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A systematic method for the construction of nonlinear carrier spaces for a class of nonlinear
spinor representations of complex and pseudo-orthogonal rotation groups is presented. It is
shown that Cartan pure spinors, which satisfy quadratic constraints, are special cases of our
construction. A class of new nonlinear spinor representations is discovered, which is particularly
interesting in the case of generalized conformal groups SO(v + 1,v — 1), v =3,4,... . The
nonlinearity condition considerably diminishes the number of independent spinor components
and therefore the corresponding spinor fields are the most natural building blocks for grand
unified field theories. The method presented here is universal and can be applied for the
construction of new nonlinear representations of other higher-symmetry groups.

I. INTRODUCTION

There is currently a widespread belief that field theories
in higher-dimensional space-times may play an important
role in understanding four-dimensional space-time quantum
field theories.! This belief is supported by the fact that for
field theories in certain space-times, the anomalies of gauge
or gravitational field theories disappear.” The many attrac-
tive features of higher-dimensional space-times are dimin-
ished by the fact that in these cases the number of Dirac
fields—when the theory is finally restricted to the four-di-
mensional space-time—is very high.’

In this work we would like to point out that there exist
nonlinear spinor representations in higher-dimensional
space-times for which the number of independent spinor
components is considerably diminished in a natural manner.
These spinor field theories resemble nonlinear spinorial o
models with covariant quadratic constraints restricting the
number of independent components.*

To give a concrete example consider the so-called neu-
tral space-times R*” with the kinematical group SO(v,v),
v=23,.. .Letl,,a=1,.,2v,be2” X2" generalized Dirac
matrices satisfying the anticommutation relations

{r,,r,}=2,1 ab=1..2, (1.1)
where g, is the metric tensor of the R* space-time. Let C
be the matrix satisfying the relations

Cr,=(-1prrc, cc™=1, C*=(- 1)+ 2,

(1.2)
andletl, ., ,r = 1,...,v, be the completely antisymmetrized
product of I, matrices. Let 3 be a spinor for SO(v,v) in the
carrier space L™+ of dimension 2"~ defined by the highest
weight m, = (},...,}) (see Ref. 5). Let ¢ = ¢” C. A spinor ¢
in L™+ is said to be pure if it satisfies the following set of
quadratic constraints®’:

$pl,.abp =0, fork=01,.,v—1. (1.3)

It was shown that the constraints (1.3) are covariant and that
the number d of independent constraints equals
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d=2"-"-1— (‘2’) (1.4)

Hence the number d,, of independent pure spinor com-
ponents is

v
d'ﬁ:l"'(z)'

Formula (1.5) for v =35 gives 11 components for a pure
spinor instead of 16 for an ordinary (semi-)spinor. However
for v = 10, formula (1.5) gives 46 independent components
versus 512 for an ordinary spinor. This demonstrates the
suppressing mechanism of independent spinor components
due to the constraints (1.3).

The constraints (1.3) make the carrier space N+ for
pure spinors nonlinear: in fact, if ¥, and #, satisfy the con-
straints (1.3) then ¥ = 4,9, + A,¥, with 4,4, € C will not
satisfy (1.3) in general.

Notice that if a given ¢, satisfies (1.3) then its group
transform T, 1,—due to covariance of (1.3)—will also sa-
tisfy (1.3). Infactlet D, . ..(g)be the matrix elements of

the polyvector representation: then, for r < v,

(ToBp s, (T, )
= JP(Tg_ lra,wa,Tg )¢P
=D a,...a,;.,;...a;(g);ﬁ}'r a;...a;'/'P =0.

Itis remarkable that the property (1.6) allows us to represent
the intrinsic components ¥,, a = 1,...,1 + (3) of a pure
spinor in terms of group parameters of the so-called instabil-
ity group C. In fact let HC SO(v,v) be the stability subgroup
of Y, i.e., for h € H we have

TWp =¢s. (1.7)
Then, due to the Mackey decomposition theorem (see Sec.

II), there exists a set CC SO(v,v) such that any g € SO(v,v)
has the representation

ceC, heH. (1.8)
Then the spinor ¥ = T, ¢, which is pure by (1.6), can be

(1.5)

(1.6)

g=ch,
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written in the form

Y=T.9¢p =), (1.9)
i.e., the elements of the pure spinor space N+ can be labeled
by the group elements ¢ € C. We show in Sec. II that C coin-
cides—up to a set of Haar measure zero—with the solvable

group
C=r1%T!, (1.10)

where T} is a (5)-dimensional Abelian subgroup of SO(v,v).
Consequently the nonlinear spinor space N+ of pure spin-
ors can be identified with the group space of the solvable

group (1.10).The group parameters {c; ],1‘:(19 € C may be

considered as the [ 1 + (3)]-intrinsic coordinates of the pure
spinor ¢(c).

The action of T, on pure spinors in this representation
is determined by the Mackey decomposition (1.8): in fact for
any g, € SO{v,v) we have

T ) =Ty ¥p =T, T ¥p = ¥cy), (1.11)

where the group element ¢, . is uniquely determined by the

formula

8oC = Coohy- (1.12)

One may introduce in a natural manner a nonlinear co-
variant wave equation for spinor fields transforming accord-
ing to a nonlinear representation.*® In fact following the
Cartan construction® one may assume that intrinsic spinor
components {c, } € C depend on space-time coordinates
x eR™". In this case the most natural Dirac-like covariant
equation

a
9x,

is a nonlinear equation since the N™+ -spinor space to which
Y[{ck(x)}] belongs is nonlinear. Using the representation
(1.9) for a pure spinor and (1.10) for the group elements ¢ € C,
one reduces (1.13) to a specific system of nonlinear covariant
wave equations for ¢, (x) functions. The explicit form and the
properties of these solutions are considered in our separate
work.® In this work we limit ourselves to a presentation of
the basic results, which allow the reduction of a nonlinear
carrier space N for a nonlinear spinor representation to the
specific homogeneous space G /H, where H is the stability
subgroup of a chosen pure spinor ¥. The construction of
nonlinear N spaces underlined above for the SO(v,v) group
is universal and one carries out this construction for an arbi-
trary rotation group in two steps.

(1) Find the stability group (1.7) for the chosen spinor
representation.

(2) Find the coset space G /H, which, by (1.9), gives a
description of the elements in the nonlinear carrier space N™
by means of certain homogeneous space coordinates. It turns
out that in the most important cases the coset space G /H
may be represented—up to a set of Haar measure zero—with
some group space as, e.g., (1.10).

In Sec. II we present a general formalism of nonlinear
group representations and we illustrate it in the case of non-
linear spinor representations of the SO(2v,C) groups.In Sec.
III we extend this analysis to SO(2v + 1,C) groups. In Sec.

I,

Y[{elx)}] =0 (1.13)
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IV we present a theory of nonlinear spinor representations
for the pseudo-orthogonal groups SO( p,q), p>4,p + g = 2v.
The structure of the nonlinear spaces N strongly depends
on the chosen signature ( p,q) of space-time and is rather rich.
In the neutral (R*”) and the conformal (R * ¥~ !) cases the
N™ spaces can be represented as some specific group spaces.
In all other remaining cases the N space coincides with
specific G /H spaces depending on the space-time signature.
The stability subgroup H for the SO(2v — A,h ) spinor repre-
sentations has the general form

H = [SU(v — h)XSL{h,R)] &R, (1.14)

where R is a solvable group whose Lie algebra r has the
following structure:

r____-t(;')_{_dzh(v—-h)’ (115)

with ¢ a (¥)-dimensional Lie algebra and d**®—* a
2h (v — h }-dimensional vector space in the so(2v — h,k ) Lie
algebra.

We see that the stability groups H for even-dimensional
pseudo-orthogonal groups have a rather rich structure and
run from

H=SU(v)
for SO(2v) to

H = SL(v,R)&T?

for the neutral case SO(v,v).

The parallel analysis for SO(p,q) groups, p>g¢,
P + g = 2v + 1, acting in odd-dimensional space-times R #¢
is carried out in Sec. V. The stability groups H for the highest
weight spinor ¥,,,, m = (},3,...,4) of SO(2v 4 1 — A,k ) groups
have also a rich structure and are of the form

H = [SU(v — h)XSL{h,R)] &R, (1.16)

where R is a solvable group whose Lie algebra 7 has the
following structure:

)

M.
r=t(z)+d2h(v—h)+h,

&

(1.17)

with ¢#? a (%)-dimensional Abelian Lie algebra and
d v —m+ha 2k (v — k) + h]-dimensional vector space in
so(2v + 1 — A,k ) Lie algebra.

The nonlinear carrier spinor space N may be identified
with the quotient space SO(2v 4 1 — h,h )/H, which in turn
for h = v and & = v — 1 may be represented—up to a set of
Haar measure zero—as the group space of a specific solvable
group.

Finally, we conclude this work with Sec. VI, where we
emphasize the importance of nonlinear spinor representa-
tions for the construction of nonlinear relativistic field theor-
ies.

Let us note that for an arbitrary group G the set C'in the
Mackey decomposition (1.8) is homeomorphic with the ho-
mogeneous space G /H of the left H cosets. In fact by (1.8) we
have

gH =c,h, =c,H.
Hence every left coset gH can be uniquely characterized by
the element ¢, in C. Conversely—by virtue of (1.8}—every
element ¢ € C determines uniquely the left coset cH and two
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different elements ¢, and ¢, in C determine different cosets
¢, H and ¢,H in G/H.

We follow in this work the Cartan notation.S In the com-
pact SO(n) case in R” we take the anticommutation relations
of generalized Dirac ¥ matrices in the form

{ Var¥s) =26, 1, (1.18)

It turns out to be convenient in all proofs to use the H
basis of Cartan,® which is given by the set of 2[7/2] + 1 ma-
trices {Ho,H;,H; },j=1,..,[n/2], satisfying the anticom-
mutation relations

ab=1,.,n.

with I = [n/2) — h + 1,..,{n/2},

This basis is connected to the 7, basis by the relations
Yy-1=H, +H,,
vy =iH; — H)), (1.21)
Yavi1 =Hp

The generators S,, of so(n) for spinor representations are
defined by the formula

Seo =(—i/4[Vas¥s ] (1.22)
and they satisfy the following commutation relations:
[Sab ’Scd ] = i(aacsbd + 5bdsac - 6ad‘S’br: - 6bcsad)'
(1.23)

The Clifford algebra units I", and the corresponding
generators (1.22) of the so( p,q) Lie algebras are obtained by
multiplying ¢ — 7,’s by i. The metric tensor for the
so(n — h,h ) Lie algebra is taken in the form

(1.24)

{H,H,} =2,1, rs=01,..v1..v, (1.19)
with v=[n/2], where
. o]
g= , forn =2,
11, 0
and
1 0
0 1
g= 1o . , forn=2v41. (1.20)
11, o0
J
0, for a#b,
1,2,....2([n/2] — k),
s =11 fora=b= a1,
—1, fora=b=2k, withk=[n/2]—h+1,.,[n/2],

and the corresponding I",’s satisfy the following anticom-
mutation relations:

{Fa’rb} = 2’gabl' (125)

Introducing the generators of so(n — A,/ ) in the form

X, = —}[Fa,.rb], (1.26)
we have
[Xab’Xcd] =gachd +gbanc —gadec _gchad'
(1.27)

Il. NONLINEAR GROUP REPRESENTATIONS

We begin our analysis with a precise definition of a non-
linear group representation. Let G be a topological group
and N a nonlinear topological space. We say that the map
g—T, isanonlinear representation of G in N if the following
conditions are satisfied.

(1) With each g € G there is associated a transformation
T,:n—Tyn of N into N.

(2) The identity element e of G is the identity transforma-
tion of V.

(3) The mapping (g,n}—>T,n of G XN into N is contin-
uous.

(4) For g,.8, € G and n € N we have

T, o n=T,(T,n).

