [n1(x - xo) comparable to the functional 
(x - xo) :;: n usually introduced in the distribution algebras, 
whose residue is exactly the same.6

] 
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The relations (A4) and (AS) contain all the needed prop­
erties of the connection at one point for the purposes of the 
text. But some of them are interesting in themselves and 
deserve to be made explicit or generalized. Such a generaliza­
tion will be postponed until subsection 3 of this Appendix. 

Before this we have to discuss the definition and the 
effect of the operation of connections between several dis­
tinct points. 

2. Connections between several pOints 

These points are always considered as pole singularities 
on the real axis. Two of them, Xo and XI' are sufficient to 
express the principle of the procedure used, which is similar 
in many aspects to that we have used in Sec. A 1. 

Principally, it is sufficient to split the expression 1/ 
(z - xo)(z - XI) in the two additive terms [1/(xo - xtl](1/ 
(z - xo) - 1/(z - x III and then to establish the former corre­
spondences. 

Let 

tp(F)=_l ~ f(z) dz. 
2i1T Jr (z - xo)(z - x tl 

(A6) 

Ifxo,xl EF, 

r = re and tp(Fe) = O. 

Ifxoorxi eF, 

Ifxoandxl eF, 

F = F O.I and tp(Fo.tl = [f(xo) - f(xl)]I(xo - XI)' 

Let us consider now the interval [a,b] and let us define 
the connection 8 (x - xo) • 8(x - x tl such as 

1/1 (XO,xI) = i b 

8(x - xo) .8(x - xtlf(x)dx (A 7a) 

and 

if XO,x1 E [a,b], then 1/1 = I/Ie = tp (Fe) = 0, 

if Xo or XI e [a,b], 

{

I/I = 1/10 = tp(Fo) = f(xo)/(xo - XI)' 
then or 

1/1= 1/11 = tp(rtl =f(xI)/(x l -xo), 

ifxo and XI e [a,b], 

then 1/1 = 1/10.1 = tp(Fo.tl = f(xo) - f(x l ) • 

XO-XI 

(ATh) 

Taking the limit X c-+Xo in 1/10.1 shows that the definition 
(A 7a) and (A Th) is compatible with the definition of the con­
nections at the point Xo of the Appendix subsection 1 

8[21(x - xo)- - 8'(x - xo). 

It is to be noted that (choosing forfa constant) the fol­
lowing result holds: 
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f-+ 0000 8(x - xo) e 8(x - xl)dx = O. 

But with Xo (or xII E [a,b] and XI (or xo) EI: [a,b], 

i
b 1 

8(x - xo) e 8(x - xl)dx = ---
a Xo -XI 

( or 1 ,respectivelY) . 
xl-XO 

It is easy to generalize all these definitions and results 
for any number of connections between any number of pole­
singular points in such a way that we assume the compatibi­
lity of these definitions with the definitions of subsection 1 of 
this Appendix for connections at one point, when a limiting 
procedure is applied for collapsing two or more points to­
gether. 

Thus 117= I e, representing the composition of the con-
nections between n different pointsxj E [a,b], gives 

i
b n n f(x.) II e8(x-x j )f(x)dx=.L '_. 

a 1= I J= I I1 j r'j(xj xJ 
Of course if one point, say X k , does not appear in the 

considered interval [a,b ], the corresponding term in the sum 
(j = k) vanishes in this relation [as iff(xk ) were zero], but 
remains still among the values of i in the products of the 
denominator. 

We want also to point out the important fact that if the 8 
distributions are "weighted" by some functions of x, then the 
connections compose these functions in a multiplicative 
form. 

For instance, if we have to deal with two singularities at 
different points, each one weighted by a good function in the 
interval of interest, say fIx) at Xo and g(x) at XI' then 
(XO,x I E [a,b]) r 8(x-xo)f(x)e8(x-xl)g(x)dx 

= [f(xo)g(xo) - f(xl)g(xl))/(xo - xII, 

which makes evident the multiplication of the functions. 
This result is closely related to the correspondence in the 

complex plane for which 

_1_,( f(z)g(z) dz 
2itr Yr.. (z - xo)(z - X II 

= [f(xo)g(xo) - f(xl)g(x l) )/(xo - XI) 

may be considered as the relevant Cauchy integral of the 
product of the one pole function in two different points,j (z)/ 
(z - xo) andg(z)/(z - XI). [We remark that such an approach 
makes it necessary to distinguish essentially the two func­
tionalsf(x)8(x - xo) andf(xo)8(x - xo), when referred at the 
operation of connection. For in the second case we would 
have obtained a different result, namely 0.] Thus in the scope 
of the connection algebra, weighting a distribution becomes 
equivalent to connecting it with a regular function. We have 
to indicate here, however, that connecting two regular func­
tions together leads to a vanishing result as shown in the 
following, due to the fact that no more singularities appear 
and thus there are no more intervals in which a singularity 
exists (cf. subsection 3). 
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Such an approach can be useful for all the problems 
where the properties of several points, considered as singular 
ones, have to be correlated simultaneously, i.e., from a "mul­
tiplicative" point of view of their mutual effects (and of their 
concurrent effects on a common fact). Physical examples 
are, for instance, perturbations, transitions between states, 
and, of course, correlations such as these we consider in the 
text, particularly for couplings of systems. 

3. Some generalizations for connections and their 
algebra 

Connections at one point behave like usual "multiplica­
tion" in their "power" form used in (AS). In fact from Eqs. 
(A4) and (AS) it follows that 

8[k+ Il(x -xo) e 8[P+ Il(x -xo)_8[k+ p +21(x - xo). 

(AS) 

So do the connections with respect to the derivation as it 
is seen, writing successively 

(8Inl(x - xo))' 

(_1)"-1 -n' = 8(n)(x - xo) = . 8[n + I l(x - xo) 
(n - I)! (n - I)! 

= - n8[n - Il(x - xo) e 8[21(x - xo) 

= n8'(x - xo) e 8[n - Il(x - xo). (A9) 

Other interesting properties follow from (AS). Multiply-
ing by ( - l)n - 1 and summing over n, we obtain, for the 
right-hand side (xo E [a,b ]), 

i
b i: (- 1)n-1 8(n-I)(x - xo)f(x)dx 

a n= 1 (n - I)! 
00 f(n-I)( ) 

= L Xo = ed1dx,,/(xo). (A 10) 
n=1 (n-l)! 

The last equality is formal, introducing the operator ed Idx., 
for the development 1:.: = ° (l/m!)(d m/dx;;'). This operator is 
also a translator T + 1 for f at xO. We have indeed 

T +J(xo) = edldx,,/(xo) =f(xo + 1), (All) 

as can be shown directly by the Taylor development of 
f(xo + 1) aroundxo. 

[Dropping the factor ( - 1)" - 1 in (A 10) would have lead 
us to the definition of e - d Idx., and to the translator T _ 1 such 
as T_J(xo) =f(xo - 1).] 

Now taking into account the left-hand side of (AS), we 
may write r n~1 8[n1(x - xo)f(x)dx 

= r 8(x -xo) e n~1 8[n- l l(x -xo)f(x)dx 

=f(xo + 1). (AI2) 

Following the same analogy as before with the usual 
powers, multiplications, and developments, for connections, 
we define the new operator as follows: 

00 

L 8[n - Il(x - xo)- [1 - 8(x - xo)] [- \]. (A13) 
n=1 

So (AI2) takes the form 
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lb 8(x-xo). [1-8(x-xo)][-I~(x)dx=f(xo+ 1). 

(AI4) 

(Dropping-introducing-again the factor ( - 1 t - I in 
(AI2) leads us then to define in place of (Al3) the operator 
[1 + 8 (x - xo)] [-IJ and to the correspondingf(xo - 1) in 
place of (AI4).) 

Such results are not very surprising if we recall the ini­
tial correspondence between the Dirac distribution and the 
poles in the complex plane that permitted us to construct the 
connections. 

In fact, the integral 

p(F)=_I_i f(z)dz 
2i1r jr (z - xo)( 1 - l/(z - xo)) 

(AI5a) 

can be rewritten as 

p(r) = _1 i f(z)dz , 
2i1rj z-(xo+ 1) 

(A15b) 

and, if the point Xo + 1 lies in the interior of F (F = F 0+ ), 

p(F 0+) =f(xo + 1) (AI5c) 

(and = 0 otherwise). 
But formally if we associate the distribution 8 (x - x o) on 

the real axis at each occurrence of the pole (z - xo) - I, the 
expression (AI5) may be expressed in terms of connections 
exactly as in (AI4): 

f 8(x - xo). (1 - 8(x - xo))[ - I~(x)dx 
=f(xo + 1) 

[and conversely for (1 + l/(z - XO))-I in (A15a) leading to 
f(xo - 1)]. 

What should be noted here is the fact that, with respect 
to the connections operation, it is possible to write 

8(x - xo) • [1 - 8(x - xo)] [ - I J - 8(x - Xo - 1) (AI6) 

(and also 8(x - xo). [1 + 8(x - xo)] [-IJ -8(x - Xo + 1)). 
But the first condition on the interval (xo E [a,b ]), which 

corresponded to the fact that the pole Xo had to lie in the 
interior of r, is to be changed to a second one, Xo + 1 (or 
Xo - 1, depending of our choice) E [a,b] corresponding to the 
new position of the pole relatively to the path r 0+ (or r 0- , 

respectively). Saying it in another form, we would get the 
same result by moving the boundaries of the first definition 
interval [a,b] to a second one [a + l,b + 1] (or [a - l,b - 1], 
respectively). Thus the term translator appears as well 
adapted for describing all the conditions of the system, in­
cluding the definition domains. 

From the point of view of possible physical correspon­
dences with usual operators, it may be worthwhile to indi­
cate that such exponential-differential operators as we have 
encountered here are frequently found in the time-depen­
dent evolution of quantum situations, for instance, as a com­
plex evolution operator like eiN..818

t). 

It is also interesting to indicate that expressions like 
(A 16), for instance, may be manipulated as ifthey were true 
multiplications. Actually, following the same procedure as 
in (AI5a) and (AI5b), which lead us to (AI6), it is very easy to 
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show that we can treat this type of connection algebra in a so­
called "multiplicative" way such as, for instance, 

8(x - XI). [1 - x28(x -xo)][ -IJ 

• [1 +x28(x-xO -X2)]I-IJ-8(x-xl ), (A17) 

which could be symbolically written (keeping in mind that 
we have always to work with the 8 distribution, i.e., pole 
singularities in the complex plane) 

[1 - x 28(x - xo)] [-IJ. [1 + x 28(x - Xo - x 2)] [-IJ -1, 
(A18a) 

1 being the identity for this algebra ( = 1). 
Indeed, to maintain the correspondence between the ef­

fects of the poles in the complex plane and that of the Dirac 
singularities on the real axis, we have to recall that the inter­
val [a,b ] on the axis has to correspond to the contour around 
the considered pole. If the pole disappears the integral van­
ishes, the result of the integration being reduced to zero. In 
the same way, the interval [a,b] has to collapse and to be 
reduced to zero ([a',a'] for instance), because no more simple 
singularity appears in its interior; so the integral taken 
between a' and a' vanishes too. Maybe, it would even be 
more appropriate for a single pole at Xo to write the integral 
under the form line limE->DS;;; ~! ... instead of S~ ••• ; but it is 
sufficient to keep in mind that it is necessary, for performing 
a nonzero integration in this type of algebra, to preserve the 
existence of a 8 singUlarity in the integration range (conserv­
ing the equivalence with the Cauchy integral). 

In these examples, the importance of specifying the two 
prescriptions-positions of poles, definition of the related 
considered intervals-appears very clearly, if we want to 
work with the connections. 

Under these conditions it is then possible to write for­
mally the operatorial equality [derived in a "multiplicating" 
way from (A 18a)] 

[1 - x 28(x - xo)] [- IJ -1 + x 28(x - Xo - x 2) (AI8b) 

or any other equality of this type and submitted to similar 
restrictions. 

Under the same conditions it is possible to introduce (in 
the spirit of the connections we used up to now) another type 
of distribution: the form that derives Dirac's 8. It is well 
known that the Heaviside distribution Y(x - xo) ( = 1 for 
x> xo, = 0 for x < xo) has a 8 (x - xo) for its first derivative, 
but it corresponds to no more poles atxo, only to a discontin­
uity. This may be made evident by the following consider­
ations. 

Write 8 (x - xo) as a formal derivative X'(x - xo) of a 
given unknown but without pole X (x - xo). Then, 

~ {O_+EE 8(x - xo)f(x)dx 

=f(xo) = ~~ {O_+EE X'(x -xo)f(x)dx. 

Integrating by parts, 

f(xo) = lim {[XIX -xo)f(x)]~o~: 
E...o ° 

- i~_+EE Xix - xo)f(X)dX} . 
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As there is no pole in X (x - xo) between Xo - E and 
Xo + E [andf(x) is a function as good as desired], then the 
second term of (A19b), i.e., the integral, becomes zero when 
E-o. 

The integrated part remains and we have 

f(xo) = lim [X(E)f(xo + E) -XI - E)f(xo - E)] 

and 

roO 

=f(xo) lim [X(E) - X( - E)] 
roO 

lim [X(E)-X( -E)] = 1. 
roO 

Thus X can be made equivalent to the Heaviside Y. 
Now going back to the correspondence for the lJ 's with 

poles in the complex plane, it can be argued that the corre­
sponding 1/(z - xo) is the derivative of the function 
log(z - xo) (even if this function is a multivalued one, which 
necessitates a limitation of the range of the variable or a cut 
in the plane). The singularity shown at Xo by this function 
can then be brought into correspondence with the discontin­
uity induced by Y(x - xo) on the real axis. 

All these considerations can be extended easily to the 
case of several singularities. The only important remark we 
want to point out in this latter case is the essential difference 
between the usual convolution algebra involving the distri­
butions and the connection algebra we present here. Actual­
ly in the convolution algebra the composed effect of two 
different distributions always gives a result equal to zero, 
whatever the functions on which the operation is applied; 
this fact is basically different in the connection algebra as 
shown by the definitions (A 7a) and (A 7b). Thus the connec­
tions really take into account the simultaneous effect of two 
or more distinct pole singularities. 

However, it must be emphasized that some precautions 
are to be taken in working, for instance, with derivatives or 
"powers" among the connections. 

As an example, we have (X I,x2 E [o,h]) 

f lJ'(x - xIl. lJ(x - x2)f(x)dx 

!'(x l ) f(x2) + f(x l) 
XI - X2 (XI - X2)2 (XI - X2)2 

The first two terms on the right-hand side seem to be com­
pletely natural [taking into account the fact that 
lJ'(x - XI)- - lJ121(X - xIl] but it may be asked about the 
third one. For explaining its presence we have to remember 
that the lJ'(x - xIl [or conversely lJ!2l(x - XI)] operates on 
all functions and distributions under the integral (in the 
same way as for a product) and thus also on the lJ(x - x2), the 
effect of which is precisely to introduce this term. 

This point appears very clearly in writing down the cor­
responding underlying Cauchy integral (which permitted us 
to construct the connections) (X I,x2 E r): 

_1_ ,( f(z) dz 
2iTr j (z - XI)2(Z - x2) 

= _ !'(x l ) + f(x l ) 

XI -X2 (X I -X2)2 
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It follows from this remark that we have to be careful in 
calculations, particularly when there appears, for instance, a 
"power" of distributions among the connections, this "pow­
er" being operatorially equivalent to a derivative [Eq. (AS)]. 

From a similar point of view, in introducing the Heavi­
side distribution it may be asked if it is possible to define an 
operator like lJ I - pI(x - xo), i.e., something like an inverse in 
our connection algebra. 

Actually it is not difficult to do it if we remain careful in 
the definitions of the integration ranges (or in the contours of 
the Cauchy integrals). 

Following the correspondence in the complex plane let 
us associate the function (z - xo)P to lJ I - pI(x - xo) on the 
real axis and any closed contour around Xo then 

tf(Z)(Z - xo)P dz = 0. 

Consequently we also have (for allp>O) 

l
,",,+E 

lim lJI - p](x - xo)f(x)dx = 0. 
E-+O Xo-E 

(A20) 

More generally and taking into account the earlier results for 
connections at one point, we write 

~ L~~+EE lJln - pl(x - xo)f(x)dx 

{
a, for n<p, 

= I'n -P-I}(xo)/(n - p - 1)1, for n >p. 
(A21a) 

In a similar way we obtain for two points (XI :;6xo), 

~~ f'_+EE lJI - pI (x - xo) • lJ1n](x - xIlf(x)dx 

= f(n - 1}(xl)/(n - 1)I(xl - xo)P, 

and, more generally (X I,x2 E [o,h ]:;6xo), 

i b 

lJI - pI(x - xo) • lJ(x - xd • lJ(x - x 2)f(x)dx 

= [(XI - xo)Pf(xd - (X2 - x O)Pf(x2)]I(xl - x 2)· 
(A2Ib) 

Results like (A2Ia) and (A2lb) show that such an inverse for 
our distribution (in the spirit of the connections) does not 
lead to a result always equivalent to zero as (A20) suggests. 
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A model recently proposed by Hagen is examined from the point of view of Dirac quantization of 
constrained systems. This model exhibits interesting particular features for the Dirac method 
itself. Among them are the odd number of second-class constraints and the fact that, when a gauge 
is fixed, constraints result from compatibility conditions between Lagrange mUltipliers. From the 
point of view of the model itself, the invalidity of the axial gauge in the non-Abelian case is 
obtained by comparing the effective Hamiltonians for two different values of the arbitrary 
spacelike vector. 

I. INTRODUCTION 
Recently, Hagen l proposed a three-dimensional gauge 

model in order to have a better understanding of the con­
cepts involved in gauge theories. He studied this model from 
the conventional Lagrangian point of view in the Coulomb 
and axial gauges and concluded that the axial gauge is, in the 
non-Abelian case, in conflict with relativistic invariance. We 
want to study this model in the framework of Dirac2 quanti­
zation of constrained systems in order to have a better under­
standing firstly of the method itself and secondly ofthe Ha­
gen model. 

First of all, the number of second-class constraints is 
three. This means that one of these constraints must be 
transformed into a first-class quantity with respect to the 
other two. A priori, the selection of this constraint from the 
set of the second-class constraints can be arbitrary. How­
ever, if we want the theory to look like a usual gauge theory, 
it appears that the primary second-class constraints must be 
kept as such in contrast to the secondary second-class con­
straint, which must be transformed into a first-class quanti­
ty. Other choices lead to difficulties in the gauge-fixing pro­
cedure. 

Secondly, when a class-I gauge3 like the Coulomb or the 
axial gauge is fixed through a Lagrange multiplier inside the 
Lagrangian, the Dirac algorithm leads to an overdetermina­
tion of some multipliers accompanying the primary second­
class constraints in the Hamiltonian. Compatibility of these 
equations implies additional constraints which are also ob­
tained if the starting point of the gauge-fixing procedure is 
the effective Hamiltonian, where primary second-class con­
straints are strongly realized. In other words, the procedure 
of constraint determination does not stop with equations fix­
ing the Lagrange multipliers. Compatibility of these equa­
tions must also be required. 

The third point we want to point out in our analysis 
concerns the invalidity of the axial gauge in the non-Abelian 
case. Here, it is easily proven by comparing the effective 
Hamiltonian for two different values of the arbitrary space­
like vector. In the case of convenient class-I gauges, the effec­
tive Hamiltonian describes the physical system and must be 
independent of the gauge choice. Such is the case for the 
Coulomb and axial gauges in the Abelian case although the 
proof is not trivial. Our proof rests heavily on the current 

8) Postal address: Institut de Physique au Sart Tilman, Biitiment B.S, B-4000 
Liege I, Belgium. 

conservation iJ' jp = 0, which does not hold in the non-Abe­
lian case, where the Coulomb gauge is also not convenient 
for the same reasons it is not in Yang-Mills theory. 

We organize our work as follows. In Sec. II, we develop 
the Dirac formulation of the Hagen model. We discuss the 
gauge fixing in Sec. III, where we successively study Cou­
lomb, axial, temporal, and relativistic gauges and compare 
the effective Hamiltonian in Coulomb and axial gauges. In 
Sec. IV, we study the non-Abelian case and, in particular, 
the invalidity of the axial gauge. 

II. THE HAGEN MODEL IN THE DIRAC FORMALISM 

Let us start with the Lagrangian I 

2" = ! ¢/"Epvp cr¢>v + ¢/"jp, (1) 

where the Greek indices take the values 0, 1,2. The metric 
tensor is gpv = (1, - 1, - 1), Epvp is a completely antisym­
metric tensor (EO 12 = 1), andjv is a conserved current. Under 
a gauge transformation 

¢>p ~ ¢>p + apA, (2) 

we have 

82" = ! iJ'AE",vp cr¢>v + iJ'Aj", 

= iJ'(!A.E",vp iJ'¢>v + Aj",), (3) 

i.e., the Lagrangian is invariant up to a four-divergence, 
which is sufficient for applying the Noether theorem. There 
is thus a gauge invariance. 

Let us now go to the Hamiltonian. We have 

1TI = a2" = 2.,1.2 (4) 
a¢> I 2 'P , 

r=~! = _+¢>I, (5) 

1TO = a2" = 0. 
a¢>o 

(6) 

None of these relations is an evolution equation. They are 
constraints and the total Hamiltonian density reads 

JY T = U01T
o + U I

(1TI _ ! ¢>2) + u2(r + ~ ¢>I) 

(7) 
where uO,U

I
,U

2 are arbitrary functions of ¢>P' ff', and jw 
Since the constraints (4)-(6) must hold for any time, we have 

(8) 
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0= ao(11'1 -! ifJZ) = U2 + a2ifJO + il = 0, (9) 

o=ao(r+!ifJl)= -ul-alifJo+iz=O. (10) 

Equation (8) is a new constraint while (9) and (10) can be used 
as equations determining the Lagrange multipliers U I

,U
2

• 

Again the constraint (8) must be true for any time. Its 
Poisson brackets with the Hamiltonian lead to 

aluz - azul + aol = 0, (11) 

i.e., a condition on the Lagrange multipliers u I,U2 which is a 
trivial consequence of (9) and (10) and the current conserva­
tion. 

A problem occurs with the constraints in this example. 
While (6) is a first-class constraint, the Poisson brackets 
between KI=11'1 -! ifJ2, Kz=r +! ifJI, K 3==€Oji ai¢J + io 
do not vanish, i.e., we have a system with three second-class 
constraints. In order to use the Dirac algorithm, one of these 
constraints must be transformed into a first-class quantity 
with respect to the other two, according to the rule 

K~ =Ka - {Ka,Kp}Cp-;,IKy, (12) 

where 

(13) 

/3,r being any pair among the indices 1,2,3. A priori the 
choice of this first-class constraint is arbitrary. 

Ifwe transform K3 into a first-class constraint and rea­
lize strongly K I and K 2, we are led to the Hamiltonian 

K3 = uo~ - ifJO(azifJI - 2 a 111'1 + l) - ifJl1 - 211'12' 
(14) 

while the nonvanishing Dirac brackets involving ifJI, 11'1, ifJo, 
and~are 

(ifJI(X),11'1(y)} D.Xo =Yo = ! 8(ZI(X - y), (15) 

(16) 

As usual, the first-class constraints ~ = 0 and· 

a2
¢JI - 2 a l11'1 + l = 0 (17) 

are not compatible with these brackets. There are two unde­
termined functions UO and ifJo in the Hamiltonian, one of 
them (ifJo) being the variable canonically conjugate to the pri­
mary first-class constraint ~ as is usual in traditional gauge 
theories. 

If, instead of K 3, we now transform KI into a first-class 
constraint, the Hamiltonian becomes 

KI = uo~ + UI(11'1 - ! ifJ2) - ifJl1 - ifJzi2, (18) 

where ifJz must be expressed in terms of ifJI andjo through Eq. 
(8), i.e., 

ifJ2=(a l)-I(a 2ifJ I +l). (19) 
Here and in the following, the operator (a I) -I will be defined 
by 

[(a 1)-1j](X) = -! f dZy €(Xl - yl)8(X2 - y2)f(y). (20) 

It is clear that other definitions could also work pro­
vided al(al)-Y=f The Hamiltonian KI is nonlocal and 
there are again two arbitrary functions UO and ul. However, 
u l cannot be considered as the variable canonically conju­
gate to the primary first-class constraint, so that the theory is 
quite different from a usual gauge theory. The same situation 
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clearly occurs with K 2• As it will be seen in the following 
section, troubles occur with these choices, so that we'will be 
unambiguously led to the choice of K3 as the first-class con­
straint. 

III. GAUGE FIXING 

In order to quantize the theory defined by the Hamilton­
ian K3 or K 1, it is necessary to fix a gauge. We make differ­
ent choices suggested by the usual Maxwell theory. 

A. Coulomb gauge 

Originally defined by if ifJi = 0, it is transformed into 

alifJl + 2 a211'1 = 0, (21) 

in order to apply to the Hamiltonian K 3• We have 

(alifJl(x) + 2 a211'I(x), azifJI( y) - 2 a 111'1( y) 

+ l(y)}xo=Yo = A8(21(x - y) (22) 

and 

a (al",1 + 2 az11'1) = {al",1 + 2 a211'1 H} _ o 'f' ~, 3 xo-Yo 

(23) 

Equation (23) fixes the undetermined parameter ifJo;uo is also 
fixed by taking 

ao(AifJo - a12 + azi) = 0, 
(24) 

i.e., Auo = ao(a12 
- a2i). 

The two constraints (6) and (17) can now be realized strongly, 
leading us to an effective Hamiltonian 

K 3elf = - ioA -1(a12 - a:p), (25) 

which is a nonlocal interaction between material fields. This 
is the physical content of the Hagen gauge theory. 

If we want to use the Coulomb gauge with the Hamil­
tonian K I, it must be transformed into 

a1ifJI + (al)-I [(az)ZifJI + aZjo] = 0, (26) 

or, by applying ai, into 

AifJI + az)o = o. (27) 

It is not necessary to use such a complicated expression and 
it is preferable to work with ifJl = 0, i.e., the axial gauge. 
Then 

aoifJ l = {ifJl,Hd = - u1 = 0 (28) 

fixes the undetermined parameter ul
• However, UO is not 

fixed here and 11'0 cannot be realized strongly. The gauge 
choice can be completed by taking UO = 0 and the effective 
Hamiltonian is 

K lelf = -jo(a l )-12' (29) 

which is apparently different from K3 eft'. We will, however, 
show later that KIeft' = K 3 elf' 

For a complete understanding of the Dirac method and 
for making a clear choice between K3 and K 1, it is interest­
ing to introduce the gauge condition inside the Lagrangian 
with the help of a Lagrange mUltiplier 

.? = ! ¢I'€Io'Vp irifJv + ifJJv - S ififJi. (30) 

This is a theory with four primary constraints 
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o _ I 1 -1.2 _ ~ + 1 -1. 1 - - ° 1T -1T -2'" -1/ 2'" - 1TS- . (31) 

The total Hamiltonian is 

71" T = UO~ + U I(1TI - ! tjJ2) + U2(,,? +! tjJI) + US 1TS 

- tjJOWtjJl - altjJ2 + jO) - tjJ]i + S CftjJi, (32) 

and the Dirac algorithm leads to two secondary constraints 

a2tjJi - altjJ2 + jo = CftjJi = ° (33) 

and to four equations on u I and u2 

u2+aztjJ°+/ +als=o, 

- u l 
- altjJ0 + / + azs = 0, 

(33a) 

(33b) 

azul - alu2 - a'l = 0, (33c) 

Cfu i = 0, (33d) 

while Uo and Us are not fixed. Additional constraints, how­
ever, result from the compatibility between Eqs. (33). They 
read 

!1S = atjJ° + az/ - aj2 = 0. (34) 

They imply 

aus = auo - ao(aj2 - a2/) = 0. (35) 

We recover in this way the results obtained from the Hamil­
tonian 71"3' This shows that the use of 71"1 and 71"2 is not 
natural and should be rejected. 

Let us note that the constraints (34) are necessary for the 
consistency of the method. The Hagen Lagrangian in the 
Coulomb gauge thus provides us with an example where the 
constraint search is not stopped with equations fixing the 
multipliers. Compatibility of these equations must be re­
quired. 

B. Axial gauge 

We follow the same procedure by taking now nitjJi = ° 
or 

nltjJl + 2n 21TI = ° (36) 

as gauge condition. We have 

{nltjJl(x) + 2n21TI(x), a2tjJI(y) - WI1TI(y) 

+ l(Y)}D,xo=yo = n' a8(2)(x - y) (37) 

and 

n' atjJo = n2/ - nj2 (38) 

as the resulting class-II gauge condition. 
The effective Hamiltonian is therefore 

K Aetr =jo(n. a)-I(n:;1 - nj2). (39) 

C. Equivalence between different axial and Coulomb 
gauges 

Such an equivalence is not evident by comparipg the' 
effective Hamiltonians. It must, however, hold since both 
axial and Coulomb gauges are convenient. The effective Ha­
miltonian involves only physical objects and we cannot 
change the theory by changing the gauge. We make the cal­
culations in a formal way and we start with 
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H 3eff = f d 2x K3etr 

= - f d 2xjof:. -I(a j2 - a:l) 

= - Vo, a -1(a]2 - a2
/), (40) 

where < f,g) represents the scalar product of the two func­
tions/, g. We use successively 

a I(a 1)-1 = 1 = aa -I (41) 
and 

[a-I,(al)-I] =0 (42) 

to get 

H3etr = - 00' a-I(al)-I((al),l-ala:l) 

= - 00' (a 1)-]2) 

+00' a- l(a l)-la 2(ajl+a'l)· (43) 

Using current conservation, 

H3etr = - 00' (a 1)-]2) + 00' a- l(a l)-la 2 aojo)' 
(44) 

If we consider now 

s= - f dXoH3eff' (45) 

due to the antisymmetry property of the operator 
a -I(a 1)-1 a 2 ao, we easily get 

S= f d 3xjo(x)(a I)-I(X - Y)/(Y), (46) 

which is the action in the axial gauge n = (1,0). By the same 
reasoning it is possible, using current conservation, to go 
from the axial gauge with n = (1,0) to the axial gauge with 
n = (0,1). As a consequence, the Hamiltonians in any of the 
axial gauges and in the Coulomb gauge are equivalent. This 
is a result which is necessary for the consistency of the gauge 
choice. 

D. Temporal gauge 

The temporal gauge is characterized by tjJo = 0. It is a 
consistent gauge if we start from 71"3' It leads to the Hamil­
tonian 

K3t = - tjJjl - 21Tj2' (47) 
and, as usual, it is necessary to impose 

aztjJl - 2 a l1TI + jo = ° (48) 
as a constraint on physically acceptable states in order to 
recover the starting theory. Again, tjJo = ° is not sufficient to 
fix the gauge if we start with 71"1 or 71"2 and, as for the 
Coulomb gauge, if we incorporate the temporal gauge inside 
the Lagrangian through a Lagrange multiplier, we are una­
voidably led to K 3t . This again confirms the inadequacy of 
the choices 71"1 or 71"2' 

E. Relativistic gauges 

We develop briefly only the Lagrangian formulation 
and introduce the gauge condition through a Lagrange mul­
tiplier. The starting Lagrangian is 

.!t' = ! tfj'E,.."p iJ'tjJ" - S i1'tjJ,.. + ! aS 2 + tfj'j,.., (49) 

where a is the usual gauge parameter but is here dimen­
sioned. Field equations are 
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and 

i1"¢" = as. 

Equation (50) implies 

DS=O, 

i.e., S is a free field. 

(50) 

(51) 

(52) 

As in Maxwell theory, the unwanted states are eliminat­
ed by a condition on physical states which reads 

S(+)I¢'PhyS) = O. (53) 

The relativistic gauges give us a local manifestly relativ­
istic formulation of a particular nonlocal interaction 
between material fields. In our context, we do not see any 
particular interest in pursuing this discussion, so that we go 
to the following point. 

IV. THE NON-ABELIAN CASE 

It is possible to make a non-Abelian extension of the 
Hagen model. The Lagrangian is 

.!/ = ! f/l:E"vp i1>¢~ + (g/6)f/l:E"vp fabc¢lt,¢~ + ¢';fa, (54) 

where/abe are the antisymmetric structure constants of the 
involved non-Abelian compact Lie algebra. Here .!/ is in­
variant, up to a four-divergence, under the gauge transfor­
mations 

¢; ---+ ¢; + a,,(j)a + gfabc¢ !of, (55) 

provided the current satisfies 

and 

i1"¢; = as a, 

from which we deduce, using (57), 

D~a avSa = o. 

(63) 

(64) 

Since the operator DV av is not Hermitian, such an equation 
can never give rise to a unitary S matrix. The fulfillment of 
this last requirement leads either to Faddeev-Popov ghosts 
or to non-Lagrangian equations of motion 

E"vp apf/l: _D~bSb - (g/2)E"vp~fcba¢lt, =j". (65) 

Only the axial gauge seems to give a simple formulation of 
the theory. It develops exactly as in the Abelian theory and 
we are led to the effective Hamiltonian 

$"elf = .fa(n· a)-I(n:;! - n1~). (66) 

There is a big difference with the Abelian case, which 
makes the axial gauge inconvenient here. It depends on the 
particular choice of n as it can be seen if we take successively 
n = (0,1) and n = (1,0). In the Abelian case, the current con­
servation i1" j" = a allowed us to show the equivalence 
between the two Hamiltonians. In the non-Abelian case, the 
current satisfies instead D ~b j! = a and it is impossible to 
reproduce the same calculation. Axial gauges are therefore 
not acceptable. This result was already stated by Hagen in a 
different way. He has shown the nonrelativistic covariance 
of this gauge. Here, we deduce it very simply from the none­
quivalence between the Hamiltonians resulting from two 
different values for n, which is also a manifestation of the 

D~bj! = 0, (56) noncovariance. 

where the covariant derivative D ~b is given by 

D~b =i1"8ab +gfabc¢~' (57) 

We can easily reproduce in the present case the Dirac analy­
sis of theory described by (1). The primary constraints are 

1T! - ! ¢ ~ = ~ + ! ¢! = 1T~ = O. (58) 

There are also secondary constraints 

EOij(a j¢ ~ + (g/2)fabc¢~¢~) +.fa = 0, (59) 

which will be transformed into first-class quantities with re­
spect to the two multiplets of second-class primary con­
straints. After the strong realization of the constraints, the 
Hamiltonian reads 

$" T = u~ ~ - ¢ ~ (if¢! - 2 a l 1T! + 2gfabc 1Ti¢ ! 
:a) '" 1'1 2 1 ·2 (60) + lo + 'f' ala + 1Tala' 

The theory manifests the same difficulties as the Yang-Mills 
theory, i.e., the Coulomb gauge is not acceptable and the 
relativistic gauges cannot be realized in a Lagrangian way 
without Faddeev-Popov ghosts. This last fact can be seen in 
a very simple way. The Lagrangian in the relativistic gauges 
is 

.!/ = ! ¢ ~E"vp i1>¢ ~ + (g/6)E"vp¢ ~ fabc¢ ~¢ ~ 

+¢;J:-Sai1"¢;+!aS2. (61) 

It gjves rise to the equations of motion 

E"vp i1>f/I: - avSa - (g/2)E"vp~fcba¢lt, =l"':, (62) 
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V. CONCLUSIONS 

We have made a Hamiltonian analysis of the Hagen 
model. Our analysis illustrates how the Dirac algorithm 
should be used when an odd number of second-class con­
straints occur. It also shows that the search for constraints is 
not stopped when a Lagrange multiplier is determined. It 
may happen that consistency conditions for the Lagrange 
multipliers determination produce additional constraints. 
From the point of view of the model itself, it is clear that it 
furnishes a way to study a particular nonlocal interaction as 
resulting from a gauge theory. In the non-Abelian case, the 
model shows essentially the same features as Yang-Mills 
theory and cannot serve as an exemplary tool to solve the 
Yang-Mills problems. An interesting particular result is the 
invalidity of the axial gauge in the non-Abelian case. This 
invalidity seems, however, to be restricted to the Hagen 
model. The physical meaning of this non-Abelian model can 
therefore be questioned since there is no gauge in which the 
meaning is apparent. 

It is also of interest to compare the Hagen model with a 
simil~ model including a kinetic term - 1I4mF"vF"v . 
Such a model has been extensively studied by Oeser, Jackiw, 
and Templeton4 in both Abelian and non-Abelian cases. 
They also give an interesting topological discussion of 
!qI'E"vp i1>tpv and its non-Abelian partner, which appear to 
generate a mass term in the field equations. This dynamical 
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model does not present any particularity with respect to the 
usual constrained theories. There is also no trouble with the 
non-Abelian version since the physical meaning can be ob­
tained in the gauge characterized by the gauge-fixing termS 
- (112m) akAoa akAoa, where, in the asymptotically free 

limit, the gauge field part of the Hamiltonian describes a 
massive scalar field. Formally, the Hagen model is obtained 
by taking an infinite value for the mass m. This limit is, 
however, singular in the sense that the constraint system 
must be handled with the care mentioned in this paper. 
Moreover, the natural gauge-fixing term also disappears in 
this limit and this impeaches us to find, in the non-Abelian 
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case, a gauge in which the physical meaning is apparent and 
described by the sole Hamiltonian. 
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Using the generalized Grassmann variables or color variables, a theory of r -graded integrable 
evolution equations is presented by elevating the treatments of Magri, Gel'fand-Dorfman, and 
Fuchssteiner of nonlinear integrable bosonic evolution equations to the r -graded case. As an 
example, it is shown that Kupershmidt's super-KdV is characterized by a Z2-graded Nijenhuis 
operator compatible with the underlying Z2-graded Hamiltonian structure. 

I. INTRODUCTION AND MAIN RESULTS 

Solitons and integrable nonlinear evolution equations 
play an important role in several branches of theoretical 
physics. 1.2 After the famous discovery of the particlelike be­
havior of solutions of the Korteweg-de Vries (KdV) equa­
tion in 1967 by Gardner et al., 3 a great interest has arisen in 
studying the mathematical foundations of nonlinear evolu­
tion equations characterized by an infinite set of indepen­
dent conservation quantities. Several mathematical con­
cepts such as Backlund transformations, Lax pairs, the 
inverse scattering transform, and Hamiltonian and bi-Ha­
miltonian structures4.5 have been shown to be useful and 
effective tools in understanding and describing integrable 
nonlinear evolution equations. The recent contributions of 
Magri,6 Gel'fand and Dorfman,? Fuchssteiner,8-1O Fokas,ll 
Fuchssteiner and Fokas,12.13 and Fuchssteiner and Oevel,I4 
represent an additional culminating point in the mathemat­
ical, historical process of understanding and revealing the 
algebraic and differential geometric structures behind the 
integrable nonlinear evolution equations. They found that in 
most of the cases, the soliton equations are moreover charac­
terized by recursion operators,I5 by hereditary symmetries, 
i.e., by Nijenhuis operators,6-14 which in addition tum out to 
be compatible with the underlying symplectic structure. 
However, there are important nonlinear evolution equations 
showing hereditary symmetries but lacking a Hamiltonian 
structure (Burger's equation 10) and there are cases where a 
bi-Hamiltonian formulation need not give rise to Nijenhuis 
operators (Hirota-Satsuma equation5). 

Recently, there has also been a great interest in studying 
the variational formulations of dynamical systems, in parti­
cular from the viewpoint of the possibility to mutate corre­
sponding prescribed sets of evolution equations. By defini­
tion, the mutation consists in premultiplying a prescribed set 
of evolution equations by invertible integrating matrices 
(called genotopic or isotopic operators), which lead to varia­
tionally self-adjoint evolution equations (see Santilli l 6-18 and 
others). 

In Ref. 19, we have given an explicit example of Santil­
li's method in the area of soliton equations by finding out 
that the exponential of a scalar multiple of the Nijenhuis 
operator constitutes an invertible integrating operator, thus 

leading to a class of different variational formulations of the 
corresponding integrable dynamical systems. 

The question may arise if the technique described above 
can be elevated to the supersymmetric case, i.e., to a situa­
tion where a physical system is described by commuting and 
anticommuting variables and which is governed by a cou­
pled set of bosonic and fermionic field equations. In a very 
recent and remarkable paper, Kupershmidt1° has presented 
a special coupled set ofZ2-graded evolution equations, called 
super-KdV equations, characterized by superintegrability 
under super Poisson brackets. His paper constitutes a deci­
sive step with respect to the extension of theories showing 
particlelike behavior to the Z2-graded case. 

The purpose of our paper mainly consists in presenting 
some initiating steps concerning the extension of several fa­
miliar concepts such as the "Hamiltonian formalism," the 
"Birkhoffian formalism," the "Nijenhuis operator," the 
"symplectic two-form," "Poisson involutivity," etc., to the 
case of dealing with an associative r -graded algebra A of 
generalized Grassmann numbers (or color numbers)21 char­
acterized by a finite Abelian grading group r and equipped 
with a r -compatible commutation factor q: r X r 
- C\ {O J. This means that we here present the theoretical 
framework for r -graded Nijenhuis tensors compatible with 
r -graded Hamiltonian structures and that we therefore lay 
down and prepare the foundations for colored or r -graded 
soliton equations. 

At this stage, it might be appropriate to remind the read­
er of the face l that a color analysis constitutes a natural 
generalization of the usual Z2-graded Grassmann analysis. It 
is nearly superfluous to recall that the latter is undoubtedly 
important in conventional Z2-graded, i.e., supersymmetric 
theoretical physics according to Martin,22 Volkov and Aku­
lov,23 Wess and Zumino,24 Salam and Strathdee,25 Bere­
zin,26 Ramond,27 Casalbuoni,28 Neveu and Schwarz,29 Kos­
tant,3° Corwin, Ne'eman and Sternberg,31 Rogers,32 Dell 
and Smolin,33 Jadczyk and Pilch,34 Kac,35 de Witt,36 and 
others. 

It has moreover been found and emphasized in Ref. 21 
that the variational formulations of dynamical systems, the 
Hamiltonian and Poisson bracket formalism, can naturally 
be elevated to the r -graded case, so that it is evident to study 
properties of generalized soliton equations from the outset in 
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the abstract r -graded theoretical framework. Its use is also 
suggested and recommended if one wishes to generalize the 
statistics in quantum field theory (see Ohnuki and Kamefu­
Chi,37-39 Omote and Kamefuchi,40 and Levine and To­
mozawa4l,42) or if one deals with the recently introduced 
generalized Lie (super)algebras, also called color (super)alge­
bras (e.g., Kac,35 Rittenberg and Wyler,43,44 Lukierski and 
Rittenberg,45 Agrawala,46 Green and Jarvis,47 Scheunert,48 
and others). Even in the conventional Z2-graded case, we 
arrive at a couple of apparently new propositions that gener­
alize the corresponding bosonic treatments of integrable 
evolution equations6-14,19 to the mixed bosonic fermionic 
theoretical framework. As one example of our theory, we 
show that Kupershmidt's super KdV possesses a Z2-graded 
Nijenhuis tensor compatible with the Z2-graded Hamilton­
ian structure thus permitting us to derive a Z2-graded Santil­
li's isotopic degree of freedom in the Z2-graded variational 
formulation of the super KdV by using the exponential of the 
Z2-graded Nijenhuis operator as an integrating operator for 
the super KdV equations. 

II. COLOR ANALYSIS 

Let A be a r -graded associative Banach algebra over the 
complex numbers C, with unit49 

A= eAr' ArAc5CAr+c5' 'dy,tiEr, )'Er 

where the Ar are the Banach subs paces of A and where OEr 
denotes the neutral element in the finite Abelian grading 
group r. Moreover, A is characterized by a commutation 
function 

a: rXr ~ C\{O}, a1,a,p) a/.P,a) = 1, 

a1,a,p) a1,a, y) = a1,a,p + y), 'd a,p, YEr, 

q~ q~ = a1,a,p) q~ q~, 'dq~EAa' q~EAp, 

where the last equation can be found, for example, in Ref. 43. 
The conditions on the commutation function a entail the 
relations 

a1,a,O) = a1,O,a) = 1, a1,a,a) = ± 1, 

a1,a,p) = a1, - a, - {J) = a/.P, - a) 

= a1, - {J,a), 'da,{JEr, 

which indicate that one deals with ordinary bosonic or fer­
mionic numbers in each subspace Ar of A. Let now [nr ] 
: = (nr))'Er denote a set of positive integers nrENo satisfying 
nr = n_ r . We introduce the Banach space (equipped with 
the product topology) 

G[nrl: = e (Arty 
)'Er 

being an Ao module. Elements ofG[nr ) are denoted by 

G[nrl ( i )ie!I, ... ,na ) 
X,y,zE ,x = qa aer , 

_ (Pi Je! I, ... • ny) _ (-1c)ke! I •... • na) 
Y - r J)'Er ,Z - ziJ c5er , 

q~, Y~, taEAa· 

In what follows, we shall be concerned with the set 
CA:(G[nrl,A) of A-valued functions/ being infinitely many 

3161 J. Math. Phys .• Vol. 26. No. 12. December 1985 

times continuously Ao differentiable.49 If (A.ElR), 

( a:~ f)x = ( :~ )x, 
d ny I (a ) 

d" fx+AyIA=O = L .LYr -a I f x 
/I, )'Er I = I qr 

denotes the left derivative of the function/with respect to 

q~EAr at xEG[nrl , we can derive the generalized or color 
Heisenberg commutation rules49 

~~=a1,a,p)~~ 
aq~ arlp af/p aq~ , 

~ rip = ti/ tia P + a/.P,a) rip ~, 
aq~ aq~ 

'da,pEr, 'diE{1, ... ,na }, 'djE{1, ... ,np}. 

Note for the following that the generalized Leibnitz rule 

a ajp agr -;JI (fpgr) = -;JIgr + a/.P,a)fp-;JI 
qa qa qa 

is valid for arbitrary 

We point out that 

holds. The r -graded associative Banach algebra A can, for 
example, be constructed as follows. Take I r! = v + J.l infi­
nite-dimensional vector spaces 'r' a with countable basis 
{ ea i} iEN for each aEr, where I rl denotes the finite number 
of elements of r, where v denotes the finite number ofbo­
sonic elements YI of r [Le., satisfying a(Yi>YI) = + 1], and 
where J.l denotes the corresponding number offermionic ele­
ments{Jj ofr[ oif3j,pj) = - 1]. The tensor space T(r) over 
r = e aer r a is introduced and the ideal/generated by 
the elements of the form Va ® Wc5 - a1,a,ti)wc5 ® Va' VaE'r'a, 
Wc5 Erc5 , a,tiEr is constructed. One arrives at the well-de­
fined associative algebra d: = T ('r')/ /48.50 and A is taken to 
be the complex linear hull of the linear independent elements 
E[O): = lEd and 

• (e.I)· •• (e,k,)- •• (e.I )· .• (e .• )Ed, 
" " J" J,1' 
P. P. PI' PI' 

where 

'1;2 ;K '1 .K N Jl <11 < ... <11', ... ,J,.. < ... <J,.."E , 

where L 1, ••• , Lv, K 1, •• • , K,..ENo and where a certain 
counting procedure has been adopted, NEN. If M denotes 

M: = maxI la1,a,ti) I; a,tiEr) ;;;.1, 

A is made into a r -graded associative Banach algebra over 
the complex numbers C, with unit and equipped with a r-
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compatible commutation factor u by taking the norm 
00 

IlxlI: = IXol +Mv+I'-1 L IXNI < 00, 

N=I 
00 

x = L xNE [N1eA, XNeC. 
N=O 

A tedious calculation shows that A in adtlition has the im­
portant property that each Ao-linear bounded linear map f 
from Aa to A8, Le., satisfying 

fe-? Ac,(Aa ,A8), a,8er, 

f(xo . Ya) = Xo . f(ya), VxoeAo, yaeAa 
is already generated by a unique element Z8 _ a eA8 _ a SO that 
ha) =YaZ8-a holds. We however find it advisable to weak­
en the additional topological condition expressed in Ref. 49, 
p. 1545, third line from the bottom to 

IIZ8-a II <;M v +l'lIfll, 
with corresponding modifications in Theorems VI. 12-VI. 14 
in Ref. 49. 

III. r-GRADED BIRKHOFFIAN FORMALISM 

For the following, let us consider a prescribed set of 
infinitely many times continuously Ao-differentiable A - y­

valued functions 

'CJ,-y: [ta,tb ] XC[nrl XC[nrl--+ A_ y' 

j=I, ... ,ny, yer, ta<O<tb' ta,tbeR, 
called the set of evolution terms associated with a certain 
physical system of differential type 1 concerning the time 
derivatives. The special elements ~ of Q = C.A'( [ta,tb], 
C1nrl),.ff> 4 [Le., ofthe Banach space Q of all at least.ff 

times continuously differentiable maps from [t a ,t b ] to C [nr I 

{ 
(/) 

with standard norm II~II: = max IIx(t)li; 1=0,1, ... ,.ff; 

} ~)~). 

te[ta,tb]' where x(t)=(q~(t)):~i,···,naJeC["rl], which 

satisfy 

'CJ,_y(t,x(t),x(t)) = 0, 

Vje{1, ... ,ny }, Vyer, Vte[ta,tb ], (1) 

constitute the solution set .Y C Q consisting of all physical 
curves within a fixed time interval [ta ,tb ] of the correspond­
ing physical system, As in the pure bosonic case, 16,18 we now 
want to study the conditions on the functional structure of a 
prescribed set of evolution terms 'CJ, _ y so that they result 
from an action functional, i.e., so that they tum out to be 
generalized variationally self-adjoint. According to Ref. 21, 
the generalized variational self-adjointness conditions read 

3162 

a'C 
~ = a,J'I-

y + otP,y) 
'f/p 

X [_ a'CI,_p +!£ a'C1,-:p ] , (2a) 
aq~ dt aq~ 

~ = a'CJ,_y + "/Ily) a'CI,_p (2b) 
~'I vI!-', !l'J ' uqp uq y 

Viet 1, ... , np}, Viler, 

Vje{ 1, ... , ny }, Vyer, V>5EQ, 
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or more abstract49 

dQo [IDdQo = 0, 

where ID l eCA'.(Q, -? Ac,(Q;Ao)), defined by 
t. 

(3) 

ID I • (~): = fdt L ~ Yy(t) • 'CJ, _ y (t,x(t ),x(t I), (4) 
yer J= I 

t. 

denotes the "physical one-form" on the curve space Q (see 
Ref. 49), where Qo denotes the Banach subspace (ofQ) con­
sisting of all at least .ff-times continuously differentiable 

maps from [ta,tb ] to C[nrl, which vanish with all their de­
rivatives up to .ff - 2 at the boundary ta and tb where 
C A'. (Q, -?~ti (Q"; Ao)) denotes the vector space consisting 
of all infinitely many times continuously Ao-differentiable 
maps from Q to the completely antisymmetric bounded 
P - Ao-linear maps from Q to Ao, peNo (generalized p 
forms).49 

Now using (2), one can easily show the following 
theorem. 

Theorem 1: 'CJ, _ y is generalized variationally self-ad­
joint exactly iff there exist infinitely many times continuous­
ly Ao-differentiable A _ y _ 8 -valued functions "'J, - n I, _ 8: 
[ta, tb ] xc["rl--+ A_ y_8 and also corresponding A_ 8-

valued functions (,61, _ 8: [ta,tb ] XC[nrl--+ A -8 so that 

'Cj , _ y(t,x(t ),x(t)) 

"6 

= '} L q~(t )"'k. - 8;J, - y(t,x(t)) 
tef k= I 

+ (,6J, - y(t,x(t)), 

Vje{ 1, ... , ny} Vyer, V~EQ, 

(5) 

holds, where in addition "'k, _ 8;J, _ y and (,6J, _ y satisfy the u­
closure condition 

a 0=u(y8)_·I'k . , ~ I 'f' ,- a;), - Y 
uq8 

a 
+u(a,y) aqy "'I,-8;k.-a 

a 
+ u(8,a) ""jJk "'j, - nl, - 8' 

qa 

the u antisymmetry 

o = "'I, - 8;J, - y + u(8'Y)"'J, - nl, - 8' 

and 

(6) 

(7) 

o = .!... " - u(8 )...!......" u(8 ) a"'J, - nl
, - 8 aq~ 'f/J,-y ,y aqy 'f'I,-8 +,y at . 

(8) 

Proof According to (2a), a 2 'C I, _pi aq! aq ~ must iden­
tically vanish because no other q! term appears in Eq. (2a). 
Equation (2b) immediately leads to the u-antisymmetry rela­
tion (7). Exploiting once more (2a), using the commutation 
rules like (a laq~)q~ = u(a,rWa a laq~ and using the con­
ditions for the r -compatible commutation factor u (see Ref. 
21), one finally arrives at (5), (6), and (8). • 

Theorem 2: The physical one-form IDI (4) is generalized 
variationally self-adjoint with respect to (Q, Qo)' i.e., IDI sat-
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isfies (3) exactly iff there exist two, in general, time-depen­
dent forms 

W2ECA:,(G[nrl, 2'~ti((G[nrl)2; Ao)), 
t 

W,ECA:,(G[nrl , 2' A,,(G[nr1 ; Ao)), 
t 

being C 00 in all of their arguments so that 

tb 

(I)'l! (~) = f dt [(~2)X(t) (P(t ),x(t)) - (~')x(t) (P(t)) ] (9) 

holds for all ~,~EQ, where w, and W2 satisfy 
t t 

(10) 

a 
dw, =-W2' 

t at t 
(11) 

Proof: Using Theorem 1, we define 

(12) 
_ { i )iel'" .. • nal _ (.J 1iE1'.· ... nyl x - qa aer , Y - \.Yy1rer , 
_ (Jc)ke(1 ..... n81 G[nrl 

Z - Zi; .ser E , 

and observe that (7) corresponds to (w2)Av,z) = - (W2)x (z,y), 
t t 

(7) 

"x,y,zeG[nr1 that (6) corresponds tOdW2 = o and that finally 
t 

(8) corresponds to dw, = (a fat )a>2' • t t 

Comment: It might appear surprising that in contrast to 
Theorem 1, Theorem 2 seems to have nothing to do with any 
grading r or with any r-compatible commutation factor. 

But this is absolutely not the case. First of all, the forms w" 
t 

W2 considered by us are not usual forms but they are Ao 
t 

valued and Ao linear. Second, they are infinitely many times 
continuously generalized superdifferentiable, i.e., Ao differ­
entiable (see Ref. 49), in contrast to the conventional forms, 
which are only C 00 sections in antisymmetrized tensor pro­
ducts of the cotangent bundle. In addition, we refer to Ref. 
(49), p. 1550, where we have shown that the exterior differen­
tial d and the Poincare operator K are compatible with the 
category of generalized superdifferentiable Ao-valued and 
Ao-linear forms. We now refer to Ref. 16 for the bosonic 
version of the next theorem. 

Theorem 3 (generalized Pfaffian action principle): Let 
~}. _ y be generalized variationally self-adjoint, or equiv­
alently stated, let the physical one-form (1),(4) satisfy 
dQo [(I),] Q[] = 0, then the action functional (l)oECA:, (Q,Ao) up 
to boundary terms (see Ref. 49) reads 
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, 
(l)0l! = K ((I)')l! = f d1" (I),,,,(~) 

o 
I tb 

= f d1" f dt [(~2)TX(t) (x{t ),n{t)) 

o t. 