818
The novelty of nonlinear representations consists in the
condition that the carrier space N for the representation is
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nonlinear. The nonlinearity condition for the carrier space
makes the analysis and the classification of nonlinear repre-
sentations very difficult.'® For instance, the linear unitary
irreducible representations of the Poincaré group are all
classified.® At the same time the classification problem of
nonlinear representations of the Poincaré group is equiva-
lent to the classification problem of all possible solutions of
all possible nonlinear relativistic wave equations, which is
clearly an unsolvable problem. This is the reason why we
have so far very few papers on the properties of nonlinear
representations.

We shall analyze in this work nonlinear spinor represen-
tations. We begin our analysis with an illustration of how a
nonlinear carrier space N appears naturally in the case of
spinor theory.

Consider first the SO(2v,C) complex rotation group in
the even-dimensional complex “space-time” C*”. It is well

known that this group possesses two kinds of irreducible
I 34

spinor representations given by the semispinors ¢ and ¥ of

the first and the second kind, respectively.’ The linear car-
rier space L™+ for the linear spinor representation 77+ of
SO(2v,C) has the dimension 2* ! (see Ref. 5). It was shown,
however, by Cartan® that in the carrier space L™+ one can
introduce the concept of a pure spinor, which provides the
carrier space N™+ for a nonlinear representation of
SO(2v,C). In fact, let ¢, , a = 1,...,2v, be the generators of the
Clifford algebra for the linear representation 7™+ of
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SO(2v,C) and let
yalaz“’a’ = y[a. ya, "'T’a,], r= 0,1,-..,21’,

by polyvectors in L. Let C = ¥,¥,-+%,, . Then the pure spin-
ors are defined as the subset of semispinors, say of the first
kind, which satisfy the conditions (¢y=¢" C)

Vara¥ =0, r=01..v—1. (2.1)
Since
Cr. =(—117.C, (2.2)

the constraints (2.1) have covariant form, i.e., they hold in
any reference frame. It is shown in Ref, 6 that the number d
of independent constraints given by (2.1) is equal to

—yv—1_1_ V)
d=2 1 ( 5 (2.3)
Hence the space N of pure spinors has the dimension
v
=1 2.4
a=1+(3), 2.4

which, for v> 3, is smaller than the dimension 2"~ ! of the
linear spinor representation. Clearly if ¥, and , satisfy (2.1)
then their linear combination

Yv=a,¥, + a,

in general does not satisfy (2.1). Hence the pure spinors form
in the 2*~!-dimensional carrier space of the linear spinor
representation a [ 1+ (;)]-dimensional nonlinear carrier
space N™+ for a nonlinear spinor representation.

It is instructive to see how the space N+~ and the non-
linear representation are explicitly realized in the pure
spinor case. We show this using the concept of the highest
weight spinor ¢, .As is well known, the linear spinor repre-
sentations of SO(2v,C) are characterized by the highest
weights m ,_ given by the formula®

m, = (k4.5 £ 1) (2.5)
m _ corresponds to semispinors of the first and m_ of the
second kind, respectively. We can choose an explicit repre-
sentation for the Clifford algebra C,, given by Eq. (1.18),
such that the following lemma holds.

Lemma 2.1: The highest weight m | semispinor has the
form

a,a, G,

Ym, = |0 (2.6)
0
Proof: Let us label the 2” rows and columns of the ¥ and

H matrices a la Cartan, i.e., using the completely skew-sym-
metric set of indices

iigeipy P =0,1,,
2.7)

iliizi“"ip = 1,2,--.,V
{(where the index “0” means that no index appears). Then we
use the following explicit realization of the Clifford algebra
basis [see Ref. 6 Sec. 92(c)]:
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0, forjei,i,...i,,
H),, ) — { ’ 2.
iy 1, forj e iyip.i, (2.84)
. 0, forjei,i...i,,
H hipedy [ {2 .
( ' )l,i; ey 1’ fOl'j ¢ il’iZ’"'!ip’ (2 8b)
Hoby > = (= 1)%, (2.8¢)

all other matrix elements being zero.
The Cartan subalgebra of so(2v,C) is given by the v gen-
erators

(2.9)

Since only the elements of the first column of S, count,
when S, acts on ¢, , let us investigate the first column’s
structure of §; _ 1 ;. From Eqs. (1.21) and (1.22) we have

Sy-ry = WHH; + H; H;. —H;H, — H;.H)). (2.10)

But Eqgs. (2.8) give
(11,}1_;): i 0= (Iij’I{j‘)i,i,---ipo = (Iij'}'[j)lli,---ipo =0,

vy

Sy _12p J= 12,

(2.11a)

([jj];[j,)i‘iz...ip‘):&po, (2.11b)
and then

(S - l,2j)i,i2'"l'po = 16,0, (2.12)

which proves the lemma. v

Let/ * and! ~ bethe vector space of raising and lowering
operators, respectively, and let 4 be the Cartan subalgebra of
so(2v,C). Let

so2v,C)=1*+h+1~ (2.13)

be the Cartan decomposition of so(2v,C). Then the linear
envelope of all vectors

kI;[l I ¥,,, 1, €l”, forr=0,1,.,dimT",
coincides with the linear carrier space of the linear spinor
representation 7™+ (see Ref. 5). This shows the importance
of the highest weight spinor ¢,, for the linear spinor repre-
sentation theory.

We show now that ¢,,, is also crucial for the construc-
tion of a nonlinear group representation. First we notice that
by Egs. (2.1), (1.21), (2.6), and (2.8) we have

V. Vara¥m, =0, =01,y — 1. (2.14)

Hence ¢, represents a pure spinor belonging to
N™+ C L™+, We have the following theorem.

Theorem 2.2: The stability group H of ¢, is the con-
nected semidirect product group

H = SLi»,C)&T?, (2.15)

where 79 is an Abelian (3)-dimensional subgroup of
SO(2v,C).

Proof: We shall first look for the stability subalgebra / of
Y, , ie., for all linearly independent generators S,, in
so(2v,C), which satisfy the condition

Seo¥m, =0. (2.16)
In order to investigate the action of the generators of

so(2v,C) on ¥, , it is necessary (and sufficient) to know all
the elements of just the first column of the matrices S, .
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From Eqs. (2.8) we have

(H,H, )i,-u.',o = (H, »Hl)i,...ipo =0, (2.17a)
(H,H,. )i,.--ipo = 8,00, (2.17b)
(ij,HI').-l....-po =8,,(6,46,,; — 6;,;0,1), (2.17¢)

withjl=1,..,v, p=0,1,.,v,andi,..ji, = 1,..v.

Then, taking into account Egs. (1.19}1.22) and (2.17),
we have that the (3*) generators S, of so(2v,C) can be divided
into the two following linearly independent sets: (a)
(3v? — v — 2)/2 matrices having all elements zero in the first
column, i.e.,

v .
5 matrices 7
= — (i/2)[H;,H,]

= i{S2j— 1,20—-1 — SZj,ZI + i(SZj— 1,21 + SZj,2I— 1 )}7
(2.18a)

v? — 1 matrices 7
i 1 i
= —— H~,Hr +5__ H !
2[ o] + 0 — 2k§=:1[ ot
=3 {Sy 121 + S + #Sy0 1 — Sy 1)}
+ Lajl 2 Sok — 1,265
v k=1

(b) (** — v + 2)/2 matrices having some non-null element in
the first column, i.e.,

(2.18b)

(;) matrices 2
= —(i/2)[H; H, ]

= i {SZj— t2—-1 S2j,2l - i(SZI— 1,21 + S2j,21— 1 )}’
(2.19a)

1 matrix & = 4[H,,H, 1 =53, _1,,. (2.19b)

We see that only the first set belongs to the stability
subalgebra 4. The generators (2.18) satisfy the commutation
relations

[T nT mn] =0, (2.20a)
[ '@ﬂ"@mn ] = i(ajn '@ml - 6Im '@jn )’ (2'20b)

[ '@ﬂ’ymn ] = i(aln '7-jm - 5Im ‘7-_}" + (2/1’)6}1.7.""‘ )’
(2.20c)

i.e., the generators 7, form an Abelian ideal of A, while the
generators & ; satisfy the commutation relations of the sim-
ple complex Lie algebra sl (v, C). Furthermore the generators
Z; generate an automorphism of the Abelian subalgebra.

Therefore, if we denote by ¢ ® the (3)-dimensional Abelian
subalgebra, we can say that A is given by

h = sl(»,C)&z 2. (2.21)

Using the general connection between Lie algebras and the
connected Lie groups given by Theorem 3.3 of Ref. 5 we
obtain the assertion of Theorem 2.2. . v

The crucial tool in understanding the structure of the
stability Lie algebra and of the set complementary to it is
provided by the Levi-Malcev theorem.® Let / be an arbitrary
Liealgebra over R or C and let r be its radical, i.e., a maximal
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solvable ideal. Then the Levi-Malcev theorem states’ that
there exists a semisimple Lie subalgebra s of / such that

I=5&r. (2.22)

In the case (2.15) r = t? and s = sl(,C).

Now let G be a Lie group and H a closed subgroup of G.
Then the Mackey decomposition theorem states that there
exists a Borel set C in G such that every element geG can be
uniquely represented in the form®

g=ch, ceC, heH. (2.23)

In general the set C is not a group. It is, however, very
interesting that in the case of SO(2v,C) and H given by (2.15)
we have the following theorem.

Theorem 2.3: Let G = SO(2v,C) and let H be the stability
subgroup (2.15)of ¢, . Then the complementary set C may
be represented—up to a set of Haar measure zero—as the
connected solvable subgroup

C=Tr%T" (2.24)
Proof: The set of generators in so(2v,C) complementary to

sl(v,C)& ¢ D js given by the generators 2, and & of Egs.
(2.19), with the following commutation relations:

[21:2mn] =0,
(2,2, =6,2., —6,2;

ve

(2.25a)
(2.25b)

We see that c is a solvable Lie algebra
c=1tDgs,

By Theorem 3.3 in Ref. 5 there is a connected solvable
Lie subgroup C of G with the Lie algebra ¢ and

dim C = dim G — dim H.

On the other hand, for the Mackey set C we have

dim C = dim G — dim H.

Hence the group space C coincides with the Mackey set
C up to a set C — C of the Haar measure zero. Since the
group G acts transitively on C, the group space C may bealso
used for a description of the carrier space N™* for the non-
linear spinor representation. v

Theorems 2.2 and 2.3 allow us to give the explicit real-
ization for the N ™ * -nonlinear carrier spinor space. In fact,
since ¥, is a pure spinor, the spinor

v=T,¥,, (2.26)
is also pure. Indeed by (2.2) we have

Jfal..,a'qb = Dal...a’;a;.‘.a;(g){ber Fa;...a;'pm il 0,

r=1,..,v—1. (2.27)

Using the Mackey theorem we have T, = T,T, and by
Theorem 2.2 we have

v=T,, =)

We see, therefore, that the carrier space N ™+ can be repre-
sented as the connected group space C generated according
to Theorem (3.3) of Ref. 5 by the Lie algebra c. By (2.24) the
dimension of C is

(2.28)
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y
d°“1+(2)’

and coincides with the dimension d,, of the pure spinor space
given by (2.4). The action of SO(2v,C)in N ™ * is given by the
group action dictated by the Mackey decomposition. In fact,
by (2.23)

(2.29)

8oC€ = Cgpeltgye-
Hence
T, ¥lo)= Tgoc¢m+ = Y(Cgyc)- (2.31)

Itis evident from this formula that the action of T, on N "~ is
highly nonlinear.

Table I gives the dimensions of the linear and the corre-
sponding nonlinear spinor representations for SO(2v,C) and
the number of constraints.

We see that the dimension of the nonlinear spinor repre-
sentation grows much more slowly than the dimension of the
corresponding linear representation. This fact may be very
useful in constructing grand unified theories in higher di-
mensions, where for the time being we have too many spinor
fields.?

1Il. NONLINEAR SPINOR REPRESENTATION OF
SO (2v + 1,C)

The SO(2v + 1,C) group possesses one kind of linear ir-
reducible fundamental spinor representation 7™, which is
determined by the highest weight m = (4, ... ,}) and has the
dimension 2" (see Ref. 5). The pure spinor nonlinear carrier
space N ™ is defined as the set of all s in L™ which satisfy
the quadratic constraints

Wor =0, for k<v. (3.1)

It is shown in Ref. 6 that the number d of independent con-
straints (3.1) is given by the formula

d=2"—1—ivjv+1). (3.2)

Hence the dimension d,, of the nonlinear pure spinor space
N ™ is given by the formula

v
d¢—l+v+(2).

Since the constraints (3.1) are quadratic, the space N™ is
evidently nonlinear. Since in addition the constraints (3.1)
are given in a covariant form, the nonlinear space N™ is
invariant under the action of the group representation
g — Ty = €. Consequently the space N™ represents
the carrier space of dimension d, of a nonlinear,
SO(2v + 1,C) representation.

(3.3)

TABLE I. Dimensions of the linear and nonlinear spinor representations
for SO{2v,C) and the number of corresponding constraints.

v 2 3 4 5 6 10
2v-1 2 4 8 16 2 512
1+ (;) 2 7 11 16 46
1 (;) 0 0 1 5 16 466
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(230)

We now give the explicit realization of N ™ space as the
coset space of the SO(2v + 1,C) group over its distinguished
subgroup H. We have the following theorem.

Theorem 3.1: The stability group H of the highest
weight spinor ¢,, is the group

H=SL(v,C)&R, (3.4)

where R is a solvable group whose Lie algebra r has the
following structure:

r=t1¢,

withr () a (5 )-dimensional Abelian subalgebra and e* a v-
dimensional vector space in the so(2v + 1,C) Lie algebra.

Proof: We show first that the highest-weight spinor ¢,,
has the form

Y, = (3.5)

i
0
0
0
In fact the Cartan subalgebra of so(2v + 1,C) is given by the
same v generators (2.9) of so(v,C). Hence from Lemma 2.1 we
have that ¢,,, being identical to ¢,, of Eq. (2.6), still corre-
sponds to the highest weight m = (4, ... ,1).

Let us then look for the stability subalgebra 4 of ¢,,. In
addition to Eqs. (2.17) we find

(IleO)i" : 'ipo = (Hofll )i.. . -ip0 =0,
\H;: Hol.. 'ipo = — (HHp),.. .ipo = 6,9,

(3.6a)
(3.6b)

1J?

M=1..vp=01,..,v,andi,..,i, =1,..,v. Then for
the so(2v + 1,C) Lie algebra, in addition to the generators
(2.18) and (2.19) of the so(2v,C) Lie algebra, we find further

(a) v matrices &; = — (i/2)[H;,Hy] =8;;_12,41
+iS, v+ 10

having all elements zero in the first column and

(b) v matrices F; = — (i/2)[H;,Hy] =83, 12041

(3.7b)

(3.7a)

- iSz J2v+ 19
having some non-null element in the first column.
We see that the set (a) given by the (3v2 + v — 2)/2 ma-
trices {7 ;,7;,,& ;} of Egs. (2.18) and (3.7a) form the stabil-
ity subalgebra 4. In addition to the commutation relations
(2.20) we have, in fact,

[8,,8,] =27, (3.8a)
(€T mm] =0, (3.8b)
(€02 im ]| = i85 m — (1/V),1n & ). (3.8¢)

From Egs. (2.20) and (3.8) we see that the structure of the
stability subalgebra 4 is just that one corresponding to Eq.
(3.4). v

The Mackey decomposition states that there exists a
Borel set C in SO(2v + 1,C) such that any g € SO2v + 1,C)
can be represented as ¢ A, ¢ €C, h € H. In the present case we
have the following theorem.
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Theorem 3.2: The set C may be represented—up to a set
of Haar measure zero—as a solvable Lie group whose Lie
algebra c has the following structure:

c=1'¢0t?+ £, (3.9)

with 19 a (3)-dimensional Abelian Lie algebra and f* a v-
dimensional vector space in so(2v + 1,C).

Proof: The set ¢ of generators, complementary in
so(2v + 1,C) to the set of generators giving the stability sub-
algebra k of 9,,, is formed by the generators £, and & of
Egs. (2.19) plus the generators % ; of Eq. (3.7b). They satisfy
the commutation relations (2.25) plus

[F,.F 1] =22,, (3.10a)
[F 2 ma] =0, (3.10b)
[FD]=6,,. (3.10¢)

From Eqgs. (2.25) and (3.10) we see that the set ¢ forms a
solvable Lie algebra, whose structure is given by Eq. (3.9).
Repeating the argument given at the end of the proof of
Theorem 2.3 we obtain the assertion of Theorem 3.2. ¥

Now, since ¥, satisfies the constraints (3.1), it is pure.
Since the constraints are convariant, the spinor

V=T, 4, =T, =) (3.11)
is also pure. Consequently, the nonlinear carrier space of
pure spinors can be identified with the group space C given
by Theorem 3.2. By (3.9) the dimension of C is

y
dc:“’”’(z)

and coincides with the dimension d,, of the N ™ space given
by (3.3). Consequently the nonlinear space N ™ of pure spin-
ors can be identified with the quotient space G /H, which in
the present case may be represented as the group space C
given by Theorem 3.2.

Table II compares the dimension of the linear spinor
representation, the dimension of the nonlinear one, and the
number of independent constraints. We see again that the
dimension of the nonlinear spinor representation is much
smaller—especially for the higher space-time dimensions—
than the corresponding dimension of the linear representa-
tion.

1V. NONLINEAR SPINOR REPRESENTATIONS FOR
SO(p,q) GROUPS,p + g = 2v

We shall construct now a class of nonlinear spinor re-
presentations for pseudo-orthogonal groups SO(p.q),
P + q = 2v, p»q. For the sake of simplicity we shall denote

TABLE II. Dimensions of the linear and nonlinear spinor representations
for SO(2v + 1,C} and the number of corresponding constraints.

v 2 3 4 5 6 10
2 4 8 16 32 64 1024
14+v+ (;) 4 1 16 2 56
2 —1—v— (;) 0 1 5 16 4 968
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this class of groups by the symbol SO(2v —hh),
h=0,1, ... ,v. We also shall analyze first the case of semis-
pinors of the first kind. Guided by the results of Secs. IT and
III we shall construct the nonlinear spinor representations
for SO(2v — h,h ) in two steps: (1) determination of the stabil-
ity subgroup H of the highest weight spinor ¢,, , and (2)
determination of the Mackey complementary set C.

Contrary to the results of Sec. II and III it will turn out
in some geometrically distinguished cases that the set C may
be represented as the group space of a specific subgroup of
SO{2v — h,h ), but in most cases it is just a homogeneous
space. Those nonlinear spinor representations for which C'is
a group space should be—from the geometrical and the
physical point of view—very interesting. We have the fol-
lowing theorem.

Theorem4.1: Let G = SO(2v — h,h ), withh = 0,1, ... ,v.
Then the stability group H of the highest weight spinor ¢,,,
is the connected group

H = [SU(v — h)XSL(h,R)] &R, 4.1)
where R is a solvable group whose Lie algebra » has the
following structure:

r=t@pgome—n (42)

with + ¥ a (5)-dimensional Abelian Lie algebra and
d* =" a 2h(v — h)-dimensional vector space in the
so(2v — h,h ) Lie algebra.

Proof: (See Appendix A.)

Theorem 4.1 shows the rich structure of the highest-
weight spinor stability subgroups, depending on the signa-
ture of the 2v-dimensional space-time R**** h =0,1,...,v.
In the case h = O (i.e., Euclidean space-time R**) by (4.1) we
have

H =SU). (4.3)
In this case the nonlinear carrier spinor space N ™+ will co-
incide with the quotient

C = SO(2v)/SU(¥), (4.4)
which in turn coincides—up to a phase factor—with the so-
called quadric Grassmannians.'! At the other end, if we set

h=v (ie, we consider the so-called neutral space-time
R™), then by (4.1) we have

H =SL(v,R)&T &), (4.5)
where T ) is an Abelian group of dimension (3 ). The anal-
ysis given below shows then that in this case the space N of
nonlinear spinors may be represented as the group space of
the solvable group C given by

c=1%9¢r, (4.6)
where T is an Abelian (3 )-dimensional subgroup of
SO(v,v). We hope that these two extreme cases illustrate the
richness of the considered theory.

Formula (4.1) gives also the dimension of the stability
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subgroup and the dimension of the Mackey set C, which
coincides with the dimension of the nonlinear carrier space
N™. We present these results in Table III. It follows from
Table III that the cases 2 = O, v are not obtainable as parti-
cular cases of the general 4 case.

The following theorem shows that some signatures are
distinguished. .

Theorem 4.2: Let G = SO(2v-h,h ). Then for & = v and
v — 1 the carrier space N ™+ for the nonlinear spinor repre-
sentation may be represented—up to a set of Haar measure
zero—as the group space

C=TD&T, forh=w, 4.7)

and
C=R, forh=v—1,

where R is a solvable group whose Lie algebra r has the
following structure:

r=t (7D 1a7, (4.8)

witht(* ) an Abelian algebra of dimension (') andd2” a
2v-dimensional vector space in g.

In all remaining cases the carrier space N ™+ of the non-
linear spinor representation 7 ™+ coincides with the homo-
geneous space SO(2v — h,h )/H.

Proof: (See Appendix B.)

Theorem 4.2 indicates that the neutral space-time R
and the conformal space-time R**+ ¥~ ! are distinguished.
The neutral case was already discussed in Sec. I. The confor-
mal spaces R¥+ !~ play the role of a natural generaliza-
tion of the conformal space R*2. It was proven recently'?>—
using a rather complex extension of the Chevalley the-
ory'>—that the conformal spaces admit also a kind of non-
linear pure spinor representation. In our formalism these
generalized pure spinors appear in an extremely natural
manner. In fact the passage from the so(v,v) Lie algebra to
theso(v + 1,v — 1) Lie algebra is obtained by multiplying by
{ — 7) the element I, of the Clifford algebra I',, a = 1,...,2v
of the R* space. Such an operation will not change the
constraints (1.3). Since the highest weight spinor ¢, for
SO(v + 1,v — 1) has the same form as for SO(v,v), the spinor
¥,,, of SO(v + 1,v — 1) will also satisfy (1.3). By covariance
arguments the spinor T, ¢, will also satisfy the constraints
(1.3). But by Theorems 4.1 and 4.2,

T, = TeYm, = ¥lc), (4-9)

TABLE III. Dimensions of the stability subgroup H and of the Mackey set
C for the group SO(2v — h,h).

h dim H dim C

0 V-1 V—v+1

h V—2+hh—1)2 vV —v+2—hh—1)2
v—1 My—1)—1 v+ (V3

v 32 —v—2) 1+ (;’)
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where ¢ is the element of the solvable group given by (4.7).
Hence in the conformal case, similarly to the neutral case,
the nonlinear carrier space N+ can be represented as the
group space of the solvable group C. The space N+ has the
dimension
v+ 1)

, )
This dimension equals the dimension of the pure spinor non-
linear representation in the neutral R*+ >+ ! space.

d, =1 +( (4.10)

V. NONLINEAR SPINOR REPRESENTATION OF SO(p,q)
GROUPS,p +g=2v+ 1

We shall now construct a class of nonlinear spinor re-
presentations for the pseudo-orthogonal groups SO(p,q),
P+ q=2v+ 1,p>gq, acting in the odd-dimensional space-
time R”?. As is well known, these groups have only one type
of linear fundamental spinor representations, determined by
the highest weight m = (L,4,...,}) (v components). For the
sake of simplicity we shall denote this class of groups by the
symbol SO2v + 1 — h,h), h =0,1,...,v. We shall state the
main results only, which, however, have a more complicated
form than in the case of even-dimensional space-times.