- (WtlTX(t) (x{t)) 
t 

tb 

= f dt [(~')x(t) (x(t )) - (~o)X(t) ], 

where 

satisfy 

(13) 

(14) 

(15) 

Proof: Using the lemma of Poincare dQ[]KQo + KQodQo 
= id for the Qo-equivalence classes [(I)p ]Qo ofgeneralizedp 

forms (l)pECA:,{Q,2'::,ti{QP;Ao)) (see Ref. 49), one obtains 
[(I),] Q[] = ~[] [(1)0] Qc, with (1)0: = K ((I),) because K and d are 
compatible with the Qo -equivalence structure.49 By virtue of 
Theorem 1 or 2, we dispose of a certain functional structure 
of the evolution terms ~). _ y' which finally permits us to 
understand (13) and to derive (15), once more using the 
lemma of Poincare dK + Kd = id but now applied to (time­
dependent) generalized p forms 

wpeCA:,(G[nrl, 2'::,ti ((G[nrly; Ao)). 
t • 

Using (12), one also has the following expression for the gen­
eralized symplectic potential 

I 

(v,)x(P) = fd1" 1" L LIS: q~ Y~ 
t rer c5er k= ')=' 

o 

X t/!k. _ fj;j. _ y(t,1"x), 

and for the generalized Birkhoffian 

(16) 

(17) 

where we have chosen the same designation "Birkhoffian" 

for Vo in our r -graded case (with arbitrary finite Abelian 
t 

grading group r and with a corresponding arbitrary but r-
compatible commutation factor) as it has been introduced 
and chosen by Santilli'6.'8 in the pure bosonic case, i.e., if 
r = z, = {OJ. Notice, if we specialize in the case 
r = Z2 = {O,l} and 010,0) = 010,1) = 011,0) = - 011,1) 
= 1, we would consequently arrive at a "super-Birkhoffian­

formalism.5
'" 
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IV. r·GRADED HAMILTONIAN FORMALISM 

In what follows, we shall be concerned with generalized 
Hamiltonian systems, which are by definition characterized 
first by generalized variationally self-adjoint evolution terms 
'!ij , _ y' being explicitly independent of time, 

n. 
'!ij, _ y(x,x) = L L q~t/lk, - c5;j, - y(x) + ¢j, _ y(x), (18) 

c5erk=1 

and which are characterized second by the invertibility of 

the A_ c5 _ y-valued functions t/lk,_c5;j,_yEC~(G[nrl; 
A_ c5 _ y), i.e., by the existence of(t/I-I)k,-c5;j'-YEC~(G[nrl; 

Ac5 + y) satisfying 
ny 

~ ~ .1, (x)(.,,-ly·,-r;I,-p( ) - ~ I~ P 
~ ~ 'f'k,-c5;j,-y 'f' X -Uk Uc5' 
rer j= I 

ny 

L L (t/I-I)I,-P;j'-Y(x)t/lj,_r;k,_,o;(X) =8/8/. (19) 
rer j= I 

Proposition 4: Presupposing (19), Eqs. (6) and (7) are 
equivalent to 

0= (t/I-IY, - r;k, - 15 + a(y,8)a(y,y)a(8,8) 

0= b r~1 [a(P,a)o(y,,8)a(y,y)(t/I-I) i,-a;r,-c5 

X~ (t/I-IY·-P;k.-y 
aq'8 

+ a(y,,8 )a(a,y)a(a,a)(t/I-IY· -p;r.-c5 

X ~ (t/I-I)k. - r;i. - a 
aq'8 

+ a(a,y)a(P,a)a(P,,8 )(t/I-I)k.-r;r.-c5 

X~ (t/I-I)I.-a;J. -pl. 
aq'8 

(20) 

(21) 

The proof of Proposition 4 is tedious but straightfor­
ward and is left to the interested reader. 

We now define 
II,.. , 

w2- '1-'1' PI) 
ny na 

: = L L L L lol)J._y(t/I-Iy.-r;k,-alo'tlk._a' 
reraerj=1 k=1 

VPI,p'1 EC~(G[nrl,...l'" A" (G[nrl;Ao)), 

ny 

PIJy) = L L Y~lol)J,-Y(X)' 
rer j= I 

lotlj._yEC~ (G[nrl;A_ y), 

and the "generalized time-evolution bracket" 

(Go,Fol: = w 2- l(dGo,dFo), 

VGo,FoEC~(G[nrl;Ao). 

(22) 

(23) 

We also need the concept "generalized Hamiltonian vector 
field" 

(dGo)#: = L L t I aGo (t/I-Iy,-r;k.-a .~, 
rer aer j= I k= I aq'y aqa 

(24) 
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for any Ao-valued function GoEC~(G[nrl;Ao). 
Theorem 5: Presupposing (19), Eqs. (6) and (7) are equi­

valent to 

w2- llol,p'1 ) = - w2- llo~ ,pI)' (25) 

VPI,p'1 EC~(G[nrl,1 A" (G[nrl;Ao)) 

and 

{Fo,{ Go,Holl + {Go,{Ho,Foll 

+ (Ho,{Fo,Goll = 0, 

VFo,Go,HoEC~(G[nrl;Ao). 

Proof: The following formulas are valid: 

w2- llol,p'1 ) + wi lloi ,pI) 

(26) 

+ a(a,a)o(y,a)o(y,y)(t/I-I)I. - a;j. - Y] lo~)/, _ a' (27) 

{Fo,{ Go,Hol} + cycl 

(7)or(2') aF. aa an. 
= L ::J,J0 ::J ~ !l r

O 
a(8,y) 

U'fy uqp uqc5 

X ~ I~I [a(P,y)o(8,,8 )o(8,8)(t/I-IY· - r;1. - a 

X~ (t/I-I)k.-l1;r.-c5 
aria 

+ a(8,,8)a(y,8)a(y,y)(t/I-I)k. -11;1.-a 

X ~ (t/I-I)" - c5-J. - y 

aria 
+ a(y,8)a(P,y)a(P,,8 )(t/I-I) r. - 15;1. - a 

X oa
l 

(t/I-Iy.-r;k.- p ], 
qa 

(28) 

so that the proofbecomes obvious by using Proposition 4. • 
Proposition 6: dW2 = 0 and (19) imply 

W2( • ,(dGo)#) = dGo, 

W2-
I(dGo, • ) = (dGo)#, 

[(dGo)#, (dFo)#] _ = (d ( Go,Fo J)# . 

(29) 

(30) 

(31) 

The proofs of (29) and (30) are easy. According to 
Theorem 5, we have ([(dGo)#, (dFo)#] _ - (d ( Go,Fo})# ) 

X (Ho) = 0, VGo,Fo,HoEC~ (G[nrl;Ao). We then choose 
Ho = l:q~YI._a with arbitrary but constant Yi _aEA_a· 

This proves (31). . • 
The generalized Hamiltonian evolution equations 'now 

read 

. 1 _ (d )#1 [- I(d ) ] i qp - Vo x(t),8 = W2 vo" x(t) p, (32) 

and are obtained by putting the evolution terms (18) zero and 
by using (19). Equation (32) is nothing more than the r -grad­
ed flow equation of the generalized Hamiltonian vector field 

(dvo)# withgeneralizedHamiltonianvoEC~(G[nrl; Aol. The 
r-graded (local) flow ct>tEC~ (G[nrl ; G[nrl) (being Coo in all 
of its arguments; for brevity, we do not use the, of course, 
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more precise flow-box notation5Z) satisfies 

ct>'+s =ct>, oct>s, Vt,s,t+se[ta,tb ], ct>o=id. 

As in the pure bosonic case, 53 we have the following 
theorem. 

Theorem 7: Let the generalized two-form 

cuzeCA;, (G[nr 1 ,...tP~ti((G[nr l)Z;Ao)), 

ny ns 

cuzx(y,z): = L } L L Yr~"'k,-6;j,-r(x) 
rertefj=lk=1 

be closed and let (19) be valid. Let now ct> be C'" and let 
ct>ueCA;,(G[nrl;G[nrl) be the (local) r-graded flow ofa gener­

alized vector field X = l:X~( . ). a /a~eXto(G[nrl), X~( . ) 
eCA;, (G[nrl;Ap )' Then, ct>u are generalized canonical trans­
formations, i.e., ct>:(cuz) = CUz, VueR, if and only if Xis gener­
alized Hamiltonian, i.e., X = (dFo)#, where FoeCA;, 
(G[nrl;Ao). 

Proof: The formulas 

(33a) 

and 

(33b) 

where L denotes the Lie derivative, also apply in the 
case of dealing with generalized p forms cupeC:., (G[nrl, 
...tP~ti ((Glnrl)p; Ao)). • 

Theorem 8: The Lie algebra of Ao-valued conservation 
quantities with respect to the generalized Hamiltonian Vo is 
isomorphic (modulo constant) to the Lie algebra of in finites i­
mal generalized canonical transformations which leave the 
generalized Hamiltonian Vo invariant. 

Proof: The Lie algebra of Ao-valued conservation quan­
tities is equipped with the generalized time evolution bracket 
(23) as product. The isomorphism (modulo constants) is then 
given by Fo --+ (dFo)# . • 

V. GENERALIZATION OF SANTILLI'S ISOTOPIC 
ACTION FUNCTIONALS AND OF NIJENHUIS TENSORS 

The question may arise if there are invertible general­
ized tensors YeC:"(G[nrl , ...tP Ao (G[nrl ; G[nrl )), which map 
generalized vector fields X = li~( ')(d /a~), whereX~( .) 
eC:"(G[nrl;Ap ), via 

Yx(Xx) = L LIt X~(x)l'k~(x)~ (34) 
rer {Jerk = 1 j = 1 r aq'p 

to generalized vector fields, where l'k~(. )eC:., (G[nrl ; 
r 

A_r+p), so that the mutated physical one-form 6)\o7]eC:., 
(Q, ...tP Ao (Q;Ao)) defined by 

'b 

(J)~;](~): = J dt~ j~1 (Yx(t, (y(t)))~ 
t. 

X ~j,_r(x(t),x(t)), (35) 

which of course describes the same physical evolutions as 6)1 
does (because of the presupposed invertibility of.7), remains 
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generalized variationally self-adjoint, i.e., 

dQo [6)d Qo = 0 

and 

dQo [ 6)\07] ] Qo = O. 

According to Theorem 2, we observe that besides 

'b 

6)1.(~) = J dt [(cuz)x(t,(y(t), x(t)) - (cudx(t,(y(t ))], 

dcu , = 0, dcuz = 0, 

the following conditions for 
tb 

6)~;](~) = J dt [(CUZ)x(t, (Yx(t, (y(t )),x(t)) 

must hold: 

- cuz(Y(X),Y) = cuz(y(y),x), 

d(cuz0 .7) = 0, d(cu,oY) = o. 

(36) 

(37) 

(38) 

(39) 

(40) 

This means that we ask if there are generalized Hamiltonian 
systems (Le., dcuz = 0, dcu , = 0, cuz- 1 exists), which remain 
generalized Hamiltonian after applying a generalized Santil­
li's integrating tensor Y to the set of the original generalized 
Hamiltonian evolution terms. As in the pure bosonic case, 19 

we shall try to construct for a restricted class of generalized 
Hamiltonian systems characterized by r -graded integrabi­
lity, not only one integrating tensor Y but a A.-parametric 
class of tensors Y = exp(A..A1, A.eAo, where f is a r -grad­
ed Nijenhuis tensor. 

Definition 9: A generalized tensor field 

feC:"(G[nrl;...tP A., (G[nrl;G[nrl )), 

which maps generalized vector fields 

X= L ~ X~(. ~exto(G[nrl), 
rerj= 1 aq'r 

via 
ny nfJ a 

fx(Xx) = L L L L X~(x)..ffj~(x)7k' 
rer {Jer j= 1 k= 1 r uqp 

fj~(. )eC:"(G[nrl ; A_ r + p ). 
r 

to generalized vector fields %(X)eXto(Glnrl) and which 
obeys 

L'y(x,%(Y) = %(Lxf(Y) 

- Ly%(X)) -f 2Lx (Y). 

(41) 
ny a 

VX=LLX~(')-" 
rer j= 1 aq'r 

ny a 
Y = L L Y~( . ) -, exto(Glnrl) 

rer j= 1 aq'r 

is called a r -graded Nijenhuis tensor. 
We emphasize that the bosonic Nijenhuis tensors play 

an important role in the theory of nonlinear integrable evolu-
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tion equations.6-14 As in the pure bosonic case/'s one shows 
that each formal power series F(vf") = l:;'=oan(vf")n with 
an eAo remains a formal r -graded Nijenhuis tensor. We shall 
later take the well-defined function 

00 An 
exp(AA'l: = L::::.......vt", AeAo, 

n=O n! 
also because of the obvious invertibility of exp (A..A1 via 
exp (- AA'l = (exp(AA'l)-I. Iff is a r-graded Nijenhuis 
tensor, the following formula can be proved by induction: 

L.¥(x) (..;r(y)) -f(Lx(..;r(y))) 

=f[L.¥(x)(..;r-I(y)) -f(Lx(..;r-I(y)))], (42) 

V X,Ydg.o(G[nrl ), neN, 

from which 

L.¥(x)(..;r(y)) - f(Lx(..;r(y))) 

=..;r(Lf(x)(Y) -f(LxY)) (43) 

follows. 
Proposition 10: (Compare this proposition to Magri6 in 

the pure bosonic case.) Let X be a generalized vector field 

X = l:X~( . )(8 18q,,)eIg.o(G[nrl ); X~( . )eCA:,(G[nrl;Ay) with 
the property 

~f=~ ~ 

wherefis a r-graded Nijenhuis tensor, then 

L .A"'(X)f = 0, VneN, (45) 

is valid. 
Proof: 

(L .A"'(X)vf")(Y) = L .A"'(X)(f(Y)) - f(L .A"'(X) Y) 
(43) 

=..;r(Lx(..#'(Y)) -f(LxY)) 

=..;r((Lxvf")(Y)) = 0. • 
Proposition 11: (Compare this to Magri6 in the pure bo­

sonic case.) Let f be a r -graded Nijenhuis tensor and let 

XeIg.o(G[nr1 ) be a generalized vector field which leaves f 
invariant, i.e., 

Lxf=O, 

then, the following formula is valid: 

'dn,peNo: [..;r(X), PIX)] _ = 0, (46) 

i.e., all generalized vector fields ..;r(X) are involution and 
therefore lead to commutable r -graded flows. 

The proof is evident by using (45): 

[..;r(X), P(X)L 

= L .A"'(X) P(X) 

= (L.A"'(X)vf")P-I(X) + ... +P-I(L.A"'(X)vf")(X) 

+ fP (L .A"'(X) X ) 
(45) 

= P(L .A"'(X) X ) = - P(Lx..;r(X)) = 0. • 

Definition 12: The triple (1lI2' V O, vf") is called a general­
ized Hamiltonian system with compatible r -graded Nijen­
huis tensor f if the following formulas: 
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i.e., 

d(IlII0vf") = 0, 

1lI2(.A1X), Y) = 1lI2(X,.A1 Y)), 

W2ofeCA:, (G[nr 1 ,.2"~ti((G[nr 1)2;Ao)), 

d (1lI20vf") = 0, 

(47) 

(48) 

(49) 

IlII = dvo, 1lI2 = dV I (50) 

are valid, and if 1lI2- I exists. 
Theorem 13: (Compare this to Refs. 6, 7, and 54 in the 

pure bosonic case.) Let IlI leC A:, (G [nr 1,.2" A., (G (nr 1 ;Ao)) and let 
f be a r -graded Nijenhuis tensor. Let 

dWI = 0, d (Ill I 0vf") = 0. 

Then, we obtain 

d(IlII0..;r) = 0, VneN. 

Proof.' The following identity holds for each 

wleCA:,(G[nrl ,.2" A., (G[nrl;Ao)), 

feCA:, (G[nrl ,.2" A., (G[nrl;G[nrl )): 

d (WI of 2)( Y,Z) 

= d (WI 0A)( Y,.A1Z)) + d (wl0A}(f( Y),Z) 

- dWI(.#"(Y)..Y(Z)) 

(51) 

- wI(L.#'(y)f(Z) -f[Ly.AI"(Z) - Lzf(Y)] 

+f2L y Z), (52) 

Vy="yi(.~ 
~ y 'a1;' 

z = LZ~( . ) 8;y eIg.o(G[nrl ), 

so that (51) can easily be proved by putting f = f, 
WI: = 1lI1°,A/"", m = 0,1, ... , successively. • 

Corollary 14: The same presuppositions as in the pre­
vious theorem lead to 

for all formal power series 

00 

f(vf") = L an..;r, aneAo· 
n=O 

In particular, we obtain 

d (1lI10exp(AA'l) = 0, 'd AeAo. 
Proposition 15: Let 

w2eC A:, (G [nr 1 ,.2"~ti( (G [nr 1 )2;Ao)), 

feCA:, (G[nr] ,.2" A., (G[nrl;G[nrl )), 

with the property 

m2(f(X),Y) = m2(X,.A1y)), 

V X = "Xi ( . )~, 
£J y 8qy 

Y = LY~( .) ~y dg.o(G[nr1 ), 
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then 

a,2if(A)(X),Y) = a,2(X,J(A)(Y)) 

is valid for all formal power series 

especially, we have 

a,2(exp(A.v1}(X), Y) = a,2(X,exp(A.v1}( Y)). (55) 

In this case the notation a,20f(A) does make sense. Let now 
a,2 and S obey the same presuppositions as in the previous 
proposition. The identity 

d (a,20./r)(X, Y,Z) 

= Hd(a,2°A)(S(X),Y,Z) + d(a,2°A)(X,.;v(y),Z) 

+ d (a,20A)(X, y,.;v(Z))] 

- ~ [da,2(S(X ),.;v( Y),Z) + da,2(S(X), y,.;v(Z)) 

+ da,2(X",#"(Y)",#"(Z))] 

- ~2(L.A1x)S(y) -S[LxS(Y) - L~(X)] 

+./rLxY,Z) 

+ ~2(L.;y(x)S(Z) - S[ LxS(Z) - Lz./V(X)] 

+./rLxZ,Y) 

- ~2(L.A1Y)S(Z) -S[LyS(Z) - Lz./V(Y)] 

+./rLyZ,x) (56) 

permits us to prove the following theorem. 

Theorem 16: Let 

liJ2EC,::, (G! nr I ,.i"'~ti((G! nr I )2;Ao), 

fEC'::'(G!nrl,.i'" Ao(G!nrl;G!nrl)) 

obey 

dliJz = 0, liJ2(f(X),Y) = liJ2(X,f(Y)), 

d (liJ20A') = 0, 

and letfbe a r-graded Nijenhuis tensor, then 

d (liJzof(A')) = 0, 

for all formal power series 

In particular, we arrive at the formula 

(57) 

(58) 

We point out that formula (56) is the r -graded counter­
part of the corresponding formula (in the pure bosonic case) 
5.10, p. 352, in the article by Frolicher and Nijenhuis,54 put­
ting L = M = S, I = m = 1, and taking into account 

./Y7'\S =./r, a,2 AS = 2W2oS, 

(a,2 7'\A)7'\S = 4W2oS 2, 

[S ...ih(X,Y) 
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= 2 [L.A1x)S(y) -S(LxS(Y) - L~(X)) 

+./rLxY]. 
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If we now collect all our results, we arrive at the following 
theorem. 

Theorem 17: Let now (liJ2, vo, .A1 constitute a general­
ized Hamiltonian system with compatible r -graded Nijen­
huis tensor f (Definition 12), then 

d(liJloexp(A.JY)) = 0, d(liJ20exp(A.JY)) = 0, (59) 

are valid, VAEAo. Consequently, the generalized tensor 
fields 

.7: = exp (A.JY) (60) 

constitute a A-parametric class of generalized Santilli's isoto­
pic operators, this means, that the mutated one-forms 
oo\YIEC.::, (Q,.i'" Ao (Q;Ao)) defined by (35) remain generalized 
variationally self-adjoint and of Hamiltonian type. The cor­
responding action functionals oo&YI read 

oo&YI = K (oo\YI)x 
~ -

tb 

= f dt [K(liJ20exP(A.JY))X(t)(x(t)) 

(61) 

with a A-parametric class of generalized symplectic poten­
tials 

VIA I: = K (liJ20exp(A.JY)), dV\A 1 = liJ20exP(A.JY), (62) 

and with a A-parametric class of generalized Hamiltonians 

v&AI: =K(liJIOexp(A.#)), dV&AI =liJIOexp(A.#). (63) 

We emphasize that the limit A ---+ 0 in (62) and (63) con­
tinuously leads to the initial generalized Hamiltonian Vo and 
to the initial generalized symplectic potential VI' We also 
point out that 00 1 and ro\YI describe the same physical evolu­
tions, because 001 = 0 is valid if and only if oo\YI = 0 is valid. 

Theorem 18; Let again (liJ2, vo, A') constitute a general­
ized Hamiltonian system with compatible r -graded Nijen­
huis tensor f (Definition 12), then 

L(dvo)#(exp(A.#)) = 0, (64) 

VAEAo, is valid, where (dvo)# = liJ2-
I (dvo • . ). This means 

that (dvo)# constitutes an infinitesimal generalized canoni­
cal transformation, which leaves the r -graded Nijenhuis 
tensor f invariant. (Compare this result with Ref. 6 in the 
bosonic case.) 

Proof: Because of 

(liJ20exp(A.JY)) (X,(dvo)#) 

= liJ2(exp(A.#)(X ),(dvo)#) 
(29) 

= dvo(exp(A.#)(X)) 

(SO) 

= (liJ10exp(A.#))(X) 

(63) 

=dV&AI(X), 

we find 

di(dvo)# (liJ20exp(A.JY)) = 0, 

and because of (59) and (33a) we arrive at 

L(dVo)#(liJ20exp(A.JY)) = O. 

Robert Trostel 3167 



                                                                                                                                    

Finally, because of Theorem (7) and as W 2 is supposed to be 
invertible, we arrive at (64). • 

By virtue of Proposition 11, we obtain 

[exp(A.A)(dvo)#, exp(A '.A1(dvo)#] _ = 0, 
(65) 

VA,A. 'eAo· 
Theorem 19: Let again (W2' vo,.A1 denote a generalized 

Hamiltonian system with compatible r -graded Nijenhuis 
tensor JV, then 

(66) 

This means exp(A.A)(dvo)# constitutes a A-parametric class 
of commutable generalized Hamiltonian vector fields, 
whose Hamiltonians V~A] commute under the generalized 
time evolution bracket (23) 

° = [vb"], V~A'] J = w2- I (dvbA], dV~A 'I), 

VA,A. 'eAo. 
Proof We observe 

w2(X,exp(A.A)(dvo)#) 

= W2(exp(A.A)(X),(dvo)#) 
(29) (SO) 

= dvo(exp(A.A)(X)) = (aJloexp(A.A))(X) 

Finally, we consider 

[VbA],V~A']J 

= (dV~A 1)#(v~A '1) 
(29) 

= w2((dvbA 1)# ,(dvbA .])#) 

(67) 

= (w20 exp((A + A ').A1)((dvo)#,(dvo)#) = 0. • 

Corollary 20: Let again (w2 , vo,.A1 constitute a general­
ized Hamiltonian system with compatible r -graded Nijen­
huis tensor JV and let VO;k denote 

d
k 

( [A])I COO (G[nrl A) VO;k:= dAk Vo A=Oe Ao ;'""0' (68) 

then, the system [ VO;k J k = 0.1.2 .... constitutes a set of general­
ized conservation quantities with respect to the Hamiltonian 
Vo which are involutive under the generalized time evolution 
bracket: 

[ Vo, VO;k J = ° = [VO;k' vO;P J, V k,peN. (69) 

We finally stress and underline that the propositions 
and theorems exposed above constitute a generalization and 
extension of well-known facts in the pure bosonic calculus (if 
one, for instance, deals with integrable nonlinear evolution 
equations6--14) to the case if using a color analytic calculus, 
i.e., if one starts with an associative r-graded Banach alge­
bra A with arbitrary but finite Abelian grading group r and 
equipped with a corresponding r -compatible commutation 
factor q. Incidentally, we automatically comprise the con­
ventional Z2-graded supersymmetric case also by choosing 
r = Z2 = [O,lj, 010,0) = 010,1) = 011,0) = - 011,1) = 1 
and by taking A to be the Banach-Grassmann algebra of 
Rogers32 and Jadzcyk and Pilch.34 We point out that even in 
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the conventional Z2-graded case, the concepts, "Z2-graded 
Nijenhuis tensor," "Z2-graded Santilli's integrating opera­
tors," and the corresponding theorems are apparently new. 
The following example shows that the very remarkable su­
per-KdV (see Ref. 20) recently studied and introduced by 
Kupershmidt possesses indeed a Z2-graded Nijenhuis tensor 
being compatible with theZ2-graded Hamiltonian structure. 

VI. Zz-GRADED NIJENHUIS TENSOR AND 
KUPERSHMIDT'S SUPER-KdV 

As in the following, the example considered is a field 
theory, we now formally extend the results of Sees. II-V to 
the infinite-dimensional case. This means that we do not take 
the space G [nrl as configuration space but instead of G [nrl 

we necessitate the Schwarz space JH[[nrl consisting of all C 00 

maps from RM to G[nrl, which vanish with all their deriva­
tives at infinity more rapidly than any power of IIrll- I, reRM. 

We confess that the formal substitution of G[nrl by 

H[nrl, the substitution of:tY•i by :t
Y

•i fdMf-, and the substitu­
tion of partial left derivatives a lat/y by partial variational 
left derivatives 818t/y(r) in all previous formulas in order to 
transcribe the results from discrete systems to field theories 
is a daring mathematical procedure, in particular, from the 
topological viewpoint, because of some subtle problems 
which arise if one deals with an analysis on non-normable 
vector spaces.5S

-
S7 Because of the validity of the symmetry 

rule (see Kellers), however, we are not algebraically hin­
dered to perform the transcription indicated above. 

Section VI is therefore exclusively devoted to the appli­
cations of the algebraic part of the corresponding transcrip­
tion of results and formulas contained in Secs. II-V to the 
field theoretical case. Let now A be the Banach-Grassmann 
algebra B (see Rogers32 and Jadzcyk and Pilch34) 

(70) 

which is Z2 graded. The corresponding Z2-compatible com­
mutation factor q obeys 010,0) = 0-(0,1) = 0-(1,0) 
= - 0-(1,1) = 1. Let us consider the Bo module G[I.II: 
= ~ ED HI and the corresponding Schwarz space H[ 1.1 lover 
R. ElementsofUlI.I] will be denoted by 

~ = (u(r),tp (r))/€R, .E = (y(r), 1](r))/€R' 
(71) 

.g = (z(r),t (r))/€R eH[ 1.1]. 

In what follows, we also need the vector space Q consisting 
of all maps~, '!. from R to HlI.I] 

Q3~:t_~(t) = (u(t,r),tp(t,r))reR eH[I,l], 

Q3'f.:t-.E(t) = (y(t,r),1](t,r))reR e JH[[I.I], 

having in addition the following properties. 

(72) 

(a) The maps u(·,·), tp (-,.),y(-,.), 1](-'.) are C 00 in all of their 
arguments. 