Theorem S5.1: Let G=SO(2v+1—hh), with
h=0,1,...,v. Then the stability group H of the highest
weight spinor has the form

H = [SU(v-h )X SL{A,R)] &R, (5.1)

where R is a solvable group whose Lie algebra r has the
following structure:

r=t(;')+d2h(v——h]+h’ (5'2)

with +® a (3)-dimensional Abelian Lie algebra and
dt—h+hg [2h(v —h)+ h]-dimensional vector space
in the s0(2v + 1-h,h ) Lie algebra.

Proof: (See Appendix C.)

Similarly as in the even case, there are distinguished sig-
natures for which the carrier space N of nonlinear spinor
representations coincides with a group space. In fact we have
the following theorem.

Theorem 5.2: Let G=SO(2v + 1—h,h). Then for
h = v the carrier space N of nonlinear spinor representa-
tions may be represented—up to a set of Haar measure
zero—as the group space

C=R'&R, h=v, (5.3)
where R is a solvable group whose Lie algebra r has the
following structure:

r=t (;) + fv

with ¢ ) a (3 )-dimensional Abelian Lie algebra and f* a v-
dimensional vector space in the so(2v + 1 — A,k ) Lie alge-
bra.

For h=v — 1, N™ coincides with the group space

C =SO(3)&R, (5.5)

where R is a solvable group with its Lie algebra r given by

(5.4)
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r= t(vz_')_'_fsv—z’

with ¢ (7 a (*;!)-dimensional Abelian Lie algebra and
f*~2 a(3v — 2)-dimensional vector space in the so(2v + 1
— h,h) Lie algebra.

In all remaining cases the carrier space N coincides
with the homogeneous space SO(2v + 1 — h,h )/H.

Proof: (See Appendix D.)

Formula (5.1) also determines the dimension of the sta-
bility subgroup and the dimension of the Mackey set C
which is equal to the dimension of the nonlinear carrier
space N™. We present these results in Table IV.

Note that the cases 4 = 0 and v are not obtainable as
particular cases of the general # case.

The nonlinear spinor representations in the R+
spaces were considered by Chevalley.'® It was shown that in
the R¥+ ¥ spaces there exist pure spinors ¢, that satisfy the
following quadratic constraints:

Upl,,.. o ¥p =0, forr=0,,.,v—1. (5.7)

It was shown in Ref. 6 that the number of independent
constraints given by (5.7) equals

. v
2 1—wv (2)

Hence the dimension d, of the nonlinear carrier space
N™is
v
dy=1+v+ (2) :
Using the previous arguments we conclude that

¢P = Tg¢m = Tc¢m = ¢(C)’
where ¢ is an element of the solvable group C given by (5.3).
It follows from Table IV that

(5.6)

Y
dc=1+"+(2)'

i.e., it coincides with the dimension d, determined by the
number of independent quadratic constraints.

We see therefore that the nonlinear pure spinor space
N ™ may be represented as the group space C given by (5.3).
The action of the nonlinear representation T, of SO(v + 1,v)
in C is determined by the Mackey decomposition.

The case # = v — 1 is distinguished by the fact that the
Mackey set C coincides—up to a set of Haar measure zero—
with the solvable group given by (5.5). The construction of
N™ nonlinear space is carried out as previously and this

TABLE IV. Dimensions of the stability subgroup H and of the Mackey set
C for the group SO(2v + 1 — A,h).

h dim H dim C

0 v —1 1+v+42

h v —2+hih +1)/2 24v+V—hth +1)2
v—1 132 —v—4a) 1+("’2L2

v 3 +v—2) 1+("‘2”)
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space may be represented as the group space of the solvable
group given by (5.5).

VI. DISCUSSION

We conclude this work with the following remarks.

(1) We have presented a systematic method for the con-
struction of nonlinear spinor representations of complex and
pseudo-orthogonal rotation groups. This method consists in
finding the stability subgroup representation T, h € H, of
the highest weight spinor ¥,, and on the realization of the
nonlinear carrier space N essentially as the quotient set G /
H.

It should be stressed that the present method will pro-
vide the construction of nonlinear representations of SO(p,q)
groups also for other types of representations, in particular
for higher spin representations m = (n,/2, n,/2...,n,,/2),
n; >1, for the tensor representations with m = (m,,...,m,),
m;>m; ,, m;-non-negative integers, as well as for spin-ten-
sor representations. In that manner one can associate with
any linear SO(p,q) representation determined by the highest
weight m = (m,,...,m,) a nonlinear group representation of
much smaller (in general} dimension.

It is also clear that the above construction can be ex-
tended to any representation of any group G.

(2) The most interesting applications of nonlinear spinor
representations are in field theory and particle physics. In
fact, as we showed,® due to the nonlinear constraints (1.3) or
(3.1) or effectively due to the nonlinearity of the carrier
spinor space N™, the simplest SO(p,q) covariant Dirac-like
wave equation

I,

a
g Yix)=0, a=1,..p+gq,

(6.1)
¥(x) e N™, represents a nonlinear wave equation. This non-
linearity becomes explicit if we write ¥(x) in terms of the
intrinsic components ¢ (x), kK = 1,2,..., dim N™. In this case
{6.1) reduces to a specific system of nonlinear field equations
for the intrinsic components ¢, (x),k = 1,...,dim N™. This is
a new field of research which we present in detail.®

(3) The pure spinor field theories are attractive for ele-
mentary particle model builders since these models contain
usually the smallest number of fundamental fields.’* From
the aesthetical point of view the nonlinear spinors that have
the smallest number of independent components provide the
smallest “building blocks” for an elementary particle mod-
€l.”® It would be very interesting to develop a canonical for-
malism for nonlinear spinors and check what particle spec-
trum for fermions and bosons follows from the nonlinearity
of the theory.

From a general quantum field theory point of view non-
linear spinor field theories of the considered kind present a
kind of field theory of o-model type with covariant con-
straints. Hence one may, in principle, apply a standard Fad-
deev—Senjanovic method of quantization of such field theor-
ies.” The only novelty is connected with the fact that
quadratic constraints are imposed on spinor components.

(4) The results of the present work might find also some
applications in the theory of spontaneously broken quantum
gauge field models based on SO(#) or SO( p,q) groups. In fact
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the basic problem of such models is to find a stability sub-
group of the chosen G-representation for the vacuum, which
we solved with full generality for the considered class of

groups.
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APPENDIX A: PROOF OF THEOREM 4.1

Let us take as a basis for the Clifford algebraR,, _, , the
2v (2¥X2") matrices I,,, m = 1,...,2v, satisfying the anti-
commutation relations (1.25), given explicitly by the rela-
tions

rzj—1=Hj+Hf=7’2j—u j= 1y — (Ala)
ry=iHd, —H)=1y,;, e ’ (Alb)
r,,_ =H,+H, =y%,_,,

2-1 1 1 : Va1 I=v—h 41, (Alc)
I=H—H, =iy,, (Ald)

It is easy to see that the generators X, (a,b = 1,...,2v)
defined by Eq. (1.26) in terms of the I",’s of Egs. (A1) satisfy
the commutation relations (1.27) of the so(2v — A,k ) Lie alge-
bra.

Out of all v(2v — 1) linearly independent generators X,
of so(2v — h,h ) we can perform the two following sets of real
linearly independent combinations: (a) v> — 2 + A (h — 1)/2
matrices having all elements zero in the first column, i.e.,

—h .
(V 5 ) matrices A,.j

= —{[HH |+ [H: H |} =Xoi_ 1551 + Xaigy »

(A2a)
(V;h)+v—h—l matrices B,
i
=L (= () + (5
i S [ A
l—
y— h & -4 g
251j v—h
=X2i—l,2j _X2i,2j—1 - z X?.g—l.Zg’ (A2b)
v—h g=1
(g) matrices T
= —{[H,H,]
=3 {(Xon_ra—1 + X + Xop 10 + X1 s
(A2c)
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(A2 —1) matrices IT,,

S hd
= —[H,,H, ] t >

m=v—h+

A[Ho )

=Xk 1201 — Xonar — Xox 10 + Xopzy 1}

O hd

(A2d)

X2m—l,2m’
h m=v—h+1

h(v—h) matrices C,
= —{{[H.H,] + [H;.H,]}
=X -1 + X )
h(v—h) matrices D,
= (i/4){ [Hi’HI] - [HF»HI]]
=X 1 + Xk (A2f)

(b) ¥* — v + 2 — h (h — 1)/2 matrices having some non-null
element in the first column, i.e.,

(‘V— h

2
= —M[H,H) + [H:.H; 1) =Xy 131 — Xaizy»
(A3a)

(A2e)

) matrices Zij

(V ; h) matrices F,j

= (’72){ [Hi»Hj] - [Hf’Hj ] ] =X2i— 1,2 +X21,2j—1’

(A3b)
h . =
( 2) matrices Oy,
= —[H H; ] =} Xok_ 121
+ Xopor — Xow 10 — Xokzi—1 s (A3c)
h(v—h) matrices C,
= —{{[H.H, ] + [H:.H ]}
= Q(Xzi- 1,21—1 —Xoi_ 1,21)’ (A3d)

h(v—h) matrices D,
= (’74){ [Hi’Hl'] - [H.*»Hl']} = i(Xzi,zl-l —Xzi,zl)s

(A3e)
1 matrix B
= "(i/z)[H(v—th(v—hy] =X2(v—h)-l,2(v—h)’
(A3f)
1 matrix D
=i[H, H, ] =X,,_,,,» (Alg)

wherei,j=1,..v—hand kJ/=v—h + 1,..,v.

From Egs. (2.11) we see that only the first set (a) gener-
ates the stability subalgebra 4. The generators (A2a)+(A2f)
satisfy the following commutation relations:

[4y.45] =6, Ajy + 8, dy — 64,; — b, Ay,  (Ada)
[By:By] =0y Aj + 8 Ay + 6,4+ 5, Ay, (A4D)
[4y B ] =6 By — 8By + 8By — 6 By,  (Adc)
[Hku”mn ] = 6yl g — 6, I, (Add)
[T, Tona] =0, (Ade)
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[T, T 1 =61 Tim — 81 Tin + (2610/8)T s, (A4H)

(4 1] = [By 111 ]

= [4;,Ty] =[B; :,Tu] =0, (Adg)
[Cik ’le] = 5ij %Tkl’ (A4h)
[DisDy] =8 3T (A4i)
[CixsDy] =0, (A4j)
[4;:Ca] =6,Cy — 8, Cy, (Adk)
[4;.Dg] =6, Dy — 6, Dy, (A4l)

[By ,Cal =8, Dy + 8, Dy — [26;/(v —h)]Dy,

(Ad4m)
[BijsDg] = —8,Cy —8,Cy + [26;/(v—h)]Cp,

(Adn)
[CtrTim ) = [PitsTim | = 0, (Ado)
[Cislly ] = 81 Cie — Ok /1 )Cus (Adp)
[Dusdlim | = 81mDic — (84m/H )Dy. (A4q)

We see that the (v — h)?> — 1 generators {4, ,B;} form a
su(v — k) Lie algebra, while the (k2 — 1) generators {1}, }
form a sl(h,R) Lie algebra and altogether {4, ,B; /1,;}
form the semisimple Lie algebra su(v — /) @ sl(A,R). The re-
maining generators {7,,C,,D,} give rise to an Abelian
solvable Lie algebra, whose structure is given just by Eq.
(4.2). Now using Theorem 3.3 of Ref. 5 we obtain the asser-
tion of Theorem 4.1. v

APPENDIX B: PROOF OF THEOREM 4.2

The set of generators, complementary in so{2v — h,h ) to
the generators giving rise to the stability subalgebra A of
... » is given by the generators of Egs. (A3a)--(A3g) of Ap-
pendix A.

Since

[4;.,B;] =By + By — 2B, _nyu—n + 4B,
i#j=1,.,v—h,

we see that for

0<hsy —2 (B2)
the complementary set of generators (A3a)-+(A3g) does not
form an algebra.

Let us explore the remaining casesh = vand A =v — 1.

In the so-called neutral case 11 = v, the complementary
set is given by the (}) generators Q,, of Eq. (A3c) and by the

generator D of Eq. (A3g). Their commutation relations are
given by

[ékl’amn ] =0,
[D.Qn] =81.Qn — 61 Qs
with k,lm,n = 1,...,v.

We see that in this case the complementary set forms a
solvable Lie algebra with the structure given by

c=19¢¢,

where t? is an Abelian algebra of dimension (3).

In the so-called conformal case h = v — 1, instead, the
complementary set is given by the

(B1)

(B3a)
{B3b)

(B4)
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-1 ~
(V ) ) generators Q,; of Eq. (A3c),
v—1 generators C,, of Eq. (A3d),

v—1 generators D,, of Eq. (A3e), (B5)
1 generator B of Eq. (A3f),
1 generator D of Eq. (A3g).
Their commutation relations are given by

[B’ékl] = 5kvélv - 6Ivékv’ (Bé6a)
[CusCii] =40 (B6b)
[blk’ﬁll] = iékn (Béc)
[B.C] =Dy, (B6d)
[B.Dy] = —Cy, (Bée)
[D.Cu] = -8,C.,, (B6f)
[5»ﬁ11] = _611'511" (Bég)
[Q0:0mn] = [CixsDy] = [B.Qu] = [B.D]

= [ékl’alm ] = [le’blm ] =0, (B6h)

with k,l,m,n = 2,...,v.

We see that the complementary set forms a solvable Lie
algebra r whose structure is that one given by Eq. (4.10).
Repeating the argument given at the end of the proof of
Theorem 2.3 we obtain the assertion of Theorem 4.2. ¥

APPENDIX C: PROOF OF THEOREM 5.1

Let us take as a basis for the Clifford algebraR,, |, , _,,
the 2v + 1 (2¥X2") matrices I',, n =1, ... ,2v + 1, satisfy-
ing the anticommutation relations (1.25), given explicitly by
Egs. (A1) plus the new relation

Fasr1 =Ho="341- (C1)

It is easy to see that the generators X, (a,b

=1,...,2v + 1)defined by Eq. (1.26) in terms of the I",’s of
Eqgs. (Ala)=-(A1d) and (C1) satisfy the commutation rela-
tions (1.27) of the so(2v + 1 — A, ) Lie algebra.

Let us now look for the stability subalgebra # of the
highest weight spinor ¢,,,

From Eqgs. (3.6) we see that for the so(2v + 1 — h,h ) Lie
algebra, in addition to the generators (A2a)-(A2f) and
(A3a)+(A3g)of the so{2v — h,h ) Lie algebra, we find further
real linearly independent combinations of X,, generators,
giving
(a) h matrices E,

= "% [Hk»Ho] =X2k—l,2v+l +X2k,2v+l’ (CZ)
having all elements zero in the first column, and
(b) (v — k) matrices H,
= —1| [H:,H,] + [Hi”HO]} =Xy_1v+15  (C3a)
(v — h ) matrices K,
= (i/4{ [H,H,] — [Hi Hol} = X501 (C3b)
h matrices F,
= —} [He Hol =Xok— 12041 = Xakzv 415 (C3c)
having some non-null element in the first column.
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We can easily check that the set given by the +* — 2

+ A (h + 1)/2 matrices (A2a)--(A2f) and (C2) form the stab-

ility subalgebra /4 we are looking for. In addition to the com-
mutation relations (A4a)+(A4q) we have in fact

[E.E/] =2T, (C4a)
[EeidT,, | = O1mE) — (64 /P )E,, (C4b)
[Eidy] = [Ee:By] = [EisTim ]

= [E;,Cy] = [Ex,Dy] =0. (C4c)

From Eqgs. (A4a)+-(A4q) and (C4) we see that the struc-
ture of the stability subalgebra 4 is just as that one of the Lie
algebra of (5.1) group. Now using Theorem 3.3 of Ref. 5 we
obtain the assertion of Theorem 5.1. v

APPENDIX D: PROOF OF THEOREM 5.2

The set ¢ of generators, complementary in
so(2v + 1 — A,k ) to the set of generators giving the stability
subalgebra 4 of ¢,,, is formed by the generators given by Egs.
(A3a)=(A3g) and (C3).

Since Eq. (B1) still holds, we see that for

0<hy — 2, (D1)
the complementary set ¢ of generators (A3a)=-(A3g)and (C3)
does not form an algebra.

Let us analyze the remaining 4 = vand h = v — 1 cases.
In the A = v case the complementary set is given by the

(;) generators Oy of Eq. (A3c),

v generators F, of Eq.(C3c),
1 generator D of Eq. (A3g),

withk/=1,... v
Their commutation relations are given by Eqs. (B3) plus

(D2)

[Fi.Fy] =20k, (D3a)
[Fe.D ] =6 F., (D3b)
[FeQim] =0, (D3c)

withkIm=1,... v

We see that in this case the complementary set ¢ forms a
solvable Lie algebra with the structure given by
(D4)

where 7 is a solvable Lie algebra having the structure de-
scribed by Eq. (5.4).

In the so-called conformal case h = v — 1, instead, the
complementary set ¢ is given by the generators of Eq. (BS)
plus

v — 1 generators F, of Eq. (C3c),

1 generator H, of Eq. (C3a),

1 generator K, of Eq. (C3b),
withk=2,.

Their commutation relations are given by Eqgs.(B6a)
= (B6h) plus

¢ =riér,

(D5)
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[H,,K,] =B, (D6a)
[H.F,]= 2C., (Dé6b)
[KiFe] =2Dy, (D6c)
[Fi.Fi] =204, (Déd)
[B»Hll =K1, (D6e)
[K,.B]=H, (D6f)
[H,Cu]= —1F, (Dég)
[K.Dul= —4F, (D6h)
[F.D ] =9,.F,, (D6i)
[El’ékll = [El’ékll = [ﬁvb] = [EI’E]

= [fl ju] = [1?1,511] = [ij]

= [FesOmn ] = [FisCui]
= [F,Dy] =0, (D6j)

withk/=2,... .

We see from Egs. (B6a}+(B6h) and (D6a)--(D6j) that
the complementary set ¢ forms an algebra. Precisely the
three generators {H,,K,,B } satisfy the commutation rela-
tions of the simple compact Lie algebra so(3), while the re-
maining generators {Qk,, D, Fk, C,,, D,,] form a solvable
subalgebra. Furthermore the so(3) generators produce an au-
tomorphism of the solvable subalgebra.

We see therefore that the complementary algebra has
just the structure dictated by Egs. (5.4) and (5.6). Repeating
the argument given at the end of the proof of Theorem 2.3
we obtain the assertion of Theorem 5.2. v
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On the projective representations of finite Abelian groups. Il
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Complete sets of inequivalent irreducible projective representations of C;, = {wy,-,w,; w" =1,
i=1,.,mw,w; = ww,ij=1,..,n} with respect to a class of factor sets @ are determined, where
a(w;,w;) = fa(w;,w,), 1<i <j<n and @ is a fixed mth root of unity. A single irreducible projective
representation of C, for each factor set & is constructed and called the basic projective
representation. The rest of the representations are obtained by tensoring the basic projective
representations with some ordinary representations of C, . Projective representations of C},, are
thus parametrized in terms of its ordinary representations.

I. INTRODUCTION

Applications of representation theory of finite Abelian
groups in different fields of physics such as solid state phys-
ics is well known. More recently, they have been found use-
ful in statistical mechanics (see Rittenberg'). Also, projective
representations of Abelian groups arise naturally in the
study of energy bands in the presence of a magnetic field (see
Brown?).

il. THEORY

In this paper, we consider C,, the direct product of n
copies of a cyclic group C,, of order m and determine its
inequivalent irreducible projective representations with re-
spect to a particular class of factor sets.

C, is an Abelian group of order m" given by

Cr = {wyew,w=1,
i=Ll.,mww =ww,ij=1,.,n}.

Let a be a factor set of C”, (see Morris® for definitions
and other properties of factor sets and projective representa-
tions). The factor set @ may be chosen (up to equivalence) in
such a way that a'(w,,w;) = a(w,,w;)a(w;,w,)”" is an mth
root of unity.

Morris* has determined a-regular classes and inequiva-
lent irreducible projective representations (ipr’s) of C 7, with
respect to the factor sets in two special cases, when a'(w;,w;)

= afw,,w,)a(w;,w,) " = 0 (1<i< j<n) and either (i) 8 is a
primitive mth root of unity, or (ii) 2 divides m and 8 is a
primitive square root of unity.

We consider a more general case when @ is primitive k th
root of unity where k is any divisor of m and obtain complete
sets of inequivalent ipr’s of C, with respect to these factor
sets. The results of Morris* may be obtained as a particular
case by taking k = 2 and k = m, respectively. The a-regular
classes of C,, with respect to these factor sets were consid-
ered by Saeed-ul-Islam.’

If T'is a projective representation of C ", with factor set

a as above over the field of complex numbers and if T,

= T'(w,),i = 1,...,n, thenitis easy tosee that 7',,..., T, satisfy
the following equations:

* Permanent address: Department of Mathematics, Bahauddin Zakariya
University, Multan, Pakistan.
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Tr=1, T.T,=6T,T, I<i<j<n. (1)

Conversely, if T,...,T, are any given matrices satisfy-
ing Eq. (1) then they generate a projective representation 7 of
C 1, with factor set & and are given by

T () = T3 T3,
foralla, € {0,...m — 1},i=1,...,n.

The following theorem which gives the number and de-
grees of the ipr’s of C?, is proved in Ref. 5.

Theorem 1: Let  be a factor set of C'/;, over C satisfying
a'(w;,w;) = 0 (1<i <j<n), where 0 is a primitive k th root of
unity, k divides m. Let m = kl.

Then we have the following.

(i) (n even) C%, has I* number of a-regular elements
given by w?..w3*: a,=0 (mod k), i = 1,...,n and therefore /"
number of inequivalent irreducible projective representa-
tions of C7, each of degree (k )'/*".

(ii) (n odd) C %, has ki" number of a-regular elements of
the form wi.-w.": a,;=—a,=a,=-=a,(mod k) and
therefore has k" number of inequivalent irreducible projec-
tive representations of degree k /3"~ 1,

We first construct a set of kX X k matrices, which are
used in the construction of the required irreducible projec-
tive representations.

If k is odd, let P and Q be the k X k matrices defined by

i=1,.,n;

010 0 -
0010 -0
00 01 - O

P= N
0 0 0 O 1
1 0 0 O 0
0 ¢ 0 O 0
0 0 6% o 0
0 0 0 @° 0
Q= H . M .
0O 0 0 O g—!
1 0 0 O 0

If & is even, let P be defined as above and
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0 ¢ 0 0 - 0
0 ¢ 0 « 0
0 &5 0

- O O
o

0 0 0 O £H—3
F*-1 0 0 0 - 0
where £ is the 2k th primitive root of unity such that £ > = 6.
Then in both cases, it can be readily verified that (see Mor-
ris®)
P*=Qk=1 PQ=06QP.
where [ is the identity matrix of order & X k. Further, let
R= [P"“Q, if k is odd,
~ lgprk1Q, ifkiseven.
It follows easily that in either case,
R*¥=1I PR =6RP, QR =06RQ.
Now let
E,, ,=ReRe--9®RePslIg-0l,
E,,=Re®R®--9ReoQ0lI¢-®l
i=1,.,v=[n/2). If nis odd let
E,=R2--3R8R8®R®-3R.

It follows from the properties of P, Q, and R that
E,,....E, satisfy Eq. (1) and therefore generate a projective
representation 7°of C',, with factor set @. We call T the basic
projective representation of C;, with factor set a.

It is further verified that

() E{E;'EjwEj_ E5 =612y,

r=01,.,k— 1.

(ii) No other product of matrices E }*--E Z’ *= A1, for any
nonzero complex number A, except a reordering of (i) or
when u, =0 (mod k) in which case 4 = 1.