(b) The maps 

a nu(t,.) a"tp (t,·) a "y(t,·) a "1](t,.) ---, 
~n ~" ~n ~n 

with all their spatial derivatives vanish uniformly with re­
spect to all elements t of a compact neighborhood of t (de-
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pending on ;) at spacelike infinity more rapidly than any 
power of Irl- I

, reR, for each; and neNo. 
According to Kupershmidt,20 the super-KdV reads 

ut(t,r) = ar [3u(t,rf - urr(t,r) + 3q; (t,r)q;r(t,r)] , 

q;t(t,r) = 3ur(t,r)q; (t,r) + 6u(t,r)q;r(t,r) - 4<prrrlt,r), 
where 

aU(t,r) a 3q; (t,r) 
ut(t,r) = --, q;rrr(t,r) = ~' etc. 

at a 
Equation (73) can equivalently be rewritten as u. -~ j}u,(t~J 

= 3u(t,r)2 - urr(t,r) + 3q; (t,r)q;r(t,r), 

q;t(t,r) = 3ur(t,r)q; (t,r) + 6u(t,r)q;r(t,r) - 4<prrr(t,r). 
One easily confirms that 

+00 

+ J dr 7]~(r)t~(r) 

leads to a Z2-graded symplectic two-form {t)2' 

(73) 

(74) 

(75) 

{t)2~ ( l~ ~~) = - {t)2. ( ~~ , b ), d{t)2 = 0, (76) 

where b ~~ eH[ 1,1] depend infinitely many times functional 
Do-differentiable on -!eH[1,Il. Instead of y x ~x' we write the 
Z2-graded vector fields Y~,Z~ in function8J differential geo­
metric notation 

+00 +00 

Y~ = J dryx(r~+ J dr7]x(r)-fJ-, 
- fJu(r) - fJq; (r) 

which maps Z2-graded vectors fields to Z2-graded vector 
fields. A tedious calculation shows that f is a Z2-graded 
Nijenhuis tensor, that means that f satisfies 

LA\y)f(Z) =f[Lyf(Z) - Lzf(Y)] -JY2LyZ, 
(79) 

for all Z2-graded vector fields Y, Z [see (77)]. Let us now put 
(74) inZ2-graded Hamiltonian form. We find that (74) isequi­
valent to 

(t) (yy(t))=dv (y) 'Vyel[[1,I] 
2~tl _"" O~tJ _, _ ' (SO) 

with Z2-graded Hamiltonian 
+00 

vo~ = f dr[ u(r)3 + ~Urlr)2 + 3u(r)q; (r)q;r(r) 

(SI) 

according to Kupershmidt.20 We now want to show that 

d (dvo0A) = 0, d ((t)20A) = 0 (S2) 

are valid. 
Proof: We calculate 

K(dvo°A)~ 
I 

= J dr(dvo°A)~ (-!) 
o 
+00 

= J dr[ ~ u(r)4 + 5u(r)ur(r)2 + ~ urr (r)2 

+ 15u(r)2q; (r)q;r(r) + 20u(r)q;r(r)q;rr(r) 

+ Sq;rr(r)q;rrr(r) + 15q; (r)q;rr(r)ur(r)] 

(where K is the Poincare operator) and find that 

+ !XI + 00 

(77) dK (dvo0A) = dvoof 

Zx = f drzx(r~+ J drtx(r~. 
- - t5u(r) - t5q; (r) 

- 00 

The following Z2-graded tensor field f is introduced 
+00 

f~(Y~): = J dr[4U(rlY~(r) 

3169 

+ 2u.lr{J. -~ J}Y'~J-a"y,(rJ 
+ 3q; (r)ar7]x(r) + q;rlr)7]x(r)] ~ 

- - fJu(r) 
+00 

+ J dr[ 3q; (rlY~(r) 

J. Math. Phys., Vol. 26, No. 12, December 1985 

(7S) 

is valid. A short calculation confirms the validity of 

(t)2(f( Y), Z) = (t)2( Y,.Y(Z)), 

for all Z2-graded vector fields Y, Z [see (77)]. We then calcu­
late 

K ({t)2 oA)~ (~) 
I 

= J dr r({t)2°A)1"~(-!~) 
o 
+00 

= J dr[ ( ; u(r)2 + ! ur(r)a r- IU - ~r(r)q; (r)) 
- .. 
xa r- IZ - J..-u(r)zr(r) + ~r(r)a r- lut (r) 

2 3 

+ ~ u(r)q; (r)t (r) - 2q; (r)trr(r)] , 

where we have abbreviated 

Robert Trostel 3169 



                                                                                                                                    

etc. We again find that 

dK (Ci.l20.A'j = Ci.l2
0.A/" 

is valid, so that (82) is proved. • 
According to Theorem 17, we know that exp(A.AI) is a 

Z2-graded integrating operator, thus leading to a Z2-graded 
isotopic degree of freedom within the Z2-graded Hamilton­
ian description of Kupershmidt's super-KdV. The A-para­
metric class of the Z2-graded symplectic potentials reads 

I 

(V\A])~ = n~o ~; fdTT((Ci.l2)T~O~~)(-!) (83) 

o 

and the corresponding A-parametric class of the Z2-graded 
Hamiltonians reads 

I 

00 An f (VbA])~ = n~o 7t dT((dvo)qo~~)(.~) (84) 

o 

being continuously deformable to VI and Vo via A~. Ac­
cording to Theorem 20, we know that the 

I 

(VO;n)~ = fdT((dVo)T~O~~)(-!) (8S) 

o 

commute under the generalized time evolution bracket, 
which in our case reads 

{Fo,Gol = Ci.l2- I (dFo,dGo) 

+00 

= f dra (
8Fo) (8Go) 

r 8u(r) 8u(r) 

+00 

+ fdr(~)(~) 8lp (r) 8rp (r) , 
(86) 

for suitable infinitely many times formal functional Bo-dif­
ferentiable and Do-valued functionals Fo, Go on 9[1·1]. Be­
sides the original Hamiltonian Vo = vo;o, the next conserva­
tion quantity VO;l reads 

+00 

(VO'I)x = f dr[2.u(r)4 + Su(r)ur(r)2 + .!...urr (r)2 , - 2 2 

+ lSu(r)2rp (r)rpr(r) + 20u(r)rpr(r)rprr(r) 

+ 8rprr(r)rprrr(r) + ISrp (r)rprr (r)ur (r) ]. (87) 

VII. CONCLUDING REMARKS 

Using the calculus with color numbers, i.e., with varia­
bles having unusual commutation properties, we have pre­
sented the initiating steps towards the construction of a the­
ory of r -graded integrable evolution equations under the 
viewpoint of generalized Hamiltonian systems compatible 
with r -graded Nijenhuis operators. As an example of our 
theory, we have found that Kupershmidt's super-KdV fits in 
our scheme by presenting a Z2-graded Nijenhuis tensor com­
patible with the Z2-graded Hamiltonian structure of the su­
per KdV. The explicit construction of r -graded integrable 
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evolution equations with grading groups r different from ZI' 
Z2 is under current investigation and will be published else­
where. 
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The effect of making the lattice Dirac operator the square root of the Laplacian is investigated. 
The doubling of the fermion spectrum is then matched by that of the boson spectrum, unless 
bosons are restricted to a double-spaced sublattice. Fermion spectrum doubling is found to be a 
necessary consequence of the double-valuedness of the square root. 

I. INTRODUCTION 

In the continuum the Dirac operator (l and the Lapla­
cian 0 are related by 

(l.(l = O. 

Equation (1) can be formally inverted: 

(l=~. 

(1) 

(2) 

The Dirac operator can therefore be described or defined as 
the "square root" of the Laplacian. In this paper we will 
examine the effect of enforcing Eqs. (1) and (2) on a lattice. 
We hope in this way to cast light on the lattice fermion dou­
bling problem. I 

First (Sec. II) we start from the naive lattice fermion 
prescription with its doubled (2d -fold) spectrum. Enforcing 
Eq. (1) we get a lattice boson prescription with an identical 
2d doubling (Sec. III). To eliminate boson doubling we have 
to restrict the boson fields to a double-spaced sublattice. 

In Sec. IV we start from a standard undoubled lattice 
Laplacian and use Eq. (2) to define a lattice Dirac operator. 
The resulting theory has an undoubled fermion spectrum. 
Unfortunately, it is ill defined, with multiple sign ambigu­
ities. Now these are inevitable when we take square roots, 
and occur in the continuum also. The crucial difference is 
that on a lattice we cannot specify a single set of signs consis­
tently. To get a well-defined theory we are forced to intro­
duce fermion spectrum doubling. We end up with the theory 
and conclusions of Sec. III all over again. 

In Sec. VI we look for a deeper understanding. We ob­
serve that difficulties identical to those found in Sec. IV beset 
the definition of the square-root function on C. Now this 
analog has a known mathematical solution, in the theory of 
Riemann surfaces? Fermion spectrum doubling emerges 
from our analysis as a natural and inevitable consequence of 
the double-valuedness of the square root. This result holds in 
the continuum also (Sec. VII). Perhaps the true resolution of 
the lattice's problems lies in a better understanding of the 
continuum theory. In Sec. VIII we comment on our assump­
tions and state our conclusions. 

II. LATTICE FERMION DOUBLING 

The lattice fermion doubling problem is seen at its sim­
plest on a cubic lattice with the derivative prescription 

at/! ---+ _1_ ! t/! (x + a~) - t/! (x - a~) l. 
ax,. 2a 

(3) 

The Fourier transform ofEq. (3) is 

P!'tp(P)---+ [sin(p!,a)la] tp(P). (4) 

An arbitrary translation-invariant derivative prescription is 
characterized by the "lattice momentum" D!, (P) that re­
places P!, in this transform. For instance, the lattice Feyn­
man rules involve 1> (P) rather than j. In our example, 

D!'(p)==a- 1 sin(Plla). (5) 

Spectrum doubling arises because D!, (P) has two zeros in the 
Brillouin zone (defined as any 2trla range for p!'). There are 
in all 2d energy zeros giving 2d fermions, with equal 
numbers of each handedness. 

A good way of seeing the 2d degeneracy is to solve 

at/! -=0, VII. (6) 
ax!, 

Because of the 2a spacing over which at/! I ax!, is measured 
[Eq. (3)] there are 2d double-spaced sublattices, on each of 
which t/! is constant, but the constants are independent. In 
the continuum theory there is a single constant, and one 
fermion field. 

We cannot eliminate doubling by restricting attention to 
a single sublattice. Observe that, since handedness is given 
by 

( lId aDt(P)) sgn ---, 
;=1 apt 

a transformation 

Pi ---+ Pi + tria, Pk ---+ Pk (k ¥=i) (7) 

exchanges left- and right-handed components. The subfields 
defined on each of the double-spaced sublattices [e.g. 
~ exp ! i~jpj (2nja) 1 t/! (2n;, ... ,2nd)] are either even (our 
example) or odd under the transformation of Eq. (7). They 
are therefore "mixed fermion" fields of the form L ± R, with 
L and R equal up to handedness. Such fields cannot be asso­
ciated with one handedness or one fermion species. 

III. LATTICE BOSON DOUBLING 

Theories of bosons involve the second derivative of the 
field <1>. Using the prescription ofEq. (3) twice, we get 

a 2<1> 1 { a<l> ( A) a<l> ( A)} 
--2 =- -- x + a .... --- x-a .... 
ax!, 2a ax!, ax!, 

= ~ ! <I> (x + 2a~) + <I> (x - 2a~) - 2<1>(x) 1, (8) 
4a 
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which Fourier transforms to 

PI' 2cillP) ---+ [sinlPl' a)/afcillP)· (9) 

The theory is characterized by the "llJttice momentum­
squared" D 21P). In this case 

2 ~ (Sin IPl'a))2 D IP)= ~ . 
I' a 

(10) 

Clearly, Eqs. (4) and (10), with the usual r algebra, give 
the desired relation [Eq. (1)] between d and D. Equally clear­
ly, D 21P) has 2d zeros in the Brillouin zone, giving exactly the 
same doubling problem for bosons as for fermions. 

Boson spectrum doubling is easily removed. Because of 
the ± 20.., terms in Eq. (8) the 2d boson fields lie on the 2d 
distinct double-spaced sublattices discussed in Sec. II. They 
do not mix like fermions. If we restrict the boson field and its 
gauge couplings to one of the sublattices (e.g.,x j = 2on j , Vi), 
the doubling disappears. 

IV. DOUBLE-VALUEDNESS 

The standard undoubled lattice boson prescription re­
places Eq. (8) with 

a 2~ ---+ -;. {eI> (x + a"') + eI>(x - all) - 2e1> (xl), (11) 
axl' a 

leading to a lattice momentum-squared 

D ,21P) = ~ [~ sin( p;a ) r (12) 

Preserving the square-root relation ofEq. (2), we are led to a 
new lattice momentum 

D'I' IP) = (2/a) sin IPl'a/2). (13) 

This prescription gives a single energy zero in the Brillouin 
zone, however the latter is specified. 

Unfortunately, DI' 'IP) is not well defined. It changes 
sign under 

PI' ---+ PI' + 21r/a. 

This double-valuedness results in a 2d ambiguity in the spe­
cification of the Dirac operator tJ 'IP). 

Such ambiguities are not peculiar to the lattice. In the 
continuum, 

(14) 

shows the same problem. To overcome it we simply specify a 
single sign in front of each pj over the whole of momentum 
space. A similar approach on the lattice would be to choose a 
particular Brillouin zone, e.g., 

PI'E (-11"/a, + 11"/a), VIl, (15) 

and stick to it. However, such a restriction cannot be consis­
tently enforced in the presence of gauge interactions. Sup­
pose we have a fermion loop, and restrict the momentum in 
one fermion line according to Eq. (15). The other fermion 
momenta are completely specified by that in the given line 
and by the external (photon) momenta. In general, they will 
range over ( - 1r/a + k, + 11"/a + k) for some k #0, proving 
our assertion of inconsistency. 
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V. RETURN OF DOUBLING 

A general solution of the Dirac equation using D'I' IP) 
will have a 41r/a period in each PI" To get a well-defined 
theory with solutions of period 211"/a we must take symmet­
ric combinations ofthe form 

(16) 

If P is chosen to make ¢.(p) left-handed then ¢.(p + 21r/a) is 
right-handed. We have spectrum doubling. 

The theory obtained this way is actually a subset of the 
standard doubled theory (Secs. II and III) on a lattice of 
spacing !a. Consider the following. 

(i) DI' 'IP) [Eq. (13)] is just DI' IP) [Eq. (5)] with a ---+ !a. 
(ii) In order to define DI' 'IP) in terms of fermion fields 

t/!(x) we have to use the derivative prescription 

at/! ---+~ {t/! (x + all) - t/!(x)] 
ax/-, a 

to define at/! at x + !all. If we do this then 
ax/-, 

P/-, ift IP) ---+ i2: ejp(x + (1/2)a!l) at/! 
x ax/-, 

= (2/a) sin lP/-,a/2) iftlP), 

as required. The !a-spaced lattice is unavoidable. 
(iii) The Fourier transform ofEq. (16) is (d = 1) 

¢1na) = f1r/a ejp·"a(iftlP)+ift~+ 2;))dP 

(17) 

(18) 

(19) 

The final expression is exactly what we expect in the doubled 
!a-spaced theory. 

It should be clear that the particular subset of the !a­
spaced theory selected by Eq. (16) is that where all fields 
except those on the Xj = nja sublattice are constrained to 
vanish. The remaining subfield gives a symmetrized mixed 
fermion theory (cf. end of Sec. II). This is useless if we want 
fermions of a specific handedness. If the theory makes no 
distinction (e.g., quantum electrodynamics) it might be use­
ful. Otherwise, since we already have all the effects of dou­
bling, we might as well have the full 2d -doubled !a-spaced 
theory. Note that bosons [using Eq. (11)] live on a double­
spaced sublattice exactly as in Sec. III. 

VI. COVERING SPACES AND AN ANALOG 

In the search for deeper understanding we will now con­
sider a closely analogous problem. The attempt to define a 
square-root function on the complex plane is beset by diffi­
culties identical to ours in Sec. IV. Again there are sign ambi­
guities, which cannot be resolved consistently. If we follow 
one choice of sign through a 211" rotation about the origin we 
arrive at the opposite sign. We will consider possible ap­
proaches on C, and see how they can be applied to the lattice. 
Note that here and in Sec. VII we consider only d = 1 for 
simplicity. The generalization to arbitrary d is straightfor­
ward. 
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A. Complex analysis 

One option on C is to cut the plane from 0 to 00, and 
define a consistent square-root function on the cut plane. 
This approach is crude and generally unsatisfactory. The 
position of the cut is arbitrary, and varies when z is rotated' 
there are unwelcome discontinuities across the cut· and th; 
topology of the plane is altered. ' 

A much more satisfactory understanding of all "multi­
valued" functions is provided by the theory of Riemann sur­
faces.2 According to this the square-root function has for its 
range not C but a surface over C. Two points on the surface 
lie above each point z of C. These correspond to the two 

choices of ,[z.lfwe could define the two branches consistent­
ly over all C then the surface would be like two distinct copies 
of C. We cannot, and the surface is connected. A 211' rotation 
about the origin on C is covered by a line on the surface 
whose end points are distinct, but lie above the same point on 
C. A further 211' rotation on C is required to give a closed loop 
on the covering surface. Observe that in this approach the 
square-root function is essentially 1 ---+ 2, taking zeC to two 

points ( ±,[z) on the covering space. It is natural that the 
square root should have this property, since it is the inverse 
of a function (the square) that is 2 ---+ 1. 

B. Lattice analogs 

The cut plane approach is analogous to the SLAC deri­
vative prescription3 and others like it.4 The discontinuities in 
lattice momenta cause serious problems.s This approach is 
not a success, and we will not consider it further. 

The ideas of the Riemann surface are easily applied to 
the lattice map 

(4Ia 2
) sin2 (paI2) ---+ (2Ia) sin (paI2). (20) 

The Brillouin zone on whichp and (4Ia2
) sin2 (paI2) are de­

fined is topologically a circle S I of radius l/a (period 211'la). 
The square root (2/a) sin (paI2) is defined on a space above 
S I( l/ a) that is like the edge of a Mobius band of radius l/ a. If 
it had been possible to define the two branches consistently 
everywhere, this space would have been the border of a twist­
free band [i.e., two copies of S I(l/a)]. 

Once again we are dealing with a 1 ---+ 2 function. The 
consistency problems of Sec. IV arose solely because we tried 
to treat it as a 1 ---+ 1 function. 

The edge of the Mobius band is topologically a circle S I 

ofradius2/a. The lattice momentum (2Ia) sin (paI2) is prop­
erly defined on S 1(2Ia) rather than on the Brillouin zone 
S I(l/a). The Dirac equation defines r/J in terms of the lattice 
momentum, so r/J too lives on the space S 1(2Ia). Ifwe are to 
interpret r/J ((2/a) sin (paI2)) as a function on the Brillouin 
zone S I(l/a) we must associate eachp with two fields, tP((2/ 
a) sin (paI2)) and r/J(( - 2/a) sin (paI2)). That is, we have a 
doubled spectrum. Doubling occurs because the Dirac opera­
tor is defined as a square root, and square roots are properly 
1 ---+ 2functions. 

VII. CONTINUUM SPECTRUM DOUBLING 

We can duplicate the analysis of Sec. VI in the contin­
uum. Equation (2) implies that it is not the momentump that 
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appears in the Dirac equation but 

JjiI = ±p. 
The square root is defined on a covering space over momen­
tum space (RI) that is like the edge of an infinite band. Fol­
lowing Sec. VI we define r/J also on the edge of the band. Once 
more there are two fields associated with each momentum p, 
r/J (P) and \II( - pI, each satisfying a conventional Dirac equa­
tion. We are led to a theory that is just the a ---+ 0 limit of the 
lattice theory of Sec. VI, with the doubled spectrum of that 
theory. 

Of course it is possible to avoid doubling in the contin­
uum by restricting attention to one component of the cover­
ing space. Whether it is legitimate to do so depends on how 
fundamental Eq. (2) is. 

VIII. COMMENTS AND CONCLUSIONS 

Assuming that the square-root definition of d or j is 
fundamental, we have found the following. 

(a) When bosons and fermions appear together on a lat­
tice the fermions are 2d doubled, while the bosons must be 
restricted to a double-spaced sublattice if they are not to be 
doubled also (Sees. III and V). This result could be important 
for models like that of Ref. 6, which have bosonic and fer­
mionic excitations of the same field. 

(b) When the space on which the lattice momentum lives 
is defined properly, and the fields in the Dirac equation are 
defined on that space, then fermion doubling is inevitable 
(Sec. VI). 

Finally, we must comment on our fundamental assump­
tion [Eq. (2)]. 

(i) If (} were well understood it would be simple to use Eq. 
(1) to define 0, and there would be no ambiguities. However, 
it is the Laplacian which is well understood, and the theory 
ofbosons, so that is where we must start. We need Eq. (2). It 
is notable that Kahler fermions7 start from Eq. (2) to get a 
different sort of square root of O. Since lattice bosons are 
well understood and unproblematic it is natural to copy the 
continuum analysis from the beginning and use Eq. (2) on the 
lattice. 

(ii) It is possible that such properties of r/J as its double­
valuedness under rotations are connected with the square­
root ambiguities discussed above. 

(iii) The square-root definition has the virtue that it 
makes sense of lattice fermion doubling [conclusion (b)]. 
Against this may be set the fact that the same analysis leads 
to fermion doubling in the continuum (Sec. VII). This last 
fact may not be the demerit it seems. Perhaps it indicates that 
the lattice's problems are rooted in the continuum, which is 
where we should look for their solution. We look forward to 
further comments. 
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Choosing the Dirac monopole as an example, the theory of differential characters is sketched and 
the quantization condition is recovered in a new way without considering singularities and 
without using a global formulation of gauge fields (i.e., without using fiber bundle techniques). 

I. INTRODUCTION 

Assume that the space (time) is a manifold of dimension 
n and suppose that, while studying some physical system, 
there is a contribution to the Lagrangian of a quantity A 
which cannot be associated with a globally defined n form on 
M. One possible solution is to subdivide M into patches { Ui J 
and to choose a collection oflocally defined quantities {Ai J 
but then one also has to add a contribution to the action 
associated with the change of patches (a recent paper I actual­
ly generalizes these ideas and advocates the use of Cech co­
homology in relation with topological quantization). An­
other possibility that we want to describe here is based on the 
fact that only phase factors (and not phases) are physically 
meaningful: thinking of a Bohm-Aharanov experiment, we 
are therefore led to define a magnetic monopole as a map J' 
from loops on the two-sphere S2 to the group U(l) = R /Z 
(remember that, classically, this is a static' problem with 
spherical symmetry and that a test particle moves on a two­
dimensional sphere centered on the monopole). Actually, we 
will impose a quite severe restriction: although J' is not a 
differential form, we want it to admit a kind of differential (a 
smooth two-form) in order to be able to write Stokes' 
theor~m. It ha,l?pens that the structure of the set of all such 
mapsf[callitHI (S2,R /Z)]canbecomputedeasily, without 
using forms with singularities and even without using a glo­
bal formulation of gauge fields. However, its structure could 
also be computed by considering one-forms with smooth de­
rivatives and point singularities in S2 (interpreted as gauge 
potentials) or by probing the structure of S 2 by putting U( 1) 
bundles over it and classifying those bundles (via the first 
Chern class); the link between these last two approaches be­
ing provided by the pullback on S 2 of the secondary (Chern­
Simons) characteristic classes, which are only locally defined 
on the baseS 2. More generally (and in plain terms), a differ­
ential character of order p is an object which has nice deriva­
tives and which assigns a U(l) phase factor to any p-cycle of 
M (for example, a sP sphere included in M). To our knowl­
edge, differential characters have never been used in physics 
and they are not even very popular among mathematicians 
since the basic reference2 is not published. However, it is 
clear that the whole study of anomalies in gauge theories (in 
particular, the geometrical meaning of the Wess-Zumino 
effective Lagrangian, the Witten quantization condition, 
etc.) could fit into the framework of the theory of differential 

aj Permanent address: Centre de Physique Theorique, Section 2, Centre Na­
tional de 1a Recherche Scientifique Luminy, Case 907, Marseille 13288, 
France. 

characters; this actually motivates the present article, which 
will be mainly expository. We will start with a short study of 
differential forms with singularities which have been consid­
ered historically in the first place, both in physics (Dirac 
string) and in mathematics.3 There we give a first definition 
of differential characters (following Ref. 4), which is not real­
ly canonical but is quite intuitive. Then we give (following 
Ref. 2) an axiomatic definition of differential characters and 
derive a few of their properties; in order to illustrate these 
ideas, we recover the quantization condition for the Dirac 
monopole in a way which relies neither on the study of singu­
larities (Dirac string) nor on fiber bundle techniques (as in 
Wu and Yang5.6). Finally, we show how differential char­
acters can also be obtained from Chern-Simon classes and 
we recover the usual discussion based on the study of the 
U( 1) bundles over S 2. 

The abstract actually summarizes the content of section 
III which is the main section of the paper and can be read 
independently of the others. 

II. DIFFERENTIAL FORMS WITH SINGULARITIES 

Let Mbe a manifold of dimension nand letf = fk be a k­
form defined on the complement of some (p = n - k - 1)­
dimensional polyhedron dp • We can think offas a differen­
tial form with singularities but we impose that the singular 
set off [call it sing(f)] is included in dp ; notice that sing(f) 
needs not to be a manifold. In the example of the Dirac mon­
opole, we would take M = S 2, fl' a one-form, and do 
= sing(f), a point onS 2. We suppose, moreover, that there 

exists a differential form £i) = £i) k + I or order k + 1, defined 
on all M such that Se £i) = S ,. f whenever the boundary 

k+ 1 (J(."k+ I 

of the (otherwise arbitrary) k + 1 chain Ck + I does not meet 
dp • In other words, we set (by Stokes' theorem) £i) = dfwhen­
ever dfis defined and assume that £i) is smooth on M: we are 
therefore not interested in all possible k-forms with singular­
ities but only in those which have smooth derivatives. In the 
example of the Dirac monopole, £i) would be the Maxwell 
field. We would like to define an objectj; associated with/, 
which could be integrated on all the cycles of M, even on 
those which intersect the singular set off; the idea is the 
following: first notice that for a given arbitrary cyclezk (even 
intersecting the singular set), it is possible to find a cycle z" 
not intersecting the singular set such that Zk = ac" + I + z" 
for some k + 1 chain c" + I ; for example, with n = 2, k = 1, 
we are in the situation depicted by Fig. 1 (the cross X indi­
cates a point singularity). Iff had no singularity, we would be 
allowed to write Stokes' theorem as 
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do 

2. - ( ) 

FIG. 1. A singularity on S2. 

2: - Z = , , 

c· 

1 df= r f=1 f=1f-1f, 
ci Jaci z. - Zt z. zi 

and we would get, in particular, 

( 1) 

(2) 

We are therefore tempted to define the object) acting on 
arbitrary k-cycles as the k-dimensional generalization of the 
right-hand side (rhs) ofEq. (2). However, iffpossesses singu­
larities, the above prescription is ambiguous; to see it, let us 
return to the (Dirac) example n = 2, k = 1 and choose the 
cycle z;' depicted by Fig. 2; a careless use of Stokes' theorem 
would lead to 

1.f = L,f+ t df (3) 

Let us then evaluate the difference between the rhs ofEq. (2) 
and Eq. (3); we get 

where c = c; - c2 is the two-chain depicted by Fig. 3. The 
right-hand side of(4) does not vanish because of the singular­
ity and is a deviation from Stokes' formula, which we can call 
the residue of frelative toc. In this particular case, if SOJ is an 
integer n and if we call e the oriented chain which satisfies 
c + e = [S 2] (intuitively e is the oriented complement of c in 
S 2), then ac = - ae and we can write 

n = ( OJ = 10J + i OJ = 10J + J. df JS2 c e c e 

=(OJ+( f=1-( f Jc Jae c Jac 
The right hand side of (4) is therefore an integer; the right­
hand-side of (2) is then defined up to an integer and we have to 
reduce mod Z to get a single valued map. Let bar denote 
reduction mod Z, then, we define 

(Zl,)= 1f + ( OJeU(l)=~. 
zj JCi, Z 

(5) 

Recall that OJ = df whenever df is defined. More generally, 
if c is a k + 1 form and iff has no singularity on the boundary 

do 
...----+--.... 

Z,= (~) 

FIG. 2. A singularity on S2. 
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C=C-c= 
2 2 

FIG. 3. A singularity on S2. 

ac, the rhs of (4) is linked to the number #(sing(f)nc) of 
singularities off contained in c (taking into account the pos­
sible multiplicities and the orientation); notice that in order 
for this number to be a finite integer in a generic case, we 
have chosenp (the dimension of the polyhedron dp ) satisfy­
ing p + (k + 1) = n and also OJ as a form with integer per­
iods. The above prescription (5) can than be generalized4 and 
we define the differential character) associated withf as the 
map from (arbitrary) k-cycles Zk to U(l) by the equation 

(Zk,) = 1/+ i, df eU(l) = R , 
Zk Ck+ I Z 

(6) 

where z;, is any cycle not intersecting the singular set off and 
where Ck + 1 is such that aCk + 1 = Zk - Zk . In practice, it is 
convenient to write f. )= (Zk,), but one should keep in 

k A 

mind that this is not a real number and thatf is not a differ-
ential form. Finally, one should also notice that the corre­
spondencef ~ lis not one to one; indeed, it is clear that if 1] 

is a smooth, closed (d1] = 0) k-form with integer periods, 
thenfandf + 1] define the same differential character/; the 
representation of differential characters by forms with sin­
gularities is therefore not canonical. Also, the amount of 
information contained in/is not clear at that point: we saw 
thatf determines/but we will see that)actually determines 
OJ( = df) and also another quantity associated with the ambi­
guity at the singularity (it will tum out to be an integer coho­
mology class). These two remarks justify the following (axi­
omatic) definition. 

III. DIFFERENTIAL CHARACTERS 

As already announced in the introduction, a map of I 
from k-cycles to R /Z = U(l) is called a differential charac­
ter2 if it is a homeomorphism [/(Zl + Z2) = )(Zl) + )(Z2)] 
and if there is a differential form OJ (of degree k + 1) such 
that w = I a (where bar still denotes reduction mod Z). 
With more familiar notations, we would write 
f., + %, f = f., 1+ S %, I and w = d J. although I is not a dif­
ferential form. It should be clear that such restrictions are 
quite severe and that not any U( 1) valued map on k-cycles 
(even a homeomorphism) can be extended (via OJ) on k + 1 
chains (their boundary being k-cycles). We now want to 
study a few properties of/but at this point it becomes con­
venient to use the terminology of simplicial (co)homology 
with coefficients in Z (or R or R /Z) because we do not want 
to miss a possible torsion phenomena which would be over­
looked by the use of De Rham cohomology. Let us choose Q, 
a real cochain (a homomorphism from chains to R ) such that 
Q coincides with/on k-cycles; then d Q = w (by definition of 
w); dQ will therefore differ from OJ by some integral cochain c 
(a homomorphism from chains to Z J and one gets 
dQ = OJ - c. Let us now show that OJ and c are necessarily 
closed: since d 2 = 0, we get dOJ = dc, which would imply 
that dOJ has integral values, but it is clear that a differential 
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form, even ifit has integral periods (Le., integral values when 
integrated over cycles) cannot have integral values (when 
integrated on any chain); therefore, dUJ = dc = O. Via inte­
gration, we can consider UJ as a real cochain, the relation 
UJ - c = dQ implies then that UJ and c (considered as real) 
belong to the same cohomology class (call it [UJ]). Let us now 
show that UJ has integral periods: we know that)o vanishes 
on k-cycles z(since az = 0) but iQ =.ta, therefore dO. also 
vanishes on cycles which implies that dQ has integer values 
when evaluated on cycles. The same will be true for 
UJ = dQ + c (since c has integer values on anything). The 
choice of Q was, by no means, unique; it remains to show 
how the above is modified by choosing Q I, another real co­
chain coinciding withj on k-cycles: then Q - Q ' = 0 on cy­
cles and therefore Q - Q ' takes integer values on cycles; this 
implies first that d (Q - Q') is an integral (k + 1) cochain and 
that Q - Q I = t + dw where t is an integral cochain and w is 
some k - 1 real cochain (the dw contribution will vanish we 
evaluateQ - Q' on cycles); we can now write Q ' = UJ' - c' as 
we did for Q and we reach the conclusion that 
dQ - dQ ' = dt = (UJ - UJ') - (c - c') is an integral cochain. 
Here again, we use the property that a differential form can­
not take integer values when evaluated on any chain; this 
shows first that UJ' = UJ, next that c' - c = dt. In other 
words, UJ is uniquely determined and c,c' belong to the same 
integer cohomology class (call it u = [c]); actually, we have 
already seen that UJ and c (considered as real) belong to the 
same real cohomology class. The main conclusion of this 
analysis is that a differential character j of degree k deter­
mines (i) a closed differential form UJ of degree k + 1, with 
integral periods; and (ii) an integer cohomology class u of 
degree k + 1. The following exact sequences provide a nice 
bookkeeping device which helps one to remember most of 
the above: 

O-Z_R_Ra_~ m 
A Il, 

O_Hk(RIZ)_Hk(RIZ) _ A~+l_O, (8) 

A Il, 
O_AkIA~ _H(RIZ)_ Hk+l(Z)_O. (9) 

Here, Hk (R ), Hk (Z), Hk (R IZ ) de~ote cohomology groups 
of M with coefficient in R,Z,R IZ; Hk (R IZ) is the group of 
differential characters, A k is the set of differential forms of 
degree k, and A~ is the subset?f closed k-forp1s with Reriods 
lyinginZ; also, we setUJ=81(f) and u=82(f) for/EHk(R 1 
Z). These exact sequences ~so provide a very efficient tool 
that we can use to compute Hk (R IZ) as we shall see below. 

We now return to physics and to the magnetic mono­
poles by defining a Dirac monopole as a differential charac­
ter of degree 1 on the two-sphere S 2. In other words, we want 
to classify the possible phase factors on S2. Mathematically, 
S 2 comes in because S 2 is a deformation retract of R 3 - {O J 
and has therefore the same cohomology; we would work 
directly with R 3 - {O J as well with a monopole sitting at the 

origin. To compute if I, we use the exact sequence (8); it is 
well known that, for a sphere, only the first and the last 
cohomology groups are nontrivial; also, a sphere has no tor­
sion, hence, for S 2, we get 0 = H I(Z) = H I(R ) 
= H I(R IZ), H 2(Z) = Z and we get the short sequence 
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A Il, o _ H 1 _ A; _ 0; therefore, 8 1 is one to one in this case. In 
other words, a Dirac monopole is fully characterized by a 
differential form of degree 2 on S 2 (physically, the magnetic 
field of the monopole), which, when integrated over S 2, gives 
an integer (all other two-cycles are just multiples of S2): we 
recover the usual results. Notice that we can write if I~A~ 
~ + dA I, indeed a two-form with integral periods onS 2 is, 
in particular, characterized (up to the d of a one-form) by the 
value it takes on the fundamental cycle (S 2 itself); of course, 
dA I givesazerocontributionbyStokes'theorem(a [S2] = 0). 
This corresponds to the fact that for a fixed integer n, we can 
write any monopole magnetic field (solution or not of Max­
well's equations) as the sum of an integer multiple of the 
volume form (F = (nI2)sin fJ dfJ A dt/J, this solves Maxwell's 
equations) and of the differential of anyone-form. Before 
ending this paragraph, and in order to complete the study of 
differential characters on S2, we would just like to mention 
that, using Eq. (8) and (9), one shows that flo is isomorphic 
with the set of all smooth maps from S 2 to U I = R IZ and 
that if 2 = R IZ = U( I). Notice that we have obtained these 
results without dealing with a possible point singularity on 
S 2 (or with string singularity on R 3 - {O J) and that we did 
not make any use of the classification ofU(I) bundles yet: we 
now want to study this last link. 

IV. RELATION WITH PRINCIPAL BUNDLES 

Another way of obtaining the same results relies on the 
classification of U( 1) bundles over S 2; this method became 
standard (see, for instance, Ref. 7) after the work of Ref. 5: 
the first Chern class for a U( I) principal bundle P is 
CI(P) = - [F 121T] , F being the curvature of an arbitrary 
connection; the integral of C1 for a U(l) bundle over S2 is the 
integer giving the monopole charge f s' CI = - n; if n = 0, 
we have the trivial bundle P = S 2 X U( 1), if n = 1, we have 
the U(I) Hopf fibration of S3 = SU(2) over S2, etc. Notice 
thatFis a closed form onS 2, the base of the bundle, and also 
closed on P; however, although exact on P [F is the d of the 
connection form for a U(l) bundle], it is not exact onS 2

: one 
has to choose an open covering of S 2 with two patches 
H+,H_ and write F=dA+ on H+, F=dA_ on H_, the 
one-form A +, associated with the northern hemisphere H + 

has a singularity at the south pole; if we now want to define 
globally on S2, an object associated with A ± ' we have to 
consider differential characters (either defined from forms 
with singularities as in Sec. II or abstractly, as in Sec. III). 
More generally, it is possible to construct differential char­
acters out of principle bundle P with connection fJ: let .0. be 
the curvature form of fJ and I, an invariant polynomial on G 
(the structure group of P), then the cohomology class of 1(.0.) 
is a characteristic class; I (.0.) is closed on M (the base of the 
bundle P) and on P, it is usually not exact on M (it represents 
a nontrivial cohomology class); however, is is well known 
that it is exact on P. One can then find a form Q (fJ), globally 
defined onPsuch that/In) = dQ (fJ). To construct Q (fJ) and 
other Chern-Simons forms, one may use the so-called 
transgression formula. 8

•
9 It is clear that, when projected on 

the basis, the form Q (fJ) is not a globally defined object: one 
has to use a local section to project it down and the above 
equality holds only locally. If we want to define globally on 
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the base M, an object corresponding to Q, one has to use the 
concept of differential characters: the reduction mod Z of 
Chern-Simons forms Q (0 ) agrees, on the cycles of P, with the 
lifts (using the projection 1T*) of differential characters on the 
base; for more details about these properties (in particular, if 
one wants to study what happens when the bundle P above 
M can be extended to a manifold N such that aN = M), one 
should consult Ref. 2. In our particular example (the Dirac 
monopole), the situation is quite simple: since we are inter­
ested in the first Chern class (whose representatives are pro­
portional to the curvature of a chosen connection), the 
Chern-Simons form coincides in this simple case with the 
connection itself; if we callA the differential character under 
study (Le., the Dirac monopole under study), we see, with the 
notation of Sec. III that 81(A) = F, the curvature two-form 
and that 82(A ) = cl(P) = [F], the first Chern class which in­
deed is an integer class. In this example, 82(A ) can be deduced 
from 8 1 (A ), this is not necessarily so in general; to build a very 
general example, one should use a bundle (P,M,G ) admitting 
a non-torsion-free classifying space BG, choose an integer 
characteristic class u and an invariant polynomial I such 
that u and [lU] = [1(0)], for some connection 0, coincide at 
the real level, then finally proceed to the construction of the 
differential characters via the mod Z reduction of the 
Chern-Simons class Q (0) associated with 1(0). 

v. CONCLUSION 

Besides the intrinsic interest of casting a new light on an 
old subject (the Dirac magnetic monopole), we hope that this 
sketchy discussion of the theory of differential characters 
will have convinced the reader of its potential impact in 
physics; in particular, the remarks made in Sec. IV show why 
the analysis of anomalies in gauge theories could be done by 
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studying the set of differential characters associated to the 
space of connections modulo gauge transformations. Notice 
that an analogous theory can be held by merely replacing Z 
by Q, the rational numbers, and therefore U( 1) = R /Zby R / 
Q, this remark may indicate that differential characters 
could also provide a natural mathematical framework for 
the study of other physical phenomena (like the quantum 
Hall effect). 
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Two different approaches are used to construct infinite-component spinor equations based on the 
~ulti~licity-free irreducible representations ofSL(4,R). These "manifield" equations are SL(2,q 
mvanant; they exist in special relativity, and can directly be coupled to gravitation in the metric­
affine theory, i.e., in Einstein's general relativity with nonpropagating torsion and nonmetricity. 
In the first approach the maximal compact subgroup SO(4) ofSL(4,R) is "physical." A vector 
operator X I' is constructed directly in the infinite-dimensional reducible representation .,@diSC(!,O) 
...!..gdl'C(O,~). In the second approach, SL(2,q and a vector operator yl' are embedded directly in 
SL(4,R) via the Dirac representation. A manifield equation is then constructed (in a manner 
analogous to the Majorana equation) by taking an infinite-dimensional irreducible multiplicity­
free representation ofSL(4,R), spinorial in jl' in the (j1,j2) reduction over SO(4). Both manifields 
can fit the observed mass spectrum. 

I. INFINITE COMPONENT FIELDS 

Relativistic quantum field theory exploits the concept of 
a local field as the fundamental dynamical object, with the 
particle aspect emerging as the offspring. The particles span 
unitary irreducible representations of the Poincare group 
ISO(3,1) and its double covering ISO(3,1). Fields, on the 
other hand, transform as finite-and thus nonunitary-re­
presentations: of GL(4,R) when tensorial, or of SL(2,q for 
spinor fields. The latter group appears here as the double 
covering of the Lorentz group, i.e., SL(2,q = SO(3,I)(quan­
tum probabilities do not involve phases and thus allow the 
double covering). The nonunitarity of the representations [or 
non-Hermiticity of the relevant matrices of the Lorentz or 
GL(4,R) algebras] does not matter physically: the Lagran­
gian's Hermiticity requires the addition of the complex con­
jugate expression, and the non-Hermitian parts of the 
Noether-theorem-generated densities cancel. I As a result, 
the special Lorentz transformations in SL(2,q, for instance, 
have _only orbital components with the pieces 
f d 3x(r/JUOi r/J + H.c.) canceling. Boosting an electron state 
thus contributes only to the kinetic energy. The same type of 
cancellation occurs for the (noncompact) deformation gener­
ators in GL(4,R). 

The compact subalgebras of GL(4,R) or SL(2,q being 
the only ones to contribute to the physical currents and gen­
erator observables, why do we need the full groups alto­
gether? The action and its Lagrange density have to be glo­
bally invariant under the (active) Poincare group. When we 
include gravity we require invariance under the (passive) 
general covariance group (the diffeomorphisms a with local 
dependence of the transformations). The latter is realized 
nonlinearly over the linear subgroup GL(4,R); we thus have 
to use "world tensors" and the equivalence principle can be 
fulfilled in the easiest manner by keeping them in special 

a) Present address: Department of Theoretical Physics, Research School of 
Physical Sciences, Australian National University, Canberra ACT 2601, 
Australia. 

b) Also on leave from University of Texas, Austin, Texas 78712. 
c) Wolfson Chair Extraordinary in Theoretical Physics. 

relativity, too. This involves regarding GL(4,R) as 
"GL(3, 1 ;R)," i.e., introducing the Minkowski metric linear­
ly and identifying accordingly the SO(3,1) subgroup, with 
the special Lorentz transformations given by symmetrical 
matrices that do not belong to the SO(4) maximal compact 
subgroup ofGL(4,R). Alternatively, one may definex4 = ixo 

(the "Pauli metric") and identify the orthogonal matrices of 
the compact SO(4) with the physical Lorentz group, as we 
demonstrate in (5.3). One can then ask, in either case, for 
global Lorentz invariance and ensure that this be manifest 
invariance. 

For spinor fields with a finite number of components, 
the transition to a does not exist [there is no finite spinorial 
representation of SL(4,R )] and the spinor components are 
invariant under GL(4,R). Global (active) covariance under 
the double-covered Poincare group is formally ensured by 
SL(2,C). For all fields SO(3,1) = SL(2,q C ISO(3,1), the 
double covering of the Poincare group is the global covar­
iance group in the final result. This is thus the covariance 
group of special relativity both for particles and for fields. Of 
course there is the additional advantage of a smooth mani­
festly invariant classical fields' limit, where the particle as­
pect does not enter, and neither does unitarity. 

Infinite-component fields, however, as they correspond 
to unitary representations of SL(2,q and to Hermitian infi­
nite matrices of the sl(2,q algebra will, in contradistinction, 
yield "internal" contributions to the special Lorentz trans­
formations. In this case, the boosts will excite the spin vari­
able, too, and may thus contribute to the potential energy 
(i.e., connect to a different mass). Such infinite-component 
fields were first introduced by Majorana,2 who used the only 
two irreducible representations of SL(2,q for which an in­
variant (linear) first-order wave equation of the form3 

(XI' 81' + ik) r/J(x) = 0 (1.1) 

can be written. The operators X I' (f.l = 0,1,2,3) close on the 
Lie algebra sp(4,R) ~so(3,2). The so-called "ladder represen­
tation" ofSp(4,R) is unitary and splits into the direct sum of 
the two Majorana representations. The algebra sp(4,R) was 
suggested as a spectrum-generating algebra4 for hadronic, 
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nuclear, or other excitations, following the reintroduction of 
Majorana's work by Fradkin.5 However, difficulties arose 
due to the presence of a continuous set of solutions with 
spacelike momenta, in addition to the discrete spectrum­
which is itself not realistic since states of higher spin have a 
smaller rest mass. Dirac6 recently rediscovered these equa­
tions and further developed the formalism. 

II. GRAVITY: THE EINSTEIN, EINSTEIN-CARTAN AND 
METRIC-AFFINE THEORIES 

(i) Einstein's theory is Riemannian, i.e., it precludes the 
propagation of either torsion or nonmetricity. Only the met­
ric field g,..v(x) propagates. Alternatively, we may use the 
tetrad fields e~ (x), with 

g,..v(x) = e~(x) e~(X)1Jab' (2.1) 

where 1Jab is the Minkowski metric ( + 1, - 1, - 1, - 1). 
In the above, the Latin indices a,b represent compo­

nents of the four-vector representation of the anholonomic 
group. In Einstein's theory with spinor matter fields,7 or in 
Einstein-Cartan theory,S this is SL(2,q acting on the local 
frames. 

The tetrad fields had to be introduced7 in gravity after 
the discovery of the electron's spin, in order to cope with 
half-integer spin fields. In differential geometry they de­
scribe a general moving frame, i.e., a set of one-forms () a 

defined over some region U of space-time: 

(2.2) 

At each point x = X E U, the () a serve as local "coordinates," 
inertial at iC'. From the principle of equivalence, i.e., a 
smooth transition to special relativity, when the gravita­
tional field is extinguished, we now get a requirement of local 
SL(2,q = SO(3,1) invariance of the locally inertial coordi­
nate system at each point: the frame is orthonormal. The 
spinor field carries a H,O) EB (O,~) representation of this (an­
holonomic) local Lorentz group, but is invariant under the 
diffeomorphisms (general coordinate transformations). Or­
dinary tensor fields vary under the (passive) action of the 
(holonomic) diffeomorphism group I:::. and its affine 
[GA(4,R)) and linear [GL(4,R)) subgroups but are scalar un­
der the anholonomic Lorentz group. To recapture their vari­
ation under the active anholonomic transformations of the 
local Lorentz group (and thus to satisfy the principle of 
equivalence) they have to be contracted with the tetrads: 

cP~r.:(x) = ea,.. (x) eb v(x)···(e-1):,(x) 

(2.3) 

They would then become world scalars (i.e., invariant under 
the holonomic 1:::.). General relativity with spinors is thus re­
written in a manner which makes I:::. act trivially on all fields. 

This treatment was presented in most textbooks as if it 
was required by the (erroneous) assumption (to which we 
return later) that there can be no world spinors, i.e., that the 
diffeomorphism group has no double covering X. In any case 
this is irrelevant for the Dirac field, as there are indeed no 
finite-dimensional unitary bivalued representations of 
SL(4,R), GL(4,R), or GA(4,R), or of the diffeomorphism 
group 1:::.. Finite spin fields are thus treated anholonomically 
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only, as objects belonging to the tangent manifold, Min­
kowskian for a theory obeying the equivalence principle. 

So the discovery of half-integer spin did not modify Ein­
stein's theory, but it required reexpressing the gravitational 
field in terms of tetrads rather than the metric, the latter now 
appearing as a higher construct. 

(ii) In Einstein-Cartan gravity, as developed by Sciama, 
Kibble, Trautman, and Hehl, S space-time is allowed to carry 
torsion, as well as curvature. Applying the Poincare group 
double covering as a local gauge on the anholonomic indices, 
curvature is seen as the field strength of the SL(2,q Lorentz 
connection CU~b(X) and torsion as that of the translation gauge 
field, represented by the tetrad e~ (x) (the "fundamental 
form"): 

R ab: = a cu ab _ a cu ab + CU a CUeb _ CU a eb 
JJv v J.l JJ v v C JJ It cCUv ' 

(2.4) 

S,..v a: = a"e~ - a,..e~ + CU v aee~ - CU,.. aee~. (2.5) 

Holonomically, torsion introduces an antisymmetric piece 
in the Einstein connection r,..pv, in addition to the symmet­
ric Christoffel symbol, 

S,..~ = (e- 1): S~v =! (r,..~ - rv~)' (2.6) 

Considering gravity heuristically as a gauge theory of the 
Poincare group, one would thus have expected to deal with 
two gauge fields (both with spin J = 2), i.e., CU~b for SL(2,q 
and e~ for the translations. In the Einstein-Cartan version of 
gravity, varying the Lagrangian with respect to both yields 
the two equations 

(2.7) 
"'-

(Einstein'S equation) and, with S,..vp: = S,..vp + gp,.. Sv~ 

8,..vp = k~,..vp (2.8) 

(Cartan's equation), where E,..)s the energy-momentum 
density tensor and ~,..vp the angular-momentum density ten­
sor. 

Einstein's (and the Einstein-Cartan) Lagrangian for the 
gravitational field is linear and contains only one derivative 
(from 2.4). Ths is why (2.8) is just an algebraic equation and 
only implies a substitution of torsion by spin. The Einstein 
equation (2.7) contains curvature (2.4) and through it the 
connection cu and through (2.6) the torsion S, as can be seen 
by writing the holonomic expression for the connection for a 
four-dimensional Riemannian differential manifold with 
torsion 

r,..vp =gpal:::.':1:1- (! aa gPr - grc5Sa~)' 

1:::.':1:1-: = 8~8!,8~ + 8~8:8~ - 8:8t8~, 

with 

(2.9) 

D,.. gyp: = - Q,..vp = O. (2.10) 

The first term in r is the Riemannian connection, and the 
second is the torsion contribution. In fact, Eq. (2.9) results 
from substituting (2.6) and (2.8) in (2.5) and solving for r. 
Substituting spin for torsion in ~2. 7) simply adds a term qua­
dratic in spin on the right-hand side. sHere, D,.. is the covar-
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iant derivative, with connection r and QJ.tvp is the nonmetri­
city tensor. 

Thus, even though we have allowed torsion, it does not 
propagate. It is confined to the regions where the spin den­
sityexists. The effective theory is thus still Einstein's, except 
for the spin-spin term to be added to EJ.tv. 

(iii) The metric-affine theory9 allows the most general 
differentiable manifold L4 , with a connection (allowing par­
allel transfer) and a metric (allowing local measurements of 
angles and distances). Expression (2.1) does not vanish, and 
r J.tvP in (2.9) acquires an additional term in the parentheses, 
! QaPr' The local gauge group on the anholonomic indices is 
GL(4,R), deforming the tetrad frames. We use a gravita­
tional Lagrangian in which the connection is now this com­
plete affine connection, and with a new term added, 

~(g,ag,r,ar) = (- detg)1/2(gJ.tvRuJ.t~ +PQaQa), 

P =1=0, Qa: = ! Qar r (2.11) 

(Qa is known as the Weyl vector), we get as a third field 
equation, 

Qa = kYa, (2.12) 

where Ya is the scale current, a reducible component of 
Y aPr , the hypermomentum tensor density 

a~ 
(det_g)1/2yJ.tv;;;: ___ AI' t/J 

p a (avt/J) p' 

where theA f'p are the matrices of the GL(4,R) algebra. Thus 
nonmetricity Q does not propagate, and is confined to the 
regions of nonvanishing deformation-current or scale-cur­
rent density. The energy momentum tensor density acquires 
a new term quadratic in the scale current. 

III. THE DOUBLE COVERING OF GL(4,R) 

The anholonomic group acting on the local frames has 
thus been enlarged to form SL(2,q = SO(3,1) in Einstein's 
theory with spinors and in Einstein-Cartan theory, or to 
GL(4,R) in the metric-affine theory.9 The (erroneous) univer­
sal impression among physicists that GL(4,R) possesses no 
double coveringlO seemed to restrict the application of met­
ric-affine gravity to bosonic matter. 

The existence of a double covering GL(n,R) was realized 
in physics in 1977. 11 This implied the existence of spinor­
type fields transforming (whether fermonic or bosonic) as 
"bandor,,12.13 unitary infinite-dimensional representations 
ofthe (meta-) linear, affine, and diffeomorphism groups; un­
der reduction of these covering groups to the covering group 
of the orthogonal subgroup SO(3) the fields decompose into 
representations ofSU(2) = SO(3). It had been conjecturedl2 

that hadrons with their Regge excitation bands could be de­
scribed by such bandor irreducible unitary representations 
of OL(3,R) C GL(4,R). It was now proposedl3 that such a 
description should also fit their interaction with gravity. The 
physical interpretation of the GL(n,R ) currents was clarified 
and it was suggested that in metric-affine gravity, spinor­
matter fields indeed appear as infinite-dimensional unitary 
representations of the anholonomic GL(4,R) acting on the 
tetrad indices. 14 
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The term polyjield or manifield was suggested. It was 
also pointed out that since the diffeomorphism group is real­
ized through (nonlinear) group coordinates over the linear 
OL(n,R) subgroup, manifields could also be considered as 
providing for world spinors, II i.e., holonomic spinors, 
whether in Einstein or in affine gravity. IS In this role the 
representations correspond physically to the double cover­
ing of the Greek-indexed coordinate (holonomic) linear 

group GL(4,R) C K = Diff(4,R), in contradistinction to 

the above anholonomic GL(4,R) acting on the tetrad (Latin) 
indices, in the metric-affine theory. 

We thus have three gravitational roles for such mani­
fields: (a) anholonomic spinor matter fields in the metric­
affine theory,14 (b) holonomic world spinors in "classical" 
Einstein gravity,11 and (c) holonomic world spinors in affine 
gravity. IS 

Mickelsson 16 has constructed a wave equation fitting 
case (c). His equation is GL(4,R) invariant; when the gravita­
tional field is extinguished, it preserves global GL(4,R)invar­
iance, i.e., it does not obey the principle of equivalence. On 
the other hand, it could fit in an affine theory with a basic 
non-Minkowski microscopic structure of the space-time 
manifold, perhaps with macroscopic spontaneous break­
down to Minkowski space-time. Such models have only been 
discussed qualitatively IS to date. Another (technical) reason 
why we do not favor a GL(4,R) invariant equation is that-as 
we shall see-the "bandor" representations do not allow the 
construction of such an equation. 

In this article, we propose two distinct ways of meeting 
case (a). The manifield equations we construct are of the 
form (1.1). Although they involve unitary representations of 
GL(4,R), they are only SL(2,q invariant and thus have a 
good equivalence-principle limit. They can be used as more 
injinite-component field equations in special relativity and 
conventional tetrad gravity, or [role (a)J as spinor matter 
manifields in metric-affine gravity. Our equations are in 
close analogy with the Dirac equation, and, as for the Dirac 
case, the gravitational field enters through the inverse-tetrad 
fields 

~Xaaa~~XaDat/J=~Xa(e-I):(aJ.t +cuJ.t)t/J, (3.1) 

where Dais the anholonomic covariant derivation and cuI' is 
the connection. In Einstein gravity with Dirac spinor fields 
we have 

cuI' = (J)J.t bcAbc' (3.2) 

with Abc a finite-dimensional nonunitary matrix representa­
tion of the sl(2,q algebra. In metric-affine gravity Aab is a 
unitary infinite-dimensional matrix representation of the 
gl(4,R) algebra. When gravitation is introduced, theAab take 
the six SL(2,q (nonlinear) values for Riemannian space­
time, or the full 16 (matrix) values for metric-affine gravity. 

In the next section we shall summarize the properties of 
multiplicity-free representations ofSL(4,R); Secs. V and VI 
discuss the formation of wave equations according to two 
quite distinct approaches. In each case we propose infinite­
component fields. These manifields may thus provide the 
correct mode through which the sequences of hadron excita­
tions interact with gravity. 13.14 Both fit role (a) but only the 
manifield (5.8) may fulfill role (b). 
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IV. SL(4,R) AND ITS REPRESENTATION 

The unitary irreducible representations of the group 
SL(3,R) have been constructed and listed. 17,18 Those of 
G = SL(4,R) have been studied IS, 17, 19,20 though a complete 
description is still lacking, The representations of G, which 
are multiplicity-free on reduction to the maximal compact 
subgroup K = SO(4) = SU(2) X SU(2), have a particularly 
simple form and were constructed explicitly.ls,19 

We use the basis (jilx)lx = 1,2; i = 1,2,3) for k, with 

[jilx),j}")] = i8XT/Eijk jj{). (4.1) 

The remaining (noncompact) matrices in sl(4,JR) transform as 
the irreducible tensor operator Z of type (1,1) under K: 

[jP), Zjk] = iEijm Zmk' 

[ 
'(2) Z] . Z Ji , jk = IEikm 'jm' 

[Z Z ] - '(£ '(1) £ '(2)) ij> km - -lujmEiknJn +UikEjmnJn . 