(iti) E ¥---E ;" has nonzero trace if and only if E {*--E ;:"
= AI for some nonzero complex number A.

The following result now follows easily.

Lemma: If y denotes the projective character of the
basic projective representation I" of C}, as defined above
then

(i) n even,

xwhewy) = (k)

where ;=0 (mod k), i = 1,...,n,

(ii) n odd,
X(wz;, ."w:n) — 9 — [Ar+ 1)/2]v(k )(l/2)(n — l)’
where
4= — =ay== —a,,=0a,, . =r (mod k),

r=0,1,...,k — 1. y(w) = Oif wis not of the above two types.

If n is even, the number of a-regular classes of C7, is
equal to /* (see Saeed-ul-Islam®) and y has value (k }"/*" on
each of these elements. Therefore,

(o) = L,, Y xwllw) = L pngunmgaan _ 1,
mn

n
weC,,
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and hence y is irreducible in this case. Similarly it can be
shown that y is irreducible if # is odd.
Definition: Let £ be a primitive mth root of unity such

..........

=ghar o for all b,,a; € {O,1,...m — 1}, i=1,..n.

C1. and by giving different values to ,, i = 1,...,n, we get a
complete set of inequivalent ordinary irreducible representa-
tionsof C7,.

We consider a subcollection of these representations
given by

{0(1,‘ ..... b,) :b- € {0,1,...,1— 1}, i= l,...,n}

,,,,,,,,,,

reducible projective representations of C, with factor set
equal to the factor set of T. If we denote the character of

,,,,,

,,,,,

.........

ie.,

£ kb _ £ kb
which implies that k (b, — b })=0 (mod m), i.e., b, — b ;=0
(mod 7). Since b,,b | <, therefore b, = b/, i = 1,...,n. Thus

.....
..........

------

-------

={j —J '}=0 (mod m).
= j=j (mod m)=>j =, because j, j'<m — 1.

.....

to kI which are equal to the number of a-regular classes in
the respective cases.
We summarize the above results in the following.
Theorem 2: A complete set of inequivalent ipr’s of C,
with factor set « is given by (i) n even,
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oyibi € (0,1, ] — 1), i = L.m},

(TP pybi € (0,1 — 1},i = 1,0m,

.....

je {0k — 1)1 }].

Each of the above representation is of degree £”, v

= [(n/2)].

Corollary 1: (Theorem 1, Ref. 4) If I = 1, i.e., 8 is primi-
tive mth root of unity then (i) n even, C 7, has only one ipr of
degree m, and (ii) » odd, C/, has n inequivalent ipr’s each of
degree n”.

Corollary 2: (Theorem 2, Ref. 4) If 0 = — 1,i.e.,/I=m/
2, k =2, then (i) n even, C, has (m/2)" inequivalent ipr’s
each of degree 2", and (ii) n odd, C}, has 2 (m/2)" inequiva-
lent ipr’s each of degree 2".

Remarks: (i) The above lemma and the theorem give an
alternative proof of the results proved in Ref. 5.

(il) The problem of constructing ipr’s in the case when
a'(w; ,w;) does not take equal values for different pairs of i, /s
will be considered in a subsequent paper. The case n = 3 has
been discussed by Backhouse and Bradley.’
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The group of gauge transformations of a smooth principal bundle P (M,G ) over a not necessarily
compact manifold M and with a not necessarily compact structure group G is proved to be a
Schwartz-Lie group. Its Lie algebra and exponential map are discussed.

I. INTRODUCTION

In recent years physicists have paid growing attention to
“infinite continuous™ groups (as they sometimes are called)
such as the current group, the group of gauge transforma-
tions, the group of volume preserving diffeomorphisms of an
oriented manifold X, and the group of symplectic transfor-
mations of a symplectic manifold X. Obviously enough, this
does not stem from the fact that physicists only recently have
recognized the importance of this kind of group for funda-
mental physics,’ but from the fact that mathematicians have
made progress in endowing them with “smoothness struc-
tures,” which allow us to treat them to some extent as the
usual Lie groups. Frequently these structures are relativized
from similar ones for Map(X,Y'), the space of maps from the
manifold X to the manifold ¥, an object of fundamental rel-
evance in global analysis.” However, in the treatment of
Map(X,Y) the compactness of the manifold X, at least, is
currently assumed. In application to physics this assumption
may be well suited for specific problems but, generally
speaking, is clearly reductive. This is particularly evident for
the “’continuous infinite” groups quoted above since the
manifold X is the space-time or the phase space. Many phys-
ical objects live in space-time: eventually depending on the
mathematical category they are thought to belong to, for
some of them to be bounded to live in a compactified space-
time does not result in an essential modification of their
properties, but for others it results in an artificial enlarge-
ment or reduction of their properties. As things are we can-
not help but remember the ancient mythological story of
Procustes’ bed.’

Furthermore, often Sobolev space techniques are used
jointly with the compactness assumption; these techniques
offer the well-known advantages of the Hilbertian struc-
tures, but must be paid for with hard limitations and techni-
cal complications. And then, the whole setting becomes very
unnatural if one tries to remove the compactness assump-
tion.

For these reasons we consider the recent proposal of
Michor*? very interesting. He endows C* (X,Y) (the set of
C= mapsfrom X to Y')with a natural differentiable manifold
structure working in a very natural and simple setting and
without assuming compactness for X. Michor’s treatment
gives C* (X,Y) a topology that is finer than the widely used
Whitney C* topology,® avoids projective limits”® and
I'-differentiability,” and, last, but not least, is meaningful
from the physical point of view.
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As applications of his treatment, Michor himself has
discussed some “infinite continuous” groups of relevant in-
terest for physics, for instance, the group Diff X and the
group of canonical transformations.**#4>* In this paper we
want to apply Michor’s treatment to the current group G*
and to the group & of gauge transformations. We will show
that these groups can be given a differentiable structure by
which they become Schwartz-Lie groups with associated
Schwartz-Lie algebras; we will also prove the existence of a
nice exponential map for these groups.

In Sec. IT we introduce, with a short and simple exposi-
tion, Michor’s method to give C*(X,Y) a differentiable
structure. In Sec. III we study the current group and the
group of gauge transformations, viewing them as groups of
sections of smooth group fiber bundles. In Sec. IV we discuss
the associated Lie algebra and give the exponential map.

Il.C~ (X,Y) AS A SCHWARTZ MANIFOLD

In this section we endow the set C* (X,Y) of a smooth
differentiable structure assuming that X and Y are ordinary
smooth manifolds, that is Hausdorff, second-countable, and
locally compact C* manifolds (hence finite dimensional,
paracompact, and metrizable). We follow a procedure that is
clearly equivalent to the Michor procedure,** but, in our
opinion, more suitable for physicists’ taste. According to this
attitude we start with the discussion of the locally convex
space, which will play the role of local model of the manifold.

Let { = (E,M,m;R™ ) be an ordinary smooth vector bun-
dle over M. We denote by Secy, ¢ the real linear space of
smooth sections with compact support of {. We want to en-
dow Sec, & of a locally convex topology suitable from the
point of view of differential calculus.

Given an open subset U of R” we denote by Z(U,R™)
the real linear space of smooth R™ -valued maps on U with
compact support [if m = 1 we shortly write, as usual, Z(U)
instead of Z(U,R)]. As is well known,'° in this space a local-
ly convex topology, usually called the Schwartz topology, is
induced by the family of seminorms

{95] (9€0),

where @ is the collection of all the families # ={,} (peN")

of continuous real functions ¢, on U such that the family

{supp ¢, } (peN") is locally finite and
g3(0): = max max| |3, (x)D? o1x)| g, o€ D (U,R™).

It is well known from the usual distribution theory that
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2 (UR™), endowed by the Schwartz topology induced by
the above family of seminorms, is a complete locally convex
nuclear space, strict inductive limit of a countable family of
separable Fréchet spaces (even dually nuclear and Lindelof,
hence paracompact and normal). Locally convex spaces of
this kind are called (NLF)-spaces by Michor*?; we will call
them simply Schwartz spaces.

If X is an ordinary smooth manifold we can analogously
consider the linear space Z(X,R™). With a nearly obvious
generalization also this space can be made a Schwartz space.
Actually, we can take a countable and locally finite atlas

o = {(Up,@i,R")}  (keN)
for X and introduce the family of seminorms
{qk,‘? } {kGN, 06@)’

where @ is the collection of all the families ¢ ={, ] (peN")
of continuous real functions #, on X such that the family
f{supp ¢,} (peN")is locally finite and

9is(0) = qg:wk)(ak)» oeJ(X,R™),

where o, is the local expression of ¢ and <, the “local
expression” of .

Now suppose { = (E,M,m;R™) is an ordinary vector
bundle over M. A family of seminorms

{gxs} (keN, J€@)

can be introduced in the linear space Sec, £ in an analogous
way considering now a countable locally finite fibered atlas
for £, that is, a pair (.«7,5</), where

A=((Uppu R} (keN)

is an atlas for M, and
¢ = {(m'(Uy), R™ + R”, (@) Xidgn)o9,)} (keN)

is an atlas for E, such that (U, ,¥,) (keN) is locally finite
locally trivializing system for .

A simple way to see that Sec, { endowed with the topol-
ogy induced by this family of seminorms is a Schwartz space
is the following.

First suppose that { is trivial over M, that is,
&= (M XR™ ,M,pr,,); then Sec, {=Z(M,R™). If { is not
trivial over M, by a very well-known structural theorem!’
there exists a vector bundle = (E',M,7";R") over M such
that the Whitneysum{ o n = (E@ E' . M,mo 7' ;R™* ")istri-
vial over M, that is EeE’'=M XR™*+". Therefore
Sec,(4 @ 77) can be given the structure of a Schwartz space as
above. Moreover, the decomposition Sec,(¢ @ 17) = Sec, &
& Sec, 7 is also topological, that is, Sec, £ is a topological
direct summand of Secy($ @ 7). Hence Sec, £ inherits from
Secy($ @ ) the structure of Schwartz space together with the
properties given above.'?

The nice topological properties of the Schwartz spaces
are very suitable also from the point of view of differential
calculus since nearly all the good definitions of smoothness
are equivalent.'® For the sake of convenience we choose the
C Z smoothness, which can be defined as follows: Let ¥ and
W be locally convex vector spaces and U an open subset of V.
A map f:U—W is said to be C ! on U if for every xeU there
exists a linear operator D f(x): V—W such that
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(1) m{Lfbe+ o) —f(x)1/2} = Dflxp,

(2) the map Df. UXV—-W,
(xy}>D f(x,p): = D f(x)y

is continuous.

Amap fU—>Wissaidtobe CX+'on U(k>1)iffisCion U
and D*f, where D*f.=D(D*~'f), is C! on U. A map
SU>Wissaidtobe C2 on Uifitis CX on U for every
k=1.2.. .

By a Schwartz manifold we will mean a manifold in the
C = sense modeled on a Schwartz space.

The locally convex space candidate for the role of local
model at fof the manifold C* (X,Y) is Sec, {/, where {, is the
pullback f*(Ty) of the tangent bundle T, = (77,Y,py) by

JEC= (X,Y). Obviously Sec, S, will be understood as a
Schwartz space, as discussed above, endowed with the just
defined C * smoothness.

An important tool for the definition of charts on
C* (X,Y)is the notion of local addition on an ordinary mani-
fold.

Given an ordinary smooth manifold M, Ilet
Ty = (TM,M p,,) be its tangent bundle. A Jocal addition on
M is a mapping 7:TM—M satisfying (1) (Dss,7): TM—M XM
is a diffeomorphism with an open neighborhood of the diag-
onal in M XM, and (2) 70, ) = x, ¥YxeM, where O, is the
zeroof T, M.

The most important property of a local addition 7on M
is that, for every x € M, its restriction 7, :T, M—M is a dif-
feomorphism with an open neighborhood of x in M. Every
ordinary smooth manifold M admits local additions (see Sec.
10.1 of Ref. 5).