(4.2) 

We also have the spherical basis, given in terms of the above 
Cartesian basis by 

Z ± 1,0 = =+= (lI.j2)(Z13 ± iZ23), 

Zo, ± I = =+= (1I.j2)(Z31 ± iZ32 ), 

ZI, ± I = ±! [(Zl1 =+=Zd + i(Z21 ± Zd1. 

The commutation relations (4.2) become 

[jJI), Za,8 J = aZa,8' [jJ2), Za,d = PZa,8' 

[j~), Za,8] = (2 - ala ± lW /2Za ± 1.,8 

=.j2Za±I.,8(1-8±I,a)' 

(4.3) 

(4.4) 

[j~), Za,8] =.j2 za,p± 1,13(1 - 8 ± 1.,8) (a,,8 = 0, ± 1), 

with the remaining ones following from the so-called "sl(4,R) 
condition" 

[Z Z ] ( '(1) '(2)) II' - I - I = - Jo + Jo . (4.5) 

It is convenient to introduce here too, the basis used by 
Mickelssonl6 for gl(4,R): 

L,. = e,. - e." A,. = ers + esr , r,s = 1,2,3,4, (4.6) 

where e,. is the 4 X 4 matrix with 1 in the r,s position and all 
other elements zero. The L,. span k = so(4), and we have 

[L,., L,u ] = 8"Lru - 8rrLsu - 8su Lrr + 8ruL", 

[L,..A,u] = 8 .. Aru - 8rrAsu + 8suArr - 8ru A." (4.7) 

[A,., Aru ] = 8 .. Lru + 8rrL.u + 8su Lrr + 8ru Ls" 

We also put 

Lk = Lij + Lk4 = 2ijLI), Mk = Lij - Lk4 = 2ijL2), 

(i jk ) a cyclic permutation of ( 123). (4.8) 

To construct multiplicity-free representations we take the 
subspace V of L 2(K ) with orthonormal basis 

I
jl j2) = [(2jl + 1)(2j2 + 1)j1/2 D~'m, D~'m2' (4.9) 
m l m2 
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Then, in the spherical basis, 

jJI) ~~I :) = m l I~I :), 

(4.10) 

while the noncompact operators Za,8 are given by 

Pi, ji, I zap!.i l j2) 
\ml m2 Iml m2 

= (_l yi - m;+J,-mi( ji , 1 
-mla 

jl ) (ji 1 j2 \ 
m l -mi P mJ 

X (jiji I IZI Ijlj2)' 

The reduced matrix elements are 

(ji jillZ Ulj2) 

= - i( - l)j; +J'[(2ji + 1)(2ji + 1)(2jl + 1) 

X(2j2 + 1)P/2(pI + ip2 - ! [j; U; + 1) 

- Ujl + 1) + ji Ui + 1) - j2U2 + 1)]) 

(4.11) 

x(j; 1 jl) (ji 1 j2) (4.12) 
o 0 0 0 0 0 

and clearly they are nonzero only for the four possibilities 

j; = jl ± 1, ji = j2 ± 1. 

Strictly speaking, from (4.9), the values of jl,j2 should 
only be 0,1,2, .... But at this stage we can formally continue 
(4.10) and (4.11) to half-integer values of jl,j2 as well. The 
sl(4,R) condition (4.5) must be rechecked. One can proceed to 
find the complete set of all the unitary irreducible multiplic­
ity-free representations SL(4,R)(seeRef. 15 and 19). We shall 
only need some of these representations. First, we have that 
class, belonging to the discrete series, which is spinoria/: i.e., 
double valued for SL(4,JR), and quadruple valued for SO(3,3) 
[note that SL(4,JR) = SO(3,3), but single valued for SL(4,R). 
Their K content has the structure of a triangular lattice 
IpI,P2 are Casimir invariants): 

D discreteUP, jf): jp = PI + 1, jp = 0, 

or 

jf=o, 

PI = -!,!,~, ~ , ... , P2 = 0, 

Ijl - j21>PI + 1. 

(4.13) 

Second, we want to mention the ladder series l2 oftensorial 
bandors, i.e., single-valued for SL(4,JR), with K content as 
follows l9: 
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.,qladd(0,0;P2):{ (0,0),(1,1),(2,2), ... J, 

.,qladd(! ,! ; P2){ (! ,!),(~ ,~),(~ ,~), ... J, (4.14) 

PI = -1. P2ER. 

The second ofthese, rather surprisingly, turns out to be rel­
evant for manifield equations (see Sec. VI). This representa­
tion was constructed in Ref. 20 in solving the strong-cou­
pling model for the nucleon, for the value P2 = 0. 

V. SL(2,C)-INVARIANT WAVE EQUATIONS 

We now tum to a consideration of some wave equations 
appropriate for the gravitational interactions of hadrons. 
The general type of equation we have in mind is (in momen­
tum space. with no gravitational field yet present) 

(X I' PI' - K) tP(p) = 0, (5.1) 

where'" takes its values in a Hilbert space V carrying a uni­
tary multiplicity-free representation 1r ofSL(4.R), and K is an 
SL(2,q-invariant operator on V, possibly a function of 
p2 = pI' PI' (this generality is sometimes needed when we 
look for realistic mass spectra-see Sec. VI). The X I' 
(I' = 0,1,2,3) are linear operators on V. We demand only 
SL(2.q invariance as discussed in Sec. III, so the X I' trans­
form as an SL(2.q vector. Physically. we want an equation 
which provides a kind of "extended" Dirac field. 

At this stage we are confronted by various choices, 
namely, (a) which is the "physical" Lorentz subgroup of 
SL(4.R) and (b) how is it embedded? These points are by no 
means trivial. as we shall see. 

Our embedding of K = SO(4)-as well as SO(3,I)-in 
SL(4,R) has been the natural one, described by the Lie alge­
bra branching rules sl(4,R~so(4) or sl(2,C): 

defining representation- (! • !). 
(5.2) 

adjoint representation-(I,O) Ell (0.1) Ell (1,1). 

Since our representation 1r of SL(4.R) is K finite, i.e .• on re­
duction to K it contains the representation (j l,j2)' but a finite 
number of times, it is most natural lS.16 to take the quantum 
numbers (j1,j2) to refer to the physical Lorentz group. This 
means using X4 = be°. The non-Hermiticity of these "phys­
ical" Lorentz generators does not affect the physics. as ex­
plained in Sec. I. For this solution the Lorentz boosts will 
again be purely orbital and contribute to the kinetic energy 
only. All of this is perfectly respectable, since only finite­
dimensional representations of K are involved. But if we had 
taken directly the SL(2,q subgroup then 16 1r would not con­
tain any finite-dimensional representations of SL(2,C); this 
case is usually ignored. 

An important property of embedding (5.2) is that we 
must look outside sl(4.R) to find the required K vector X 1'. 

This is our first approach to wave equations, which is further 
discussed in this section. We refer to (5.2) as the natural 
embedding. It is based on an automorphism proved in Ref. 
19. 

However, there is a second approach, suggested to us by 
the case of the Majorana representations ofSL(2,q. There is 
an embedding of SL(2,q in SL(4,R) obtained via the Dirac 
representation: 

3184 J. Math. Phys., Vol. 26, No. 12, December 1985 

sl(4,R)_sl(2.q, 

defining representation-(! ,0) Ell (O.!). (5.3) 

adjoint representation-(I,O) Ell (0,1) Ell 2(! ,!) Ell (0,0). 

[We shall show later that SO(4) cannot be so embedded.] 
Now everything is quite different: we have two linearly inde­
pendent SL(2,q vectors yl'.yl" in SL(4.R). So we can obtain 
automatically an SL(2,q-invariant equation suitable for our 
purpose simply by taking an irreducible representation 1r of 
SL(4,R). 

It is important to realize that (5.3) does not provide a 
direct embedding of SO(3,1) in SL(4,R). Instead, SO(3,1) is 
embedded in SO(3,3) and SL(2,q in SL(4,R) = SO(3,3). 

We shall discuss this possibility (the Dirac embedding) 
in Sec. VI. 

Let us come back to embedding (5.2). The condition that 
X I' can be a K vector is 

[L,.., Xt ] = ~.tXr - ~rtX.. (5.4) 

To express (5.4) in a form convenient for applying angular 
momentum algebra, we define the quantities XAB 

(A.B = ± !)by 

(5.5) 

Then we see that the X AB transform like the canonical basis 
for the K-vector representation (!, !): 

(jJI).XAB ] =AXAB • [jJ2).XAB ] =BXAB , 

(5.6) 

(j~), XAB ] =XA ± I,B' (j~) .XAB ] =XA•B ± I' 

It is well known from the theory of Lorentz-invariant wave 
equations21.22 that, in a candidate representation 1r of 
SL(4,R). the matrix elements of XAB are given by23 

(
j; 

m; 

= (_ I)ii-mi+i,-m, iI ( 
., 

m' - I 

X 2 , 2 12 ("") (. .) 
(
j' 1') 

iI 12 iIh· -m2 B m2 

(5.7) 

They are nonzero only for the four possibilities j; = j I ± ! . 
ji = j2 ± !. It is immediately clear that, among the represen­
tations (4.13), the only possible unitary multiplicity-free 
spinorial representation 1r of SL(4,R) that admits a K vector 
is the (reducible) combination suggested in Ref. 15. We have 
that 

1r = .,qdiSC(!.O) Ell .,qdisc(O.!) (5.8) 

(so in each case PI = -!, P2 = 0), with the K content 
shown in Fig. 1. Here the dark (white) circles refer to 
.,qdisc(O.!)(.,qdisc(!,O)), and the only nonzero matrix elements 
of XAB are between the K representations (j,j +!) and 
(j + !,ji (j = 0,1,2 .... ). i.e., across the diagonal. 

We want to remark here that our multiplicity-free repre­
sentations do not allow the existence ofa SL(4.R) vector. The 
proof is given in Appendix A. Now the operators X k in 
Mickelsson's wave equation 16 do transform as SL(4,R) vec-
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+ 

tor. However, his representations of SL(4,R) are not multi­
plicity-free, and the argument of Appendix A is no longer 
valid. 

For our equation we write the reduced matrix elements 
in (5.7) as24 

aj = (j,j + !IIX Ilj + !,j), 
(5.9) 

bj = (j +! ,jlIX Ilj,j + !), j = 0,1,2, .... 

The aj and bj can be arbitrary complex numbers. Thus, 
strictly speaking, we have afamily of wave equations, each 
one described by a particular choice of these coupling con­
stants (assumed nonzero). As far as SL(2,q properties are 
concerned, each such system is an infinite set of decoupled 
equations for successively higher half-integral spins. Each 
constituent (j,j +!) ~ (j + !,JI in general has the 2j + 1 
spins: 2j + !, 2j - !, ... ,!. The gravitational field, in the form 
of the noncompact shear operators ZaIJ, will couple between 
these constituents, and also throw up new K representations 
so that altogether we recover the representation (5.8) of 
SL(4,R). 

Although we are not concerned here with the Lie alge­
braic properties of the vector operator XI', we note21 that the 
Lie algebra generated by the X I' and k will be, for almost all 
choices of aj , bj , 

sp(4,q ED sp(24,q ED ... ED sp(2(2j + 1)(2j + 2),q ED .... 

Including the ZaP will no doubt generate an infinite-dimen­
sional Lie algebra. 

The mass spectrum, too, depends on the choice of aj , bj • 

Two equations for which the quantities aj, bj,j = 0,1,2, ... , 
coincide clearly have the same spectrum. The spectrum is 
given by 

m = KIA (A a nonzero eigenvalue of X O
), (5.10) 

if K in (5.1) is a constant. More realistic mass spectra appear 
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possible, as in (6.39) or (6.42). Spins coupled to zero eigenval­
uesofXo are excluded,21 as they would have (infinite) unphy­
sical masses. This may imply a need for subsidiary con­
straints. 

Since (5.8) belongs to the double-covering SL(4,R), this 
manifield, though constructed so as to couple anholonomi­
cally to gravity, may also have a holonomic version. 

VI. A WAVE EQUATION BASED ON THE DIRAC 
EMBEDDING 

In this section we want to study the possible Lorentz­
invariant wave equations obtained by considering suitable 
representations 11' ofSL(4,R), where SL(2,q is embedded ac­
cording to (5.3). First of all we shall write down the (Lie 
algebra) embedding explicitly, directly using results of Ref. 
25, where a general study was made of those real Lie algebras 
containing sl(2,q and a vector operator. 

The starting point is embedding of the compact algebras 

su(4) ~ su(2) ED su(2), 

provided by the Dirac representation (!,O) ED (O,!). We use 
the fact that,25,26 if go is a real form of sl(4,q, obtained via the 
Weyl "unitary trick" from the involutive automorphism s 
(say) of su(4), then sl(2,q is a subalgebra of go if and only if 

s(X,Y) = (Y, X), V(X,Y) E su(2) ED su(2). (6.1) 

From Ref. 25 we have the following result: sl(2,q is embed­
ded in sl(4,R), and s is the (outer) automorphism 

s:su(4)_su(4), 
(6.2) 

X-NXN- I = -NX TN-I. 

Note: su(4) consists of skew Hermitian matrices. The 
matrix N E SU(4) may be taken to be 

( ° iif-) N= -iif- 0 . (6.3) 

One can check that s satisfies (6.1). But how do we know that 
the resulting real form is sl(4,R) [and not su(2,2) or su*(4), for 
example]? The reason is thatl5 

U-INU=I, 

where 

U =_1 (I iI) .-.2 _ -.2 E U(4), Ii - icr cr 
(6.4) 

and thus s = a-lOa, where O,a ae the automorphisms given 
by 

(6.5) 

Since s is conjugate to 0, and 0 clearly gives the real form 
sl(4,R) with the Cartan decomposition 

sl(4,R)=k' ED p' = so(4) 

ED {real symmetric matrices I , (6.6) 

we see that we indeed have a realization of sl(4,R). Our Car­
tan decomposition is given by 

go = k ED P, (6.7) 
where the maximal compact subalgebra is 
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/3 
ib 
o 
-r 

r 
o 

-ib 

-p 
[isomorphism to so(4)]; while the noncompact generators are 

(6.8) 

p~W i: i; ~;) ce~8'T.o.vec}~a-'p,~Up'U-', (6.9) 

which means that our realization is 

go = {( _ ~Bcr cr~cr)1 AJJe gl(2,C); Re Tr(A) = oJ = a- l (sl(4,lR)) = U [sl(4,R)] U-I. (6.10) 

This realization is somewhat strange, but we can go over to the more familiar one by applying the isomorphism a. We shall al­
ways do this since we want to compare our embedding with the more familiar case of (5.2). 

Our embedding proceeds via sp(4,R) as follows. For the compact algebra, 

su(2) (B su(2) k usp(4) = u(4) n sp(4,q, (6.11) 

where 

(6.12) 

and 

B=(-q2 0). 
o q2 

Then sl(2,q is embedded in sp(4,R) (see Ref. 25). We take the automorphism S ofusp(4) given by 

s:X-+MXM-I, (6.13) 

where 

M=i(; cJeUSP(4) (M2= -I). 

The resulting real form g has Cartan decomposition 

g= k (B P, 
where 

(6.14) 

(6.15) 

{C~ 
/3 id 

o ) 
.,deR;lIe c} C k 

- -/3 -ia 0 id 
k= id 0 ia 

!!.ia 0 id -p 
(6.16) 

and 

p~{(i~ 
r ic 

!iC) r.8 eR} \;p. 
-b (5 

b,c e lR 
-8 -b -r 
ic -r b 

(6.17) 

Here g is a realization of sp(4,R) contained in our realization 
go of sl(4,R); the maximal compact subalgebra k is isomor­
phic to u(2). Clearly s, as given by (6.2), is an extension ors, 
because if X e usp(4) 

sIX) = -NX TN- I 

= +NBXB-IN- I 

=MXM- I =S(X) (sinceNB=M). 

The isomorphism a given by (6.5) takes g to 

sp'(4,lR)= {Xesl(4,R)IB'XB,-1 = -XTJ, 
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whereB' = UTBU, (6.18) 

the more familiar realization. 
We notice that so(4) cannot be embedded in sl(4,R) via 

the Dirac representation, since any two maximal compact 
subalgebras of sl(4,R) are conjugate under some automor­
phism, and 80(4) is aleady embedded via the natural repre­
sentation H ,!). It is interesting to see how this result appears 
if we ask the general question: which real forms go ofsl(4,q 
contain so(4) embedded via the Dirac representation? We 
discuss this in Appendix B: it turns out that su(2,2) and su*(4) 
are the only possibilities. 
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Coming back to our embedding sl(2,q ~ sp(4,R) 
~ sl(4,R), we write the sl(2,q generators of rotations and 
Lorentz boosts as 

H k = (io'< 0) F k = (- qk 0). (6.19) o io'<' 0 qk 

Using the Dirac matrices in the form 

we introduce another vector operator, given by 

Y>' = _ rY> = (0 . iI) , 
-II 0 

k' _ A,s h _ (0 iif) 
r -rr-iif 0 ' 

where 

r = y> rl Y r = (0- iI ~I)' 

(6.20) 

(6.21) 

Then, forsp(4,R), we see that k has been {H k,iY>j andfthas 
basis (F k' ,ir k 'j. The remaining generators of sl(4,R) are 

iy>', r E k, ir k' E p. Note that sl(4,R ) contains two vector 
operators as expected from (5.3). But only one ofthese---in 
this case ir"-belongs to sp(4,R), once the skew-symmetric 
form B is fixed. 

Under the isomorphism a:go-+sl(4,R) we have (in the 
notation of Sec. IV) 

H1-+-L 1, H2-+L3' H 3-+L2, 

iy>'-+Ml' iY>'-+M3' r-+- M 2' 
(6.22) 

for the compact generators and 

F 1-+ZI2, F2-+ - Z32' F3-+ - Z22' 

ir1-+Z 13' iy-+ - Z33' ir-+ - Z23' (6.23) 

for the noncompact ones. 
Notice that in our setup the physically relevant su(2) 

subalgebra is that spanned by L: in the approach taken in 
Refs. 15 and 16 it is that spanned by L + M. Also, the maxi­
mal compact subalgebra k~so(4) has no physical role; 
though it is still mathematically relevant in the study of the 
representations of sl(4,B). Again we stress that r", r'" are 
not vectors under the so(4) subalgebra, but under the non­
compact subalgebra sl(2,q~so(3,1). It is also clear that 
sl(3,R) does not fit into our scheme in such a way that its 
maximal compact subalgebra so(3) is spanned by L. 

The Lie algebra sl(4,B) is isomorphic to so(3,3). We can 
easily write the so(3,3) generators in terms of Dirac matrices 
as follows. Introducing the notation 

rm = r!,Y,r, - ir,Y>, - iI). m = 1,2,3,4,5=0,6, 
(6.24) 

we put 

Qmn =! rmr". (6.25) 

Then we have the commutation relations of so(3,3), 

[Q m", Q pq] = g"PQ mq _ g"'PQ nq _ g"qQ mp + g"'qQ np, 

(6.26) 
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where the metric is 

g"''' = diag( - 1, - 1, - 1,1,1,1). (6.27) 

The sl(4,B) generators are identified as follows: 

Q i} = ! r iri = - H k (i jk : cyclic permutation of ( 1 2 3j), 

Qi4 =! i rri = (il2) r i, 

QiS=!riy>= _!F i, (6.28) 

Q ,,6 = _! ir", 

Q45 = _! irY> = (il2) y>', 

Q46= -!r, 

These formulas are analogous to Barut's27 four-dimensional 
realization of so(4,2); the only difference is that he takes 't to 
be r andg"''' = diag( - 1, - 1. - 1, - 1,1,1). 

It is interesting to compare our approach with Barut's 
theory27.28 of the hadron spectrum using SO(4,2): in both 
cases sl(2,q is embedded via the Dirac representation. Barnt 
was led to so(4,2) by the well-known properties of the hydro­
gen atom, which has a so(4) kinematical symmetry. We have 
the spectrum-generating algebra sl( 4,H) ~ sol 3,3). Kihlberg29 

has, in fact, suggested using so(3,3) for hadrons, with the 
maximal compact subalgebra so(3) e so(3) interpreted as 
the sum of spin and isospin algebras. In our approach, how­
ever, using SL(4,R), we have the gauge group of gravity natu­
rally appearing. This is why we can speak of the gravitational 
interaction of hadrons. 

Now we can produce Lorentz-invariant wave equations 
ofthe form (5.1), suitable for the description ofthe gravita­
tional interactions of hadrons. One can say that our equa­
tions are extensions of Dirac's equation, since we used the 
Dirac representation of sl(2,C). If we fix the vector operator 
to be r", then the equation is parity invariant. The parity 
operator P is essentially2S the M of (6.14); it singles out the 
real form sp(4,R). Parity invariance means that iy> E k. In 
the same way charge conjugation C is essentially the N of 
(6.3); it gives the real form sl(4,R) and charge conjugation 
invariance means that iy> E k. 

We have enlarged the sp(4,R) algebra-whose ladder re­
presentations give the Majorana equations-to all of sl(4,B), 
by taking the algebra generated by all the products of r ma­
trices (not just the commutators [r", r V], which close on 
sp(4,R )). Another way9 of obtaining sl(4,R ) from Dirac's 
equation 

(6.29) 

is to let the mass term Mbe proportional to r, and then take 
commutators of the r" andM. 

We can now take one of the unitary irreducible repre­
sentations of SL(4,R) given by (4.13) to obtain the Lorentz­
invariant wave equation 

(6,30) 

where t/J takes its values in the Hilbert space V of the repre­
sentation 1r. We could take K to be 1T{M) as the simplest ap­
proach, or even a general Lorentz-invariant operator-valued 
function of p2. 

Since the physical spin su(2) subalgebra is that spanned 
by L, the spin content for each representation 1r is easily 
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obtained: for each K representation UI,j2) appearing, we 
have (2j2 + 1) copies ofthe SU(2) representation jI' Clearly, 
in the present context of the Dirac embedding (5.3) the ap­
propriate spinorial representations l' are those that contain 
K representations UI,j2) with half-integer jI' 

There are thus two candidate multiplicity-free represen­
tations (the method can, of course, be extended to non-multi­
plicity-free representations as well) with lowest spin ~: (i) 
..@diSC(~ ,0) with spin content 

m al 3(~) al 6(~) al 1O(~) al ... , (6.31) 

(ii) ..@18dd(! ,! ;P2)' P2 E R, with spin content 

2m al 4(~) al 6(~) al .... (6.32) 

Since iyO E k, integer values of j2 as in ..@diSC(! ,0) may involve 
self-charge-conjugate states for zero eigenvalues A of iyO. 
The representation ..@18dd(~ ,! ;P2) on the other hand is sym­
metric in positive and negative energy states, like Dirac's 
spinor. 

The Dirac embedding (5.3) is an embedding 
SO(3,1) C SO(3,3) or SL(2,q C SL(4,R). This is why the 
spinor nature of the equation and particles is not correlated 
with the single or double valuedness ofthe SL(4,R) represen­
tation. For gravity, the Dirac embedding produces an anho­
lonomic spinor and cannot be utilized for a holonomic 
("world") spinor (see our discussion in Secs. 1-111). 

We would also like to know the SL(2,q and Sp(4,R) 
reduction, but this is not readily available from our infinitesi­
mal approach. Certainly we have a direct sum of (infinite­
dimensional) unitary irreducible representations: for exam­
ple, we conjecture that the SL(2,q decomposition of 
..@disc(! ,0) is 

{!,/(I)} al 2B ,/(2)} al 3{~,/(3)} (6.33) 

(in the notation of Ref. 21). We do not know what the labels 
1(1),/(2), ... are. The first term in (6.33) may be the Majorana 
representation {! ,O}. 

Weare primarily interested in the mass spectrum of 
(6.3). Since iyO belongs to the maximal compact subalgebra k 
of sl(4,R ), there will be a discrete spectrum of rest masses 
(i.e., those corresponding to timelike momenta, p2 > 0). It is 
easy to calculate the mass spectrum in a given case. First, we 
observe that, since 

M 3=T- IM IT, (6.34) 

where 

0 0 

that occur in 1'. Note that for half-integer j2 the equation is 
indeed symmetric in positive and negative energy states, like 
Dirac's equation. For integer j2' 7T(yO) will have one zero 
eigenvalue for each value of j2' 

The mass spectrum depends on the form of K. If we take 

K = /31 ( /3 E R), (6.38) 

then the spectrum of rest masses is given by 

m = /3 I A [A a nonzero eigenvalue of 7T(yO)]. 

But this decreases as A increases; states of higher m2 and thus 
higher spins jI have a smaller mass as in the Majorana equa­
tion. It may be more realistic to take instead 

K = (ap2 +/3)1, a,/3E R. (6.39) 

o 
So, choosingp = (m,O,O,O), we have 

o 
(l'(yO)m - am2 - /3) ,p( p) = 0, 

i.e., the spectrum of rest masses is given by27 

m[A + (A 2 - 4a/3 )1/2]/2a, (6.40) 

which gives a better mass formula; in particular if /3 = 0 we 
get 

m=Ala (6.41) 

and the mass is linear in A. The observed Regge spectrum 
m 2 

_ jl with daughter trajectories is obtained by taking 

K = {a( p2)3/2 + /3} I. (6.42) 

We observe that of the two "spinorial" equations (6.31) 
and (6.32), it is the ladder example that has nonsingular 
7T(yO), symmetric charge-conjugate (or negative-energy) 
states and can describe [with (6.42)] the physical mass spec­
trum. Its coupling to gravity is purely anholonomic and does 
not involve the double covering ofSL(4,R) and!:t... 

APPENDIX A: LIMITATIONS ON XV AS SL(4,R) FOUR· 
VECTOR 

In this appendix we shall show that, for the multiplicity­
free representations other than (4.14), no SL(4,R) vector Xv 
can be constructed (apart from the trivial case XV = 0). 

If Xv is to be an SL(4,R) vector, then as well as (5.4), we 
must have 

(AI) 

We can calculate the commutators [ZaP' XAB ] in the 
spherical basis most simply by applying the Wigner-Eckart 
theorem for the tensor operator Z acting by commutation on 

[ 1 ~J T=_I_ 0 i 1 

Ji ~i 0 0 
(6.35) the vector representation. Then the matrix elements are 

-1 -i 

we have, from (4.8), 

a(yO) = 2jl(2) = 2Tj3(2)T- I. (6.36). 

Thus for a unitary multiplicity-free representation l' of 
SL(4,R) we see from (4.1) that the spectrum of7T(yO) is given 
by 

(6.37) 

where j2 goes over all the su(2) X su(2) representations UI,j2) 
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(XeD I ZaP IXAB ) 

=2i(-lf+ D (! 1 !)(! I!) 
-C a A -D /3 B 

(A2) 

so that (A 1) becomes 

[ Za{J' XAB ] = 2i( - W + B {(~ - A (A + a)) 

X(~ - B (B + /3))}1/2XA +a,B+P' (A3) 

using the 3j symbols tabulated in Ref. 23. This result can also 
be obtained directly from (4.3) and (AI) if we use the relation 
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iZ;j = ! <5;j(Akk - A44) - (A/j + E/jk Ak4 ). (A4) 

Now if we take the commutator [ Zoo, X II2 112 

- iXII2 112 ], for example, we see that the matrix ele-
ments 

j + ~ I [Z,x ] Ij +! j) 
, 00 112112 n m n 

(A5) 

are zero because Z never couples UI,j2) to itself in the repre­
sentations (4.11) we have constructed except for (4.14) with 
pd=O. Thus 

/j j +!I X Ij +! j) - 0 
\m' n' 112112 m n - , (A6) 

and since this is true for each direction of coupling in Fig. 1, 
we see that XAB=O: no SL(4,R) vector exists for our wave 
equation (5.8). 