Now we are able to introduce an atlas for C* (X,Y ). We
choose a local addition 7 on Y and define, for every fixed

feC* (X,Y),

UJ: = (geC™ (X,Y)|g~, gix)ery (T ¥), VxeX },
whereg ~fmeans that theset {x € X |g(x)#/ (x)} is relatively
compact, and

@7 Ui—Secy ¢,

g p g (@ HRNx): = 7 8lx).
It is easy to see that @ ; is a bijection; its inverse is

o5 Seco 65— Uy,

s ifi{s): = 70s.

Therefore (U, 7, Sec, £) is a chart at fon C* (X,Y).

Now we can show that

7= {(Uf, @7 Secoly)]  [feC™ (X,Y)]

is a smooth atlas for C* (X,Y). To do this we must prove that
whenever UnU, #9,

(a) @ AUnNU,)is open in Sec, £,

b) @zXolp )™ @ AUNU, )@ ((UnU,)
is a diffeomorphism.

To prove (a) we just recall that the convergence of a
sequence {s, ] in Sec, §, to s€Sec, {, implies that there exists
a compact subset K of X such that all but a finite number of
the s, 's equal s off X and s, (x)—s(x) uniformly on X; by a
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standard argument this implies that the complement of
@ AUNU,) in Sec, & is closed.

The proof of (b) is a simple application of the 2-lemma
8.7 of Michor.’

So we can conclude that, for every local addition 7 on ¥,
&7 is a smooth atlas for C* (X,Y).

Again by a simple application of the {)-lemma it can be
shown that the atlases /™ and & " are equivalent for every
local addition 7 and 7’ on Y. Therefore the C ®-manifold
structure introduced in C* (X,Y) does not depend on the
choice of the local addition on Y.

We emphasize that, as shown by Michor, C* (X,Y') en-
dowed with this manifold structure is a Hausdorff, paracom-
pact, and normal manifold and admits C * partitions of uni-
ty. An important point to remark about the tangent space
TC* (X,Y )isthat,foreveryfeC= (X,Y), T,C> (X,Y )iscanon-
ically isomorphic to the local model Sec, {, as is shown in
Theorem 10.13 of Ref. 5. The map, which identifies
T,C~ (X,Y) with Sec, {;, can be worked out from Lemma
10.15 of Michor® and is given by

T,C =(X,Y)3 [c]mev[c]eSecy &,

where [c] is the equivalence class of paths in C* (X,Y)
through £, that is ¢(0) = f, and

evlcl(x): = [ev,oc], VxeX,

with ev,:C* (X,Y }—Y the evaluation at x.

In the following we will be particularly interested in
Sec &, the set of all smooth sections of a given (ordinary) fiber
bundle ¢ = (E,M,). It is shown in Michor,® Proposition
10.10, that Sec ¢ is a splitting submanifold of C* (M,E)
whose local model at s is Secy(s*(Ver(W,)), where
P, :W—s(M )is a tubular neighborhood of s(M ) in £ such that
ps = somr | W, and Ver is the functor which to every smooth
fiber bundle associates its vertical bundle. We can substitute
s*(Ver(E ) for s*(Ver(W,)) if we take into account that

Ty W, =T.,E, VxeM,
obviously and that

Ty Wy =Ty (W,)gn) @ (T NI M), VxeM,
since s is transversal to the fibers of p,:W,—s(M). In fact
from these two relations we have

Ver,, W, = Ver, E, VxeM.

Therefore the local model at s for Sec § can be identified with
Secy{s*(Ver E)). Since Sec{ is a splitting submanifold of
C> (M,E ), we also obtain that the map ev introduced above
gives the canonical identification

T, Sec {=~Sec,y(s*(Ver E)).

IH. SCHWARTZ-LIE GROUP OF SECTIONS OF A GROUP
FIBER BUNDLE

In this section we use the treatment of Sec. II to endow
the current group and the group of gauge transformations
with the structure of the Schwartz—Lie group.

The (smooth) current group G* is the group of smooth
maps f: M—G from an ordinary smooth manifold M to an
ordinary Lie group G (see Ref. 14). From Sec. II we have

3038 J. Math. Phys., Vol. 26, No. 12, December 1985

immediately that GM=C> (M,G) is a Schwartz manifold.
We have to show that the group structure and the manifold
structure are compatible so that we are allowed to say that
G™ is a Schwartz-Lie group (that is, loosely speaking, a
smooth group modeled on a Schwartz space).

Note that G¥ can be identified with the group of
(smooth) sections of the trivial principal bundle
(M X G,M’prM;G )'

The group ¥ of gauge transformations of a principal
bundle P(M,G) over M with structure group G is the set
Sec P[G ] of (smooth)sections of P [G ] with the pointwise de-
fined composition low. Here P[G] means the fiber bundle
associated to P (M,G ) with typical fiber G and action of G on
G given by the adjoint action bwsaba ~'. It is well known that
& can be identified with the group of those diffeomorphisms
Jfof the total space P of P(M,G ) such that

Sfor=m, flpa)=flpla, VpeP, VaeG,
where 7:P—M is the projection of P(M,G ) {see Ref. 15).

Again from Sec. II we know that Sec P[G]isa Schwartz
manifold and again we are faced with the problem of the
compatibility of the two structures.

We can treat the problem in a more general setting that
covers both cases. We consider a smooth group fiber bundle
y=(E,M,;G ) with the ordinary Lie group G as typical fiber
and make Sec ¥ into a group with pointwise defined compo-
sition law. We emphasize that we only assume that M and G
are ordinary manifolds; in particular we do not assume that
M and (or) G are compact as is usually assumed in this con-
text.

Theorem3.1: Let y = (E,M,7;G ) be asmooth group fiber
bundle with the ordinary Lie group G as typical fiber. Then
Sec 7, with the pointwise defined composition law, is a
Schwartz-Lie group.

Proof: To prove the smoothness of the composition law

®: Sec ¥ XSec y—8Sec ¥

(5,8" o Bs,5) = 55,

we first introduce the pullback of the Cartesian product
¥ Xy by the diagonal map A: M—M X M and we denote it
by ¥ X ar 7. The fiber bundle ¥ X », ¥ is called the fibered pro-
duct of y by itself and its total space may canonically be
identified withE X o E: = {(4,%')E X E |m(u) = m{u')} andits
fiber over x € M with the Cartesian product E, X E, . Then
we define

¢ E X E—E,
(0, (1,0 oont? (x, (14,00 )): = (x,000),

that is, % is a map which on each fiber E, X E, is the group
composition for E, . Using local triviality it is easy to see that
1% is a smooth map.

The map O is the composition of the canonical identifi-
cation of Sec ¥ X Sec ¥ with Sec(y X ,,7) and the map

Comp,: Sec(yX sy 7}>Secy,

(8,5 }wrdo(s,s),  ols,s)(x) = s{x)s’(x).

Now, by Ref. 5, Propositions 10.5 and 10.10, the canoni-
cal identification is a C * map and by Corollary 10.14.1 of
Ref. 5, Comp, too is C =. Therefore ® is a C 2 map.

To prove the smoothness of the inverse map Inv on
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Sec ¥ we proceed in an analogous way. We introduce the
map

inv: E-E,

(x, upwrinvix,u) = (x,u~"),
which, using local triviality, is immediately seen to be
smooth. Since Inv is the composition with inv, again by Cor-
ollary 10.14.1 of Ref. Swe obtain that InvisaC * map. ///

With essentially similar arguments we can prove the fol-
lowing theorem.

Theorem 3.2: Let A =(E,M,m;L )beasmooth Liealgebra
fiber bundle with the ordinary Lie algebra L as typical fiber.
Then Sec, A, with pointwise defined composition laws, is a
Schwartz-Lie algebra.

It must be remarked that the requirement of compact-
ness for the supports of the sections of A cannot be removed if
we want to obtain a topological vector space; in fact, Sec A is
an Abelian Schwartz—Lie group, but the scalar multiplica-
tion is not continuous at O; actually, for oeSecA,
(1/n)o—0 iff o€Secy A, so that the open subset Sec, A is
clearly the maximal subset of Sec A, which is a topological
vector space.

Theorem 3.2 suggests a setting for a natural realization
of the Lie algebra of the group Sec ¥, which is very useful and
suitable in applications as, for instance, the possibility of de-
fining an exponential map will show.

We discuss these matters in the following section.

IV. THE LIE ALGEBRA OF THE GROUP Sec y

Given a C2? manifold .# modeled on locally convex
spaces E,, let #°(#) be the .#(.#) module of the vector
fields on .# [.#(.#)) is the ring of the real-valued C = func-
tions on .#]. We introduce in this module a Lie bracket in
the following way: If 4 and B are vector fields on .# with
local expressions 4, and B, the Lie bracket [4,B] is the
vector field on .# whose local expression is

— A (v)B,{v)+ B((vd,(v), where 4 , (v) and B/ (v) are the
derivatives of 4, and B, atve E,,.

To check that the so-defined [4,B] is actually a vector
field on .# is simply a matter of checking transition relations
for vector fields.

Analogously we can define the Lie derivative on (.4 ):
If fis a real-valued C * function with local expression f,, and
A a vector field on .# with local expression 4, then the Lie
derivative . , fis the C * function whose local expression is
Sfavi, ).

It is immediate that the just-defined Lie bracket and Lie
derivative satisfy the familiar relations

[4.B +C]=[4,B] + [4,C],
[f4,B]=f[4.B] — (£ zf 4,

[4,B]= —[B,4],
[4,[B,.C]]1+ [B,[C,A11+[C,[4,B]] =0,

Lalf+8)=ZLuf+ L 48
LA R)=(ZL1f18 + (L 48),
gA+Bf= LS+ ZLsf,
LS =kZL f, keR,
g[A,B] = [-2’)4’—73]-
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From these relations we see that the introduction of the
Lie bracket [ , ] endows #°(.#) with the structure of Lie
module over #(.#).

If the C ? manifold .# is a C * group ¥, the invariant
(under left translations) vector fields are of paramount im-
portance; they constitute a Lie algebra over R, since they are
exactly those vector fields which are self-related by every
(left) translation. This Lie algebra over R is called the Lie
algebra of &. We will denote it with L . As in the case of
ordinary Lie groups the map

ev,: Ly—>T,9,

Avsev, A: = A (e),
where e is the unit element of ¥, gives a natural isomor-
phism of Ly, as linear space with 7, & . This linear isomor-

phism becomes a Lie algebra isomorphism if we define on
T, 9 the Lie bracket

[4 (e).B (e)]: = [4,B ](e).

As in the case of ordinary Lie groups, it can be easily
seen thatifa(t }isa path on & through ebelonging to 4 (e)and
b{t) a path through e belonging to B(e), the so-defined

[4 (e),B (e)] is indeed the equivalence class of paths through e
which the path

a(r)b(r)a='(1)b ~\(7), 7= (sgntW|t],
belongs to.

Let now ¥ be the Schwartz-Lie group Sec ¥ introduced
in Sec. II1. The result remarked at the end of Sec. II, i.e., that
the tangent space at f to C* (X, Y ) can be canonically identi-
fied with the local model at f; enables us to give a simple
realization of the Lie algebra L ., of Sec y.

Theorem 4.1: Let Sec ¥ be the Schwartz-Lie group of
smooth sections of the smooth group fiber bundle
y = (E,M,m;G ) with the ordinary Lie group G as the typical
fiber; let Secy A be the Schwartz—Lie algebra of smooth sec-
tions with compact support of the smooth Lie algebra fiber
bundle A = (F,M,p;L ) with the ordinary Lie algebra L as the
typical fiber. If A is defined by L = L; and a local trivializ-
ing system derived in an obvious way by the one of 7, then
the Lie algebra L 5., is canonically isomorphic with Sec, A.