APPENDIX B: DIRAC EMBEDDING OF 80(4) C 81(4,C) 

Suppose that go is a real form of sl(4,q for which the 
maximal compact subalgebra k contains so(4) embedded via 
the Dirac representation. The go arises from some involutive 
automorphism s of su(4) such that 

s(X,Y) = (X,Y), V(X,Y) E su(2) $ su(2). (Bl) 

There are two possibilities. 
(a) Ifs:X_MXM- 1 (inner) then (Bl) gives 

M = (~I ~I) a 2 = fj 2 = 1 

and so 

k = {(~ ~) I A,B E u(2); Tr(A + B ) = O} 
~su(2) $ su(2) $ center of k 

and the real form is su(2,2). Since M E USp(4) we have in fact 
an embedding so(4) ~ sp(2,2) with k~usp(2) $ usp(2). 

(b) Ifs: X-NXN-I, this gives 

N = (~cr ~cr) E SU(4) (a2 =fj2 = - 1) 

soNN= -laI 2 = -I.Clearlyk=usp(4)andthistimethe 
real form is su*(4). 

So we can embed so(4) in either of these real forms; these 
possibilities do not concern us here. [Note that sl(4,R) would 
have to come from NN = I in (b). This never happens.] 
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We explore a quantum-chromodynamic (QCD) plasma in stationary nonequilibrium states 
assuming that the process of thermalization is governed by Fokker-Planck dynamics. The 
generalized thermodynamic potential appropriate to the state is obtained. A relationship is 
developed between the response function and the fluctuations in the stationary state. 

I. INTRODUCTION 

Recent calculations have suggested that there is a de­
confinement transition that occurs in quantum chromodyn­
amies (QCD) at temperatures of the order of a couple of 
hundred MeV. It also appears that such a phase transition is 
achievable in the laboratory in high-energy collisions of 
heavy nuclei. 1 It is therefore of interest to study this plasma 
state of matter. 

Since there is a belief (and also perhaps a proof) that the 
colliding heavy nuclei would achieve thermal equilibrium 
within a time of about a fm/c, analyses of the plasma have 
been made under these equilibrium assumptions. A study of 
a QCD plasma away from thermal equilibrium broadens our 
appreciation of this state of matter. 

It has recently been suggested that the thermalization of 
a QCD plasma is governed by the Fokker-Planck equa­
tion.2.3 Since the coupling constant decreases as the momen­
tum transfers increase, most of the parton collisons involve 
small exchanges of momentum. In this sense a parton in a 
plasma away from thermal equilibrium undergoes Brownian 
motion as it thermalizes. It should be remembered that a 
small fraction of collisions are hard and involve large mo­
mentum transfers and that the Fokker-Planck equation for 
thermalization of the plasma is, therefore, only a first ap­
proximation. 

In this paper we study a QCD plasma away from ther­
mal equilibrium. The phase-space distribution function is 
assumed to satisfy a Fokker-Planck equation. The station­
ary solution of the equation. replaces the canonical distribu­
tion function e - PH (H =Hamiltonian) of the equilibrium 
theory. We study the linear response theory and obtain a 
connection between the response function in terms of the 
stationary fluctuations. This is the fluctuation~issipation 
theorem.4 

II. PARTON DISTRIBUTION AND TRANSPORT 
EQUATIONS 

We briefly review earlier work on the subject2 here. Let 
us for definiteness assume that two heavy nuclei collide 
along the z axis at time t = O. Instead of using z and t as 
coordinates we use l' and 71 defined as (see Fig. 1) 

t = l' cosh 71 and z = 1'sinh 71. (1) 

Now 1'is the proper time measured from the origin of the (t,z) 
coordinates. The transverse coordinates will not be used in 
our notation as all the effects of the transverse motions will 
be taken into account in the transverse mass of the partons. 

Let Y be the rapidity of one of the nuclei andy the rapidity of 
a parton at the moment of collision. The initial parton distri­
bution in a nucleon relevant for low Pt is known2 and let us 
call it Q (x). From x we can go to the rapidity variable by the 
use of 

x = (mTIM)e'- Y, (2) 

where M is the mass of a nucleon and mT the transverse mass 
of a parton. Thus the initial rapidity distribution of the par­
tons at the moment of collision is known. 

Let F(1',7J,y) be the phase space distribution function at 
(1',71). The transport equation for the distribution is 

VI' aI'F(1',7J,y) = L (F), (3) 

where L is the collision operator. 
The collision operator may be written in terms of the 

transport rate T (y,y') that a parton of rapidity y gains y' to get 
to y + y'. Therefore, the collision operator in terms of T is 
given as 

L(F)= f dy'[T(y-y',y')F(1',7J,y-y') 

- T(y,y')F(1',7J,y)]. (4) 

Expanding the first term inside the integral around y and 
making the soft collision approximation we get the transport 
equation for F(1',7J,y) asS 

vl'a F==- --A F. a [aB ] 
I' ay iJy , (5) 

t 

FIG. 1. The nuclei collide along the z axis beginning at time t = O. The 
momentum distributions of the partons inside the nucleons prior to the col­
lision are known from present experiments. The distributions evolve ac­
cording to the Fokker-Planck equation subsequent to the collision. 
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where 

(6) 

and 

A (y) = f dy y'T(y,y'). (7) 

Instead of dealing with F(r,7J,y), it turns out to be more con­
venient to deal with the quantity f defined as 

f
+ 00 

F(r,7J,y) = _ 00 P(r,7J,y')f(u,y - y')dy', (8) 

where P(r,7J,y') is the distribution in a collisionless plasma 
satisfying VI' al'P = 0 and u = 1" cosh (7J - y'). The function 
P(r,7J,y') is obtained from Q (y). 

Since the function P is arbitrary, Eq. (5) in F translates to 

VI' aJ(r,7J,y - y') = L (f). (9) 

Using 

vl'a =~ 
I' au' 

(10) 

we get 

~ f(u,y) = ~ [aB (y) - A (Y)Y(u,y), 
au ay ay 

(11) 

which is the Fokker-Planck equation for the functionf (u ,y). 
The elimination of the explicit dependence on the initial 

collisionless distribution P makes the equation in f easy to 
handle. However, the dependence of P on 7J and y is small 
only in the central region and, therefore, the equation in f 
also pertains only to this domain. 

In the central region6 the function B (y) may be approxi­
mated2 by a constant B and may be eliminted from Eq. (11) 
by using the variables 

O=Bu and a(y)=A(y)/B. (12) 

Using these varaibles, we get 

a a [a ] -f(O,y) = - - - a(y) f(O,y). 
ao ay ay 

(13) 

III. GENERALIZED THERMODYNAMIC POTENTIAL AND 
THE FLUCTUATION-DISSIPATION THEOREM4 

The operator A (y) may be obtained by assuming that the 
Liouville operator L acting on the equilibrium distribution 
gives zero. If the equilibrium distribution is assumed to be 
Maxwellian, then we get 

a(y) = mrpsinhy, (14) 

where P = liT. The stationary solutionfs (y) satisfies 

a lnfs . 
--=mrP(smhy). (15) 

ay 

Thus, 

fs =10 em-rf3coshy. (16) 

The generalized thermodyanmic potential is obtained from 7 

(/). - - mrP coshy. (18) 

The average value of a dynamic variable X in a station­
ary state is 

<X> = f dy Xfs(y)· (19) 

The average value of X would change if we add a small per­
turbation as 

af(O,y) = (L + ~L )f(O,y). 
ao 

(20) 

It is easy to check that the system defined by Eq. (13) satisfies 
irreversibility and the condition of detailed balance. 

If the system is disturbed at time 00 by adding a small 
perturbation term ~L to the operator L, the distribution f 
changes to 

f(O,y) = {exp i: dO '[L + ~L (O')]} fs (21) 

==[ ~(8- 80) + f. dO' ~(8- 8')~L (0') 

X~(8'-80) + ... ]fs 

=fs(Y) + re dO' ~(8-8')~L(O')f. +.... (22) J80 

The change in the value of a dynamical variable may be ap­
proximated by keeping only the first term in ~L. Thus, 

~(X > = f [f(O,y) - fs(y)]X (y)dy. 

If the external perturbation is written as 

~L= -K ~, 
then, the response function R" is defined as 

~(X) = f~oo K(O')R,,(O-O')dO'. 

Comparing Eqs. (22)-(25), we get 

f 

afs 
R,,(O) = - X(y)exp(LO) -dy. 

ay 

(23) 

(24) 

(25) 

(26) 

By using the properties offs(Y) it is now possible to express 
the response function in terms of the steady-state fluctu­
ations. The functionfs (y) satisfies 

Lfs = 0 (27) 
and 

L [yfs] = a(y)f.. (28) 

Using these we may rewrite the response function as 

R,,(O) = - f X(y)exp[L (0 )]L (yfs)dy (29) 

= - ~ fX(Y)exP[LO ]yfs(y)dy 
dO 

d = - dO (X(y,O}y). 

(30) 

(31) 
I' - <I> 

Js =e S. 

Thus, 
(17) This is the fluctuation dissipation theorem relating the re­

sponse function R" to the steady-state fluctuations. 
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IV. CONCLUSIONS 

Under the assumption that the parton interactions are 
mostly soft during the process ofthermalization in heavy ion 
collision, it has been suggested earlier that the transport 
properties of a QCD plasma are of the Fokker-Planck var­
iety. We have indicated how for such systems a generalized 
thermodynamic potential may be obtained. Also the re­
sponses of the plasma under small perturbations are related 
to the stationary fluctuations-the so-called fluctuation­
dissipation theorem. 

We believe that there is a rather vast area where these 
results may be applied. Propagation of disturbances in a 
plasma is a subject on which considerable work has already 
been done and more work seems possible. Further, it seems 
possible to arrive at the various moment sum rules a la 
Kubo.8 
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This paper subsequent to the one [J. Math. Phys. 25, 1133 (1984)] (referred to as Part I) presents 
the following new results: It is found out that for M = Land L - 1 the coefficients b K k (L M II) in 
Lowdin's a-function have properties other than manifested in Part I. The expression for 
bK k(L M II) is shown to be equivalent to the one into which Sharma's expression, obtained in a 
different manner from that in Part I, is simplified by Rashid. The use of Rashid's expression leads 
to the recurrence formula for bKk(L M II) with respect to M only. This formula and the 
expression for the bK k (L M II) with M = L provide an easier procedure for successively 
evaluating b K k (L M II ) than in Part I. Furthermore, it is proved that the coefficients 
h".2" _ j(L M II) in the asymptotic form of the a-function vanish for i < I + M and for n < I. 

I. INTRODUCTION 

In the preceding paper, 1 which will be hereafter referred 
to as Part I, it is shown that LOwdin's a-function2 derived 
from Silverstone and Moats' expansion formula3 is ex­
pressed in a much easier form to calculate than those pre­
sented by several other investigators.2.4·s In the expression 
the coefficients b K k (L M II ) defined in Sec. 2 of Part I, which 
appear in the a-function, are written in a simple form. 
Thanks to the simplicity, some of the properties of 
b K k (L M II) are manifested, and several recurrence formu­
las necessary for successively evaluating b K k (L M II ) are de­
rived. An asymptotic expression for the a-function is also 
obtained in a simple form. It is then proved from the proper­
ty of bKk(LMI/) with k=O that the coefficients 
h".2" _ j(L M II), appearing in the asymptotic expression, 
vanish for i = 0 unless I = O. 

The present paper, Part II, will amplify Part I by further 
investigating the following points: (i) whether any simplified 
expression for bK k (L M II ) with a special value of M is avail­
able; (ii) whether any recurrence formula for bK k(L M II) 
with respect to only M, K, or k is obtainable; (iii) to prove that 
our expression for bKk(L M II) is equivalent to the one into 
which Sharma's expression,s obtained in a different manner 
from ours in Part I, is simplified by Rashid6

; and (iv) to prove 
the vanishing of h".2" _/(L M II) for n < I, which is only re­
ferred to in Part I. 

The following sections will present the useful results ob­
tained through the investigation on the above points. In Sec. 
II it will be shown that bK k(L M I/)forM = LandL - 1 are 
expressed, respectively, in only one-terms and from their ex-

I 

pressions their properties, other than manifested in Part I, 
and the relation between them are found out. Section III will 
give the proof of the equiValence of our expression for 
b K k (L M II) to Rashid's expression. In Sec. IV it will be dem­
onstrated that the recurrence formula for bK k(L M II), with 
respect to M only, is obtained using Rashid's expression, and 
this formula and the expression for b K k (L M II ) with M = L 
provide a much easier procedure for successively evaluating 
bK k(L M II) than in Part I. Section V will give the proof of 
the vanishing of h".2" _/(L M II) for i < I + M and for n < I. 
Finally, in Sec. VI some remarks will be made on what has 
led to the results given in Part I and to be presented in this 
paper, and on the significance of the results. 

II. PROPERTIES OF bKk(L Mil) FOR M = LAND L - 1 

Before starting the discussion in this section, we define 
the factorial for a half-integer as 

{

( p - !)( p - ~) ... ! ' 
(p _ !)I= for a positive integer p , 

1/ [( - 1) - P( - P - !)!] , 
for a negative integer p, 

(1) 

with ( - !)!= 1. Thus the following relation holds: 

(p - !)!( - P - !)I = ( - 1)P • (2) 

Use is made of this factorial throughout Part II, since it 
facilitates all the discussions to be made hereafter. 

The expression for bK k (L M II), Eq. (2.6) with Eqs. (2.4), 
(2.7), and (2.8) of Part I, is simplified using the above factorial 
as 

bKk(L M II) = ( - l)M [(L - M)!(L + M)I(/- M)!(I + M)I] 1/2 (L - K - !)I(I- k - !)! 
(L - !)!K 1(1 - !)!k ! 

X :·t (- l)(L + 1-..t)12 • C(LU;M -M)C(LU;OO)( - (L + I-A. )/2 +K + k - !)I , (3) 
..t ="'t..... ((L + I + A. )/2 - K - k)1 

withA.min = max { IL -/1,2(K + k) - (L + I)}. HereC(LU; M - M)and C(LU;O 0) are the Clebsch-Gordan coefficients. 7 
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Throughout Part II, Eq. (3) is adopted as the expression for bKk(L MIl), and only the bKk(L M II) with I>L>M>O are 
taken into consideration because there exist the symmetry relations between them, expressed in Eqs. (3.5) and (3.6) of Part I. 

In this section it will be shown that bK k (L M II) for M = Land L - 1 have properties other than manifested in Sec. 3 of 
Part I. 

First, the properties ofbKk(L Mil) withM = L and their sums over K and over k will be investigated. Introducing into 
Eq. (3) the expressions8 for C(LU;L - L) and C(LU;O 0), we obtain an expression for bKk(L L II) as 

b (L L II) = ( _ W (L + l)lL !(L - K - !)!(I - k - !)! 
Kk K!(/- !)!k! 

X L~ I (A. 1) (( - L + I + A )/2 - !)!( - (L + I - A )/2 + K + k - !)! 
A2,ftmin + 2 ((L + I - A )/2)!((L -I + A )/2)!((L + I + A )/2 + U!((L + I + A )/2 - K - k )! 

(4) 

The summation over A in Eq. (4) is carried out in Appendix A, and its result is given by Eq. (A4). The use ofEq. (A4) reduces 
Eq. (4) to 

b (L L II) = ( _ I)L (L + I )!(L - K - !)!(I - k - !)!( - L + K + k - !)! . 
KkK !(I _ !)!k !(L + 1- K - k )! 

(5) 

Replacing k by L + I - K - k in Eq. (5), we find that 

bKL+I_K_k(L L II) = bKk(L L II). (6) 

This reveals the symmetry property of bKk(L L II). Therefore, evaluation of all bKk(L L II) over the permissible values of K 
and k, seen in Eq. (2.12) of Part I, is not necessary. The sum of bK dL L II) over K can be obtained by putting It = L - k - !, 
p = L + 1- k, and v - p = - L -! in Eq. (Bl) of Appendix B. Then since k>O, obviously It + v - p = - k - 1 <0. 
Hence, from the note in Appendix B, ifand only if It + v =L + 1- 2k - l>Oor k«L + 1- 1)/2, 

L+I-k 
L bKk(L L II) = 0 . (7) 

K=O 

On the other hand, the sum of b Kk (L L II) over k can be obtained by setting It = L - K - !, p = L + I - K, and 
v - p = - I - ! in Eq. (B 1). Then, apparently It + v - p = L - I - K - 1 < 0 because I>L and K>O. Thus, if and only if 
It + v = 2(L - K - !»O or K <L - !, 

L+I-K 
L bKk(LL II) =0. (8) 

k=O 

The vanishing of these sums is helpful for checking whether the calculated values of bK k (L L II) are correct. 
Second, the properties of bKk(L M II) with M = L - 1 will be examined. Introduction of the expression for 

C(LU;L - 1 -L + 1), obtained from that forC (LU;L -L ) using the recurrence formula for C (LU;M -M)inM,Eq.(4.2) 
in Part I, into Eq. (3) yields an expression for bKk(L L - 111) as 

b (L L _ 111) = ( _ l)L - 1 (L - 1 )!(L + I - 1 )!(L - K - !)!(I - k - W 
Kk 2. K!(/- !)!k! 

L+I 
X 2L [A(A+1)+L(L-l)-/(/+l)](A+!) 

A = Ami. 

X (( - L + I + A )/2 - !)!( - (L + I - A )/2 + K + k - !)! 
((L + I - A )/2)!((L - I + A )/2)!((L + I + A )12 + !)I((L + I + A )12 - K - k )! 

(9) 

Separating the sum in Eq. (9) into two sums by utilizing the identity 

A(A + 1) = - (L + I+A -2K - 2k)(L +I-A -2K - 2k-l) + (L + 1- 2K - 2k)(L +1-2K - 2k-l), (10) 

reducing each of the two sums to a single term by using Eq. (A4), and then combining the two terms, we arrive at 

b (L L _ Ill) = ( _ I)L (L + 1- 2K _ 2k) (L + I - 1 )!(L - K - !)!(I - k - !)!( - L + K + k - !)! . (11) 
KkK !(I _ !)!k !(L + 1- K - k )! 

From Eq. (11) it can be seen immediately that 

bKk (LL-lll)=O, forK+k=(L+I)/2. (12) 

Also, compared with Eq. (5), the relation between bK k(L L - 111) and bK k (L L II) is easily obtained: 

bKk(L L - 111) = [(L + 1- 2K - 2k )I(L + l)] . bKk(L L II). (13) 

Needless to say, this relation provides the means of evaluating bKk(L L - 111) frombKk(L L II). Further, introduction of the 
symmetry relation (6) into Eq. (13) leads to the following relation between bKk(L L - 111) and bKL + 1_ K_ dL L - 111): 

bKL+I_K_k(LL-ll/)= - [(L+I-2k)l(L+I-2K-2k)] ·bKk(LL-lll). (14) 

In particular, for K = 0, 
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bo L + /- dL L - 111) = - bo k (L L - 111) . (15) 

The property shown in Eq. (12) and the relation (14) are helpful for evaluating bKk(L L - 111). 

III. EQUIVALENCE OF OUR EXPRESSION FOR bKk{L Mil) TO RASHID'S 

About ten years ago, Sharma derived an expression for bKk(L MIl) [bk(KILM) in his notation] in the conventional 
manner different from ours in Part I, which is written in the form of a quadruple sum. S Recently the expression has been 
simplified into the form of a single sum by Rashid6 skillfully using Eq. (B 1) and relation (2). In fitting Rashid's expression9 to 
our definition for b K k (L M II) given in Sec. 2 of Part I and then replacing the summation index t in his expression by 
L - M - s, we may rewrite Rashid's expression in our notation as 

b (R I (L M II) = (L - M )!(L + M)I(I - M)!(I + M)!(L - K - !)!(/- k - !)! 
K k (L + I _ K - k )!(L - !)!K !(I - !)!k ! 

L - M ( _ L + K + k + s - !)! 

X s~o sIlL -M -s)!(/-L +s)!( -L +s-!)!(L +M -sIt 
(16) 

In Eq. (16), to distinguish Rashid's expression from ours, (R ) has been attached to the symbol bK k as a superscript. 
Here a more general recurrence formula for b K k (L M II ), expressed in Eq. (3), than (4.6) or (4.7) of Part I is derived in order 

to ascertain that b ~k(L M II) satisfies it. It can be obtained by carrying out the same procedure as led to (4.6) of Part I under 
the consideration of the identity for A. (A. + 1), Eq. (to), which may be written as 

(L -M)(/-M)bKk(LM + 111) + (L +M)(/+M)bKk(LM - III) 

= - 4{(K + I)(L -K - !)bK+ lk(LMII) or (k + 1)(/- k - !)bKk+ dLMl1) 

- [(L + I - K - k )(K + k + !) - !(LI + M 2)] b Kk (L M II) J . (17) 

Since it can be easily found that for M = L andL - 1, b~k(L M I/)are, respectively, reduced to the same forms as Eqs. (5) 
and (11), the proof of the equivalence of b ~ k (L M II) to our b K k (L M II) is accomplished by showing that b ~ k (L M II ) satisfy 
the same formula as Eq. (17). 

First, the corresponding term (L - M)(/- M)b ~k(L M + III) to the first one on the left-hand side ofEq. (17) is taken 
into account. In denoting the factor in front of the summation symbol in Eq. (16) by P K k (L M II), we may write it as 

(L -M)(/-M)b~k(LM + III) 

= PKk (L M II) . (L + M + 1)(1 + M + 1) L -I. -1 ( - L + K + k + s - !)! 
s = 0 sl(L - M - 1 - s)!(1 - L + s)!( - L + s - ~)I(L + M + 1 - s)! 

(18) 

Multiplying each term in this sum by 1 = [ - (L + M + 1 - s) - 2( - L + s - m/(L - M - s) to divide this sum into two 
sums, and then doing each term in the second sum of the resulting two by L + M + 1 = L + M + 1 - s + s, we arrive at 

(L -M)(/-M)b~k(LM + III) 

= -PKk(LMII) .(/+M + 1){(L +M+ 1) Lt
M 

(-L +K +k+s- !)! 
s = 0 sIlL - M - s)!(1 - L + s)!( - L + s - !)!(L + M - s)! 

+2[L-M (-L+K+k+s-!)! 

s~o sIlL - M - s)!(1 - L + s)l( - L + s - i)!(L + M - s)! 

L - MS' ( - L + K + k + s - !)! ]} 
+ s~o sIlL - M - s)!(1 - L + s)!( - L + s - ~)!(L + M + 1 - s)! . 

(19) 

In Eq. (19), combination of the first sum and the first one in the brackets and multiplication of each term in the second sum in 
the brackets by I + M + 1 = L + M + 1 - s + I - L + s lead to 

(L -M)(/-M)b~k(LM + 111) 

= -PKk(LMII){(/+M + 1) Lt
M 

(-L +M + 2s)( -L +K + k+s-!)! 
s=o sIlL -M -s)!(/-L +s)!( -L +s- ~)!(L +M -sIt 

2[Lt
M 

s·(-L+K+k+s-!)! 
+ s = 0 sIlL - M - s)!(1 - L + s)!( - L + s - ~)!(L + M - s)! 

L - M ( _ L + K + k + s - !)! ]} 
+ S~l (s-I)!(L -M -s)!(/-L -1 +s)!( -L +s-i)!(L +M + l-s)! . 

(20) 

Here, replacing the summation index s in the second sum in the brackets by s + 1, then multiplying each term in the sum by 
1 = (L - M - s)/(L - M - s), and finally combining the three terms, we reach 
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(L-M)(/-M)b!flc(LM+ 111) 
L-M 

= -flKk(LMII) L [2(L + I-K - k)s- (L -M)(2L + I +M - 2K - 2k)] 
s=o 

x ( - L + K + k + s - !)! 
sIlL - M - s)!(1 - L + s)!( - L + s - !)!(L + M - s)! 

In utilizing the fact that the expression in the above 
brackets is equal to 2(L + I-K - k)( -L +K +k +s+!) 
+(L+I-K -k)(2M-2K -2k-l)+(L -M)(/-M) 
and returning the expression in Eq. (21) to the one in terms of 
b !f lc (L M II), at last we obtain 

(L - M)(/- M)b !flc(L M + 111) 

= - 2 [(K + I)(L - K - !)b !f L dL M I I) 
or (k + 1)(/- k - !)b !flc+ dL M II) 
+ [(L + 1- K - k )(M - K - k - !) 
+!(L-M)(/-M)]b!flc(LMIl)}. (22) 

Second, the corresponding term (L + M)(I + M) 
X b !f lc (L M - 111) to the second one on the left-hand side of 
Eq. (17) is taken into consideration. The same manipulation 
as the above yields its expression in terms of b !f lc (L M II) as 

(L +M)(/+M)b!flc(LM -111) 

= - 2 [(K + 1 )(L - K - !)b !f i 1 k(L M II) 
or (k + 1)(/- k - !)b !flc+ dL M II) 
+ [(L + 1- K - k )( - M - K - k - !) 

+!(L+M)(/+M)]b!flc(LMII)}. (23) 

Consequently, combination of Eqs. (22) and (23) gives 
the same formula for b !f lc (L M II) as Eq. (17). Thus it just 
has been proven that Eq. (16) is an expression for 
bK k(L M II) equivalent to Eq. (3). 

IV. EASIER PROCEDURE FOR EVALUATINGbKk(L Mil) 

In this section it will be shown, from the results in the 
previous sections, that an easier procedure for successively 
evaluating bK dL M II) than in Part I can be found. 

At the outset it should be noted that a new recurrence 
formula for bKk(L M II) with respect to only M can be de­
rived by eliminating the term including b !f ~ 1 k (L M II) or 
b!f lc + 1 (L M II) from both Eqs. (22) and (23). This formula is 
written as 

(21) 

(L +M)(I +M)bKk(LM -111) 

= 2M(L + 1- 2K - 2k )bKk(L M II) 
+ (L -M)(/-M)bKk(LM + 111). (24) 

Here the superscript (R ) on the symbol bKk has been re­
moved. Putting M = L in Eq. (24) leads directly to the rela­
tion (13). The recurrence formula with respect to only K or k 
can be also obtained from the same equations (22) and (23). 
Its form is, however, rather complicated and thus less useful 
for computing bK dL M II). 

By the iterative use ofEq. (24) all the bKk(L M II) with 
M<L - I can be calculated from bKk(L L II). 

The evaluation of b Kk (L L II) can be made using the 
recurrence formulas in K and in k derived immediately from 
Eq. (5). These formulas are written as 

bK + ldLL II) 
= _ (L + 1- K - k)(L - K - k - !) . b (L L II) 

(K + I)(L _ K _ !) K k , 

(25a) 

and 

bKk + dL L II) 
= _ (L +I-K -k)(L -K -k-!).b (LL II). 

(k + 1 )(1 _ k _ !) K k 

(25b) 

Thus, beginning with bo oIL L II), we can calculate all 
b K k (L L II) over K and k, taking into account the symmetry 
relation (6). 

Here it should be noted that, because of our definition 
for b K k (L M 11), necessarily 

boo(LMII) = 1, (26) 

independent of the value of M. This is easily ascertained 
from Eq. (16) and also by using Eqs. (5) and (24) for 
K=k=O. 

In the above manner all bK dL M II) are successively 
evaluated more easily than in Part I. . 

V. VANISHING OF hn,2n_i(L MIl) FOR;<I + M AND FOR n<1 

In the present section it will be proved that the coefficients hn,s(L M 11) appearing in the asymptotic form of the a­
function, which are expressed in Eq. (5.6) of Part 1,10 vanish under the two independent conditions. Replacing the subscript s 
on hn,s(L M II) with 2n - i and substituting Eq. (16) for bKk(L M II) in the expression for hn,s(L M II), we may rewrite 
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h",s(L M II) as 

h",2" _ j(L M II) 
= (L - M)!(L + M)!(I - M)!(I + M)! 