Proof: Since, for every x e M,

= TyyE,=T,,G,~Lg,

by the hypothesis L = L and local triviality the vector bun-
dles e*(Ver E ) and A are naturally M isomorphic. Calling /
this M isomorphism we must just show that the composition

l.oev: T, Sec y—Secy(e*(Ver E ))—Sec, A

preserves the Lie bracket. Now, if (0T, Secy, b(0)
€T, Sec ¥, and ¢(0) = [@(0),b (0)], we have

({7 oev)e(0))(x)
= (L (ev &(0))x) = (Feeve(0))(x)
= I{(evé(0))(x) = {{ev, °c)(0));

but
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(ev,oc) (0) = (ev,.ca(r)b (r)a™ ()b ~(r)) (0)
= ((ev,©a)(T)(ev, °b )(7)(ev, °a~)(7)
X (evy0b ~)(7)) (0)
= [(ev,oa) (O)(ev,°b ) (0)],
and therefore
({7« cev)e(O))x) = I ([ (ev, ©a) (0), (ev,©b) (0)])
= [{{ev.°a)'(0)), / ((ev.©b) (0))]
= [(loev 4(0)){x), (Ioev b (0))(x)]
= [ (- (ev a(0))(x), (I (ev b (0)))(x)]
= [L(ev a(0)), L. (ev & (0))] ()
that is,
(1. oev)[a(0), b (0)] = [(l-ev)a(0), (Loev)b (0)].  ///

Coming to the exponential map, one must expect that
the possibility of defining a nice exponential map for
Schwartz-Lie groups in general will meet with serious diffi-
culties. For instance, for the group DifflM ) there exists an
exponential map whose image generates a dense subgroup of
the connected component of the identity,“® but it is well
known that, even in the case of compact M, this exponential
map, in general, cannot be subjective on any open neighbor-
hood of the identity. For our Schwartz-Lie groups,
Theorem 4.1 enables us to introduce a nice exponential map.
In fact, identifying by Theorem 4.1 the Lie algebra of Sec ¥

-with Secy A we can define

Exp: Lg, ==Seco A—Sec ¥,
o«-»Exp(0),
where

(Exp o}(x): = exp(oix))
and

exp: F>FE
is defined by

exp(v) = exp,, (v), VEF.

By local triviality the map exp is smooth and therefore Exp
= Comp,,,, is smooth.

It can be seen very easily that Exp has the familiar prop-
erties. The only not evident property is that it is a local dif-
feomorphism, but this can be established directly in the fol-
lowing way.

We know that, for every x € M, there exists an open
neighborhood ¥,,_in L;_such that on it exp, is a diffeomor-
phism with an open neighborhood U, of e, in G, . By the
local triviality it is immediately seen that the union of all the
U._ is an open neighborhood of the image of the unit section
e. Therefore

U,: = [seSec y|s~e, s(x)eU,,, VxeM }
is an open neighborhood of e in Sec ¥ and we can define
Log: U,—Sec, 4
sw»Log s: = logos,
where log is defined in an obvious way. Since Log
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= Comp,,, We obtain that Log is a smooth map and since

(ExpoLog)(s) = expclogos =5, seU,,

and similarly for LogoExp, we can conclude that Exp is a
local diffeomorphism.

V. CONCLUDING REMARKS

The group of gauge transformations has been studied by
Mitter and Viallet'® (see also Refs. 17-19 and 15) using Sobo-
lev space techniques and assuming the base space M of the
principal bundle to be compact. As we have said in the Intro-
duction, in Michor’s method Sobolev space techniques are
not expected. Though to not dispose of Hilbert space meth-
ods may at present cause some trouble (mainly in connection
with the lack of an inverse function theorem) we can hope
that in the near future hard implicit function theorems in the
setting of Schwartz spaces become available. For instance, a
workable inverse function theorem on Fréchet spaces admit-
ting smoothing operators, which applies very well to
C> (X,Y), even if only when X is compact, is now available.2°
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The structure of the local Lie groups of symmetries of some partial differential equations of the
Fokker-Planck type in one space dimension is investigated. A connection between these groups
and the group SL,(R) is established in the sense that they are all shown to be locally isomorphic to
SL,(R)4, where A is the radical. It is conjectured that the groups of Lie symmetries of all Fokker—
Planck equations in one space dimension have this structure. The notion of partial invariance, due
to Ovsiannikov, is applied to the equations studied. It appears plausible that the class of partially
invariant solutions of these equations is larger than the class of invariant solutions although no
explicit demonstration of this claim is available at present.

I. INTRODUCTION

The Fokker-Planck equation first arose in kinetic the-
ory,"* where it describes the evolution of the one-particle
distribution function of a dilute gas with long-range colli-
sions, such as a Coulomb gas. It can, for instance, be derived?
from the Boltzmann equation in the limit of large impact
parameters. Besides kinetic theory, it occurs in a variety of
areas*'° such as engineering and biology. In probabilistic
literature, it is also called the Kolmogorov forward equa-
tion,'! and describes the evolution of the transition probabil-
ity density for a diffusion process. In the case of one space
variable, to which we shall restrict ourselves here for the sake
of simplicity, it can be written in the form

Ju d%u du

a e g T .
where u is the unknown function, x and ¢ are the space and
time coordinates respectively, and a, b, and ¢ are smooth
functions of x and ¢, assumed to be given. We shall further
suppose that the processes are homogeneous, which means
thata, b, and ¢ depend only on x. While much of what will be
said here applies to Eq. (1), three special cases, studied earlier
by Bluman and Cole'? and by Nariboli,'* among others, will
be discussed in some detail: (ija=1,b=c =0,

du %

== 2

at X’ @
(i) a =Bx, b =28 — ax,c = — a (a, B constants),

du a2 a

E=5§ x“)—agx—(x”); (3)

and (iii) a =x" "%, b= (1 —4p)x ~ % /4, c=p’x ~ @+ 1D
( p a constant such that 2n=2p + 15£0),

Gu 10 (x‘ -~ _ 2px~ 2”u‘). 4)

at 4 o ox

Equation (2) describes Brownian motion without drift
and Eq. (3) was first introduced by Feller® in the study of a
problem in population genetics. Equation (4) arises in plasma
physics.®!* Equation (2) has the same structure as the well-
known heat equation, except that in that case u stands for the
temperature of a solid. From now on, we shall refer to Egs.
(2), (3), and (4) as the heat equation, the genetics equation,
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and the plasma physics equation, respectively.

Bluman and Cole'>'* used the method of Lie symme-
tries to find the invariant solutions (also called similarity
solutions) of the heat equation and Bluman'® did the same
thing for a special case of Eq. (1). Nariboli'® considered sev-
eral special cases of Eq. (1) including the genetics and plasma
physics equations and found the similarity solutions. More-
over, Bluman'!® has shown that every one-dimensional
Fokker-Plank equation with a six-dimensional group of Lie
symmetries can be transformed into the heat equation and
vice versa. In other words, all Fokker—Planck equations with
a six-dimensional Lie group of symmetries form an equiv-
alence class of which the heat equation is the “canonical”
member. In view of this result of Bluman’s, three of the five
special cases of the Fokker-Planck equation considered by
Nariboli'*—the well-known Ornstein—Uhlenbeck equation
is one of them—which turn out to have six-dimensional
groups of Lie symmetries, belong to the same equivalence
class as the heat equation. The remaining two examples—
the genetics equation and the plasma physics equation—
each have a four-dimensional group of Lie symmetries,
which have the same structure. Two natural questions arise
at this point. (1) Is there an analog of Bluman’s result for
Fokker-Planck equations in one space dimension which
have groups of Lie symmetries of dimension other than 6,
and if so, what is the “canonical” equation for each dimen-
sion? (2) What happens to equations in higher dimensions?
On the basis of our experience with several cases, it appears
very likely that the answer to the first part of the first ques-
tion is affirmative. Work is still in progress on both ques-
tions, and we shall return to them in a later publication. For
the present, we shall confine ourselves to identifying the
structure of the groups of the equations considered and mak-
ing some remarks about partially invariant solutions for
them.

The heat equation in particular and, in general, second-
order linear partial differential equations in two variables
have been considered by Ovsiannikov,!”'® who has revived
the group-theoretical study of differential equations in the
past two decades and who, specifically, introduced the no-
tion of partial invariance. However, to our knowledge,
neither Ovsiannikov nor any of the other authors mentioned
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so far has identified the structure of the groups the way we
do, i.e., give the Levi decomposition. The remarkable fact is
that in each case, the semisimple part is isomorphic to
SL,(R).

The analysis is carried out mainly, but not entirely, by
using the methods expounded by Ovsiannikov.!”!® In doing
50, we observe that the basic difference between the method
used by Ovsiannikov and that used in Refs. 12-15 (it is the
same method in all cases) is the following: Bluman, Cole, and
Nariboli consider Eq. (1) (or special cases of it) and look for
the infinitesimal generator of the group of transformations
acting on the (¢, x, u) space which are such that if (¢, x, u}—{z ',
x', #), then u' satisfies Eq. (1) in ¢’ and x’. Ovsiannikov’s
method does the same thing, except that instead of working
with Eq. (1) he would work with the equivalent first-order
system of equations

v=u, u,=av,+bv+cu. (3)

So now one looks for the group acting on the (¢, x, u, v) space
which leaves (5) invariant. Since Eq. (1) and the system (5) are
equivalent, one would expect the groups to be the same, and
indeed they are. The point, however, is that if one is interest-
ed in just the invariant solutions one need consider only the
group acting on the (¢, x, #) space, while if one is interested in
invariant as well as partially invariant solutions, one must
consider the group acting on the (2, x, u, v) space. The pres-
ence of the extra variable v, the *“superfluous” variable in
Ovsiannikov’s terminology, turns out to be essential.

Il. LIE SYMMETRIES

Since the technique of Lie symmetries is well described
in the literature,'*'"'%1% we shall skip the details of the con-
struction of the infinitesimal generators of the groups. Our
notation and terminology are those of Refs. 17 and 18 with
very slight modifications which are self-explanatory.

The infinitesimal generator of the system (5) is of the
form

a a a a

X §8t+ﬂ6x+aau +T¢9v’ ©
where £, 7, 0, and 7 are all functions of ¢, x, 4, and v, which
can be determined using the techniques described in Refs. 17
and 18. It follows from the discussion there that for a linear
system such as (5), & is a function of ¢ alone, and 7 a function
of ¢t and x only. Moreover, o= fu+g and 7=u(df/
0x) + (0g/9x) + v(f — (In/x) ), where f and g are func-
tions of ¢ and x alone such that

2
¥ de_ de_ oY ¥ _ 0
ot dt dt Ix? ox

and g satisfies the system (5). Thus the problem of finding the
full group of Lie symmetries of (5) involves finding the gen-
eral solution of (5), which is an impossible task. Like previous
authors, we simplify the problem by setting g = 0.

A. Heat equation

We get

E=a,+ayt +a,t? (8)

7 =a,+ast + (x/2) (a, + 2a,t), 9)
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o = [ag — (a,t /2) — (asx/2) — (asx*/4)]u, (10)
and
7= —(u/2)(a, + a5x)
+ vlag — (a,/4) — (3ast /2) — (asx/2) — (a:x*/ '(4;]1,)

where a,, a,, a;, a,, a;, and g, are arbitrary constants. Let &
denote the Lie algebraand G the group. A basis { X; }, 1<i<6
for ¥ can be obtained by setting g, = 1 for a fixed i and
a; = 0 for all j5i. One obtains

-9
e
X2=t£ ﬁ._a_._ii,
at 2 9x 2
a a t x\ 4
X=t2—+tx——(— —)u-——
" x 2 3)
ux 3w xzv)a
(2 Y E
a3
X,=—,
4T oax
Xs_,i_x_ui_(l ﬁ)?_,
ox 2 du 2 2)ov
and
a 7]
X6=IIE+U£.
The table of commutators is as follows:
Xl XZ X3 X4 XS X6
X 0 X, 2X,—iX, 0 X, 0
X 0 X, — X, X5 0
X3 0 ""XS 0 0
X, 0 —X, 0
X; 0 0
X4 0.

Here, X, and X, correspond to translation in ¢ and x, respec-
tively, while X, describes