2 . (L - ~)!(I - ~)! 

X [j/21 L + 1- k L - M (n - k - ~)!(K _ ~)! 

k~O K= [(ihV21-k s~o (n - k + ~)!([iI2] - k )!([(i + 1)/2] - k - ~)!(K + k - [(i + 1)/2])!(K + k - [i/2] - ~)' 
X (L - K - ~)!(I - k - ~)'( - L + K + k + s - ~)! , 

(L + 1- K - k )!k !sIlL - M - s)!(1 - L + s)!( - L + s - ~)!(L + M _ s)! (27) 

where n runs over all non-negative integers, and i from 0 to min {2n,2(L + I)}. Here [iI2] denotes the quotient of i12. 
First, it will be shown that h",2" _ j(L M II) for i < 1+ M vanishes. Introducing into Eq. (27) the following relation, derived 

from Eq. (Bl) by settingp, = L, v = - K -~, andp = k + s, 
(K - ~)!(L - K - ~)!( - L + K + k + s - ~)! 

min(L,k+sl 
= (- W+k+SL !(k +s)! L [tIlL - t)!(k +s - t)!( -K - k -s+ t- !)!] -I, (28) 

1=0 

and then extracting only the sum Slover K from the resulting equation, we may write SI as 

L+I-k [( [i+l])( [i] 1) ( 1)]-1 SI= L K+k- -- ! K+k- - -- !(L+I-K-k)! -K-k-s+t--! . 
K=[(j+1)I21-k 2 2 2 2 

(29) 

Further, replacement of K with K - k + [(i + 1 )/2] leads to 

L+I-[(i+1)I21 [ ( [i+l])( [i+l] 1 )([i+l] [i] 1 )]-1 SI= K~O K! L+I- -2- -K! - -2- -S+t-T-K! -2- - T -T+ K ! . (30) 

Putting p, = - [Ii + 1)/2] - s + t -!, p = L + I - [Ii + 1)/2], and v - p = [(i + 1)/2] - [iI2] - ~ in Eq. (Bl) yields the 
result of the summation over K in Eq. (30). Then it can be easily seen that p, + v - p = - [iI2] - 1 - s + t < 0 because 
- s + t<min {L,[iI2]}. From the note in Appendix B, if and only if p, + v = L + 1- i - s + t - 1;;;.0 or - s + t 

;> - L -I + i + 1, SI vanishes. Thus, since - L - 1+ i<[iI2], only for - s + t <min {L, - L - 1+ i}, SI remains non­
zero. On the other hand, p, + v = L + I - i - s + t - 1;;;.1 + M - i-I because - s + t;> - L + M. Therefore, if i < I + M, 
thenp, + v;> 0 for any permissible value of - s + t. Then SI vanishes, and accordingly hn•2" _ j(L M II) does. Here it should be 
noted that the condition i < I + M involves the one for Eq. (5.8) of Part I to vanish. Consequently, only when 1+ M <i 
<min {2n, 2(L + l)}, SI takes a nonzero value, which, according to Eq. (Bl), is written as 

S =(_ W+I-[(i+1)I21 ([iI2] +s-t)! 
1 ( _ [(i + 1)/2] - s + t - ~)!(L + I - [iI2] - !)!( - L - I + i + s - t )!(L + I - [(i + 1 )/2])! 

(31) 

Second, it will be shown that hn•2n _ j (L M II) for n < I vanishes. This vanishing is referred to in Part I, but has not yet been 
proven. Here the. two relations 

(n -k-~)! 

([(i + 1)/2] - k - ~)'([i/2] - k)! 
= (n - [Ii + 1)/2])!(n - [iI2] - ~)! 

min (n - [(j + 1)/21.[il21 - k I 
X L [p!(n - [(i + 1)/2] - p)I([i/2] - k - p)!([(i + 1)/2] - [i/2] - ~ + pI!] -I, (32) 

p=O 

and 

(k + )1 min (k,1 I 
_----'----'-s..:.-_ = ) [q!(t _ q)!(k _ q)I(s - t + q)!] -I, (33) 
(k + s - t)!t!s!k! q=max~-s+ II 

obtained using Eq. (Bl), are introduced into the expression for hn,2,,_j(L M II) derived by inserting Eq. (31) intoEq. (27), and 
then, from the resulting expression, is extracted only the sum S2 over k. It is written as 

[1/21-p k (/-k-!)! 
S2 = k~q (- 1) (n _ k + ~)!([iI2] - k - p)!(k _ q)! 

= (- 1)/ ~ [(k - q)I([ ~] - k - p)r( n - k + ~ )r( -I + k - ~ )r] -I. (34) 
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Further the replacement of k - q with K leads to 

li12J-P-q[ ([i] )( l)( I )]-1 S2=(-I)1 K~O K!"2 -p-q-K! n- q +"2- K ! -1+q-"2+ K ! . (35) 

Putting Jt = n - q + !, p = [i/2] - P - q, and v - p = - 1+ q - !in Eq. (BI), we can obtain the result of the summation 
over K in Eq. (35). Then it can be seen immediately that Jt + v = n - I + [iI2] - P - q and Jt + v - P = n - I. Here 
n -I + [iI2] - P - q;;;.max [ -I + i - t, n -I} becausep + q.;;;[i/2] + min [n - i + t, OJ. Further, sincet.;;; -1- M + i, 

Jt + v = n -I + [i/2] - p - q;;;.max [M, n -/};;;.O. (36) 

The last equality or inequality in (36) arises from the restriction M;;;.O taken in Sec. II. Because (36) holds for any set of the 
permissible values ofp, q, and t, S2 vanishes ifJt + v - p = n -I <0. Accordingly, then hn,2n_ ilL M II) disappears. 

Thus the vanishing of h n,2n _ i (L M II) for i < I + M and for n < I has just been proven. 

VI. CONCLUDING REMARKS 

In Part I, the coefficients in the a-function were factorized into y(L M II) expressed in Eq. (2.9) of Part I and b K k (L M II) so 
bo oiL M I/)mayequalaunity, and then, withrespecttobKk(L M 1/),nottheproducty(L Mil) XbK dL Mil), their properties 
and the existence of some procedure for successively computing them were investigated. Consequently, several desirable 
results were obtained. Here in Part II. further investigation on the same subjects has been made, and some useful results have 
been obtained as given in the previous sections. It is noteworthy that the manipulation of bKk(L MIl), not 
y(L M II) . b K k (L M II), has yielded all of those results. 

From a practical point of view, it is to be emphasized that, since the products r(L M II) . bK dL M II) and 
y(L M II) . hn•2n _ i (L M II) are independent of the form of the radial part of a function to be expanded, they, once evaluated, can 
be used for any function as long as its angular part is expressed by a spherical harmonics. In this context, it is important that in 
Part I and especially in the present paper the procedure for successively evaluating b K k (L M II) has been equipped. 

Any procedure for directly evaluating hn,2n _ ilL M II) by no use of bK k(L M II), however, has not yet been found. It is 
necessary to seek it further. 

APPENDIX A: PERFORMANCE OF THE SUMMATION IN EQ. (4) 

The sum in Eq. (4), denoted by S, may be rewritten as below by replacing L + I - A. and K + k by 2Jt andj, respectively: 

_!'max L + I - 2Jt + ! (I - Jt - !)!(j - Jt - !)! 
S - !'~o (L + 1- JL + !)!Jt! . (L + 1-j - Jt)!(L - JL)! ' 

(AI) 

whereJtmax = min [L + 1-j, L }. Now we perform the summation overJL in Eq. (AI). Separating the sum into two sums by 
using the identity L + I - 4.t +! = (L + I - Jt + !) - Jt, replacing the summation index Jt in the resulting second sum by 
Jt + l, and then combining the two sums, we obtain 

• /Lmax - 1 L + I - 2Jt - i (I - Jt - ~)!(j - Jt - ~)! 

s= (j -L -!) /L~O (L + I-Jt - !)!Jt!' (L + 1-j -Jt)!(L -Jt)! 

(I - Jtmax - ~)!(j - Jtmax - !)! + . 
(L + I - Jtmax - !)!Jtmax !(L + I - j - Jtmax )!(L - Jtmax)! 

(A2) 

I 
Further, repeating the same procedure for the sum over Jt as Consequently, Eq. (A3) is reduced to 
the above until all the terms in the sum disappear, we arrive 

at S = (j - L - !)!/[L !(L + I - 11!] . (A4) 

S = (j _ L _ !)! (I - Jtmax - !)!(j - Jtmax - !)! 
(L + I - Jtmax - !)! 

/Lmax 

X L [U - L - Jtmax - ! + K)lK! 
K=O 

X (L + 1-j - K)!(L - K)!] - 1 • (A3) 

Then putting Jt = L, P = L + I - j, and v - p 
= j - L - Jtmax -! in Eq. (Bl) of Appendix B if 

Jtmax = L + I - j, and otherwise interchanging JL and p in 
doing so, we find that the sum over K is equal to 

(L + I - Jtmax - !)!/[L !(I - Jtmax - !)!(L + I - j)! 

X (j - Jtmax - !)!]. 

3198 J. Math. Phys., Vol. 26, No. 12, December 1985 

APPENDIX B: ADDITION THEOREM FOR BINOMIAL 
COEFFICIENTS 

The addition theorem for the binomial coefficients!, CK 

is expressed by 

K K 

In Eq. (BI), p and K must be non-negative integers with the 
restriction that p;;;'K, while each of Jt and v, irrespective of 
being non-negative or not, may be an integer or a half-in­
teger. Here it should be noted that, if and only if Jt + v is a 
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non-negative integer and less than p, the sums in Eq. (Bl) 
vanish because I' + yCp = O. For a non-negative integer or a 
half-integer p" I' C" may be written as 

I'C" =p,!/[K!(p,- K)!] , (B2) 

while for a negative integer p" 

I' C" = ( - It( - p, + K - 1)!/[K!( - P, - 1)1] . (B3) 

Here it is to be stressed that the expression (B2) is valid even 
for a half-integer, regardless of being non-negative or not, 
provided the definition (1) in the text is adopted. Substituting 
the expressions (B2) and/or (B3) for the binomial coefficients 
in Eq. (B 1) according as the types of integers p" v, and p, + v 
take, we can obtain several formulas expressing the addition 
theorem for the respective cases. 
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It is shown that-in analogy to what has been recently suggested for a quantum n-Ievel system­
in a multimode analysis of the free electron laser (FEL) Hamiltonian picture, one can use the 
(n 2 

- I)-dimensional vector F ofSU(n) to describe the main FEL dynamics. The PEL coherence 
properties are discussed by this group-theoretical approach, and a critical analysis of related 
Casimir invariants and conservation laws is given. 

I. INTRODUCTION 

It happens sometimes in physics that seemingly unrelat­
ed fields or techniques show unexpected connections. In 
most cases, this leads to a better understanding or to a clever 
mathematical formulation of the physical fields involved. 
An illuminating example is provided by the application of 
unitary symmetry schemes first to nuclear physics I and then 
to high-energy physics.2 

More recently, the tools of unitary symmetries have 
been applied to the dynamics of an atomic n-level quantum 
system.3

-
5 This kind of approach has allowed one to genera­

lize the Bloch-like equations describing the interaction of a 
two-level system with radiation6 to the case of multilevel 
systems-a problem long thought impossible to solve. 7 

Moreover, a set of new, unforeseen constants of motion, able 
to give a deeper insight into the system's dynamics, have 
been found in this way.3.4 

In recent times, the physics of the free electron laser 
(FEL) has gained more and more attention, both on the ex­
perimental and theoretical side.8 

The FEL provides one more example of unsuspected 
connections among apparently remote branches of physics. 
Indeed, it has been shown by one of the present authors that, 
in the framework of the single-mode Hamiltonian picture, 10 

the main features of the FEL dynamics are described by 
Bloch-like equations, in analogy with the case of a two-level 
system. 

In this paper, we want to show that, in the hypothesis of 
a multimode FEL operation, II the FEL dynamical behavior 
can be accounted for by introducing a suitable (n2 

- I)-di­
mensional vector, in full analogy with the results obtained 
for the n-Ievel atomic dynamics.4 A preliminary suggestion 
in this direction was put forward in Ref. 12, where the FEL 
coherence properties are studied in the multimode picture by 
exploiting the SU(n) invariance of the FEL Hamiltonian. In­
deed, besides coherence, this group-theoretical approach 
will enable us to critically discuss the FEL constants of mo­
tion. 

The paper is organized as follows: The explicit construc­
tion of the SU(3) vector, in the illustrative example of two 
laser beams, is presented in Sec. II; Sec. III is concerned with 

0) Permanent address: Dipartimento di Fisica, I Universita di Roma "La 
Sapienza", P. Ie A. Moro, 2-00185 Rome, Italy; Istituto Nazionale di Fi­
sica Nucieare, Sezione di Roma, Rome, Italy; and Division of Physics, 
Institute for Basic Research, 96 Prescott Street, Cambridge, Massachu­
setts 02138. 

the vector picture of the FEL dynamics and its implications 
on coherence and conservation laws; the generalization to 
the SU(n) case and the classical limit are outlined in Sec. IV 
and a brief summary is given in Sec. V. 

II. FEL QUANTUM HAMILTONIAN AND SU(3) 

Let us start by considering the simplified case of two 
copropagating laser beams, with different wave vectors and 
intensities, undergoing FEL amplification. The quantum 
nonrelativistic Hamiltonian describing this process can be 
written asll 

p2 3 

H =-+Ii L w·a.+a. +1i!l12 
2m j= I J J J • 

X [a
l
+ a

2
e - 11k, - k,)z + h.c.] 

+ 1i01,3 [ at a3e - jlk, + k,)z + h.c. ] 

+ 1i02,3 [ at a3e - jlk, + k,)z + h.c.] . 12.1) 

Here, a/ and al (/ = 1,2) are the creation and annihilation 
operators for the laser fields (assumed propagating in the 
positive z direction), while a3+ and a3 refer to the undulator 
field-treated as a radiation field in the Weizsacker-Wil­
liams approximation 13 -moving in the negative z direction; 
the k j are the wave vectors of the laser beams (i = 1,2) and of 
the undulator (i = 3), and Wj = Ik; Ic the corresponding fre­
quencies. Moreover, we have put 

Oy = 21Tc2rol(wjwj)1/2V, 

where ro = e21mc2 is the classical electron radius and V the 
mode volume. 

The first two terms in H describe the electron and the 
free field energy, respectively (the electron motion is as­
sumed nonrelativistic in the chosen frame), while the other 
terms represent the interaction between electron and fields. 

In comparison with the single-mode case,9 the Hamil­
tonian in Eq. (2.1) contains two more interaction terms. 
However, we can see that a similar group-theoretical ap­
proach can be used, if one defines the following pseudospin 
vector operators Rij (/ < j = 1,2,3): 

R ill) = a/ ajSij h 
~ 2 + .c., 

R 12) = a/ ajSij + h.c., 
~ 2i 

(2.2) 
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where 

Slj = exp ( - iKljz) 

and 

{
k/ - kj , j = 2 , 

Kr= 
g k/ + kj , j= 3. 

Moreover, let us put 

(2.3) 

(2.4) 

R12 = T, RI3 = V, R23 = U , (2.5) 

on analogy of the usual definitions of isospin, V spin, and U 
spin in the standard SU(3) scheme (see Ref. 2). 

Then, the Hamiltonian (2.1) becomes 

p2 
H = - + Ii L mja/ aj 

2m j 

+ 21i(o.12 Tl + 0.13 VI + o.23 U1)· (2.6) 

It is easy to realize that the dynamics of the system de­
scribed by the Hamiltonian (2.6) can be specified by the time 
evolution of the pseudospin vectors T, U, and V. However, 
such a description is redundant, since-as we shall see--the 
PEL dynamics is fully determined by}he equation of motion 
of a single, eight-component vector F [as it trivially follows 
by embedding the three SU(2) algebras (2.5) in a single SU(3) 
algebra]. 

The vector F we are concerned with can be written, e.g., 
in the form 

F = (Fa) = (T1,T2,T3, VI' V2,Ul>U2.M) (a = 1, ... ,8), 
(2.7) 

where M is linked to the standard hypercharge by 

M = (~/2)Y = (at a l + a2+ a2 - 203+ a3)12~ . (2.8) 

Needless to say, the commutation rules of the components of 
F specify an SU(3) algebra: 

[Fa' F p] = i/afJrFy (2.9) 

[f alJy being the usual structu,re constants o~ ~U(3)]. How­
ever, let us notice that, accordmg to the defimtlons (2.2), the 
SU(3) generators Fa also contain the electron variables 
(through the factors Sr). Therefore, we also have to consider 
the commutator ofth: electron momentum p with Fa' which 
explicitly reads 

{ 

- iliK ~~ [Fa + dlSal + lSa4 + lSa6 ) 

[p,Fa ] = -Fa _dlSa2 +lSas +lSa7 )], a#3,8, 

0, a = 3,8, 

where 

{

KI2' a = 1,2, 

K~~ = K 13, a=4,5, 
K 23, a = 6,7, 

(2.10) 

(2.11) 

and lSaIJ is the Kronecker delta. Thus, strictly speaking, the 
total invariance group of our system is not SU(3), but rather 
its semidirect product by U(l), SU(3) <2< U(I). 

III. VECTOR PICTURE OF FEL DYNAMICS, 
COHERENCE AND CONSERVATION LAWS 

It is now straightforwar<! to get the Heisenberg equa­
tions of motion of the vector F, which specify the dynamics 
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of the FEL process under study. By taking the commutators 
of F with the Hamiltonian (2.6), we have 

F~ = faIJyo.pFy - iEaIJ Fp , (3.1) 

where the prime denotes derivative with respect to the 
dimensionless time 7" = t I At (At being the interaction time); 
the vector n and the matrix EaIJ are given, respectively, by 

and 

.... 
O=(Oa) 

= (20 12At,0, - w12,2o.13At,0,2023At,0,! W12 - w13) 

[wij = (mij pAt Imc) + Aij' mij = Kijc , 

(3.2) 

EaIJ = eij)(lSaIJ -lSa3 -lSa8 ) , (3.3) 

where ~j) is defined in a way analogous to K~) of Eq. (2.11), 
with the matrix Eij given by 

Eij = (IiAt Imc2)mt (3.4) 

and connected to the recoil of the electron. 
Equation (3.1) consists of two parts. The first is a gener­

alized rotation in SU(3) space, in full analogy with the results 
of Refs. 3 and 4. The second part plays the role of a dephas­
ing term and is due to the noncommutativity of the electron 
variables. As it is easy to realize, such a term causes coherent 
states of the system to evolve into noncoherent ones. There­
fore, we recover in a straightforward way the result14 that 
Glauber coherence IS is not preserved in the PEL quantum 
operation, and that this effect is strictly connected to the 
electron recoil. 

Let us now discuss the conservation laws. First of all, 
the global symmetry SU(3) ex U(l) of the system implies the 
(obvious) conservation of the total momentum of electron 
and fields: 

3 

P + L kja/ aj = const (3.5) 
j=1 

(for further comments, see Ref. 11.) However, the most di­
rect constants of motion deducible from our formalism are 
those related to the Casimir operators of the unitary group 
concerned. In this connection, let us notice that actually the 
invariance group of the Hamiltonian (2.6) is U(3), rather than 
SU(3), and, therefore, we have to consider three Casimir in­
variants, which can be comprised in the single formula 16 

3 

C(p) = L Aj;A;k ••• A kj (p = 1,2,3) , (3.6) 
~.~,:! 

P 

where 

Aj; = a/aj! i#j, (3.7) 

{

a/aj , 

A .. = 1 ~ + ~ SU(3) 11 a/ll.i-- £.. ak ak' lor 
3 k= I 

forU(3) , 

(3.8) 

(or suitable linear combinations of the above operators I?). 
The first Casimir invariant [linked to the U(3) group] is thus 
given by 

3 

C(l)= L a;:ak (3.9) 
k=1 
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and yields the FEL Manley-Rowe pseudoquantum rule 
2 

L ni + nu = const , (3.10) 
;=1 

where nL nu are the laser and undulator photon numbers, 
respectively (i.e., C(11 accounts for the conservation of the 
total number of photons). The second Casimir invariant is . ~ 

nothing but the length of the vector F. If a and b are the two 
non-negative integers labeling the irreducible representa­
tions of SU(3), the eigenvalues of C 121 explicitly read 18 

CI21=n(a-b)2+ l(a+b)(a+b-4). (3.11) 

Finally, the eigenvalues of the third Casimir invariant for 
any SU(3) irreducible representation are given byl8 

C(31 = ra(a - b )(20 + b + 3)(2b + a + 3). (3.12) 

Although the two nonlinear Casimir operators C (21 and C (3) 

correspond, in principle, to new constants of motion, it is 
easy to see that, in the present case, they do not provide any 
new conservation law and simply restate Eq. (3.10). Indeed, 
all physically realizable states of our system must belong to a 
totally symmetric representation of SU(3), and it is well 
known 18 that, in this case [as immediately follows from Eqs. 
(3.11) and (3.12) for b = 0], the two Casimir operators of 
SU(3) are related to each other and to the total number of 
photons. By the way, let us underline that, even in the case of 
the atomic n-level system considered in Refs. 3 and 4, the 
"new, nonlinear" constants of motion derived therein may 
no longer be considered as independent if one assumes that 
the initial state has a definite permutation symmetry. How­
ever, let us notice that there is (at least in principle) some 
difference between the conserved quantities defined in Refs. 
3 and 4 and the Casimir invariants (3.11) and (3.12). Indeed, 
as pointed out recently, 19 the constants of motion expressed 
in terms of the elements of the density matrix do not coin­
cide, in general, with the Casimir operators of U(n). To re­
store a complete analogy between the n-level atomic system 
and the multimode FEL operation would therefore require 
us to consider a multielectron theory of FEL and define a 
suitable density matrix by averaging on the electron and field 
variables. 

IV. GENERALIZATION TO THE SU(n) CASE 

The group-theoretical formalism developed in the pre­
vious sections for the three-mode FEL system is easily gener­
alized to the n-mode case. The quantum nonrelativistic FEL 
Hamiltonian now reads 11 

n 

+ Ii L Olja/aj exp( - iKlj z) + h.c., (4.1) 
i<j= I 

where 

{
k, - kj , j=!=n, 

KIj= 
k, +kj , j=n, 

and the index n refers to the undulator field. 

(4.2) 

In terms of the pseudospin vector operators RIj 
(/ < j = 1, ... ,n) [still defined by Eqs. (2.2)], (4.1) can be writ­
ten as 
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p2 n " 

H = -2 + L (j}ja/ aj + 21i L OIjR~). (4.3) 
m j=1 i<}=1 

The (n2 
- I)-dimensional vector F describing the PEL dy­

namics may be chosen as follows: 
~ 

F= (Fa) 

_(RII ) RI21 RII) R(2) W W. ) 
- 12' 12'·'" n-l,n' n-l,n' 1'''·' n-l (4.4) 

(a = 1, ... ,n2 
- 1), 

where we have assumed the standard form of the SU(n) diag­
onal generators Wj (j = 1, ... ,n - 1): 

Wj = [2j(j + 1)] -1/2(ata1 + .... + a/a} - ja/a}). 

(4.5) 
... 

The components of F still satisfy the commutation rules 
(2.9), with/aPr being now the SU(n) structure constants. As 
to their commutators with the electron momentum p, they 
are given by a suitable generalization of Eq. (2.10), which is 
easily evaluated by taking into account that 

[p, R ~~2)] = ~ iliK,mR ~;;/), [p, Wj] = 0 . (4.6) 

Then, it is easy to see that Eq. (3.1) still describes the 
dynamics of the system, with suitable generalizations of the 
definiti'lns (3.2) and (3.3) of the [now (n 2 

- 1 I-dimensional] 
vector nand of the matrix Eap. Obviously, the implications 
on Glauber coherence remain unchanged. 

The constants of motion are given (apart from the con­
servation of total momentum and number of photons) by the 
Casimir invariants ofSU(n): 

n 

Clp) = L AjiAi.· .. A.k A kj (p = 2, ... ,n) , (4.7) 
ji· .. k= I ----p 

where the operatorsAij are still defined by Eqs. (3.7) and (3.8) 
(with 3~n). 

As in the SU(3) case, the invariants Clp) give rise to a set 
of (n - 1) nonlinear conserved quantities, which are in prin­
ciple independent, as long as one does not take explicitly into 
account the permutation symmetry of the system states. In 
fact, they all collapse into the single law of photon number 
conservation for totally symmetric SU(n) representations. 

Eventually, we want to stress that the analysis we have 
carried out within a quantum framework can be also per­
formed from a classical viewpoint. To this aim, one has 
merely to substitute everywhere the commutators by the 
Poisson brackets; e.g., by Eq. (2.9) one gets 

(4.8) 

Moreover, one needs to take the classical image of the SU(n) 
generators, namely, for instance 

FI = R W~(Ii2)1/2 cos [K12 Z + (IPI - IP2)] , (4.9) 

where ~ and IPj are the action and phase, respectively, of the 
jth field. 

The equation of motion (3.1) in the classical case be­
comes simply 

F~ = /aprOp F.y , (4.10) 

since no extra term due to the noncommutativity of the elec­
tron variables appears. Therefore, the effect of the FEL in­
teraction in this case amounts to a mere rotation of the vector 
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F in the SU(n) space. In other words, the absence of the de­
phasing term causes coherent SU(n) states of the system to 
evolve into coherent states. Let us stress that this result holds 
true also in a "semiclassical" framework, i.e. when treating 
the electron classically (see Ref. 12). 

We also want to notice that, according to Mukunda's 
theorem,20 in the classical limit the PEL system under consi­
deration possess invariance not only under SU(n), but also 
under O(n + I). 

As for the constants of motion, they are obtained by the 
Casimir operators by taking the limit (4.9). However, at the 
light of the considerations made in this section and in Sec. 
III, it is easy to see that in the classical limit, too, they do not 
provide any new physical conservation law. 

V.SUMMARY 

It has been shown that the invariance of the PEL quan­
tum Hamiltonian in a multimode picture under U(n) Q< U(I) 
permits the description of the PEL dynamics in terms of the ... 
(n2 

- I)-dimensional vector F, built up by the SU(n) genera-
tors (in analogy to what has been recently done for an n-Ievel 
atomic system). The equation of motion for F amounts to a 
rotation in SU(n) space plus a dephasing term (due to the 
noncommutativity of the electron variables). Then, one re­
covers in a straightforward way (without any recourse to 
explicit solutions) the result that coherence is not preserved 
under quantum PEL operation. Coherence is obviously re­
gained in the classical and in the semiclassical limit (namely, 
when treating only the electron classically). The constants of 
motion [apart from the total momentum conservation), con­
nected to the U( I) group] are given by the Casimir operators 
ofU(n). However, it has been stressed that-if one takes into 
account the permutation symmetry of the system states­
they do not provide any new physical conservation law and 
merely restate the FEL Manley-Rowe pseudoquantum rule 
(i.e., the conservation of the total number of photons). The 
way of performing the transition to the classical limit of the 
present group-theoretical approach has been explicitly out­
lined. 
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ERRATUM 

Erratum: Lie transformation group solutions of the nonlinear one­
dimensional Vlasov equation [J. Math Phys. 26, 1428 (1985)] 

B. Abraham-Shrauner 
Department of Electrical Engineering, Washington University, St. Louis, Missouri 63130 

(Received 10 July 1985; accepted for publication 29 August 1985) 

A parenthesis is missing to the right of the equal sign in 
front of pp in Eq. (34). The functions sin f (cos f) in the time 
derivative in Eq. (58) for II (12 ) should be changed to cos f 

(sin f). The bar over xin the partial derivative of I inEq. (59) 
should be moved one space to the right. The term (N 2/2) in 
the first and second lines below Eq. (59) should be N 2 only. 
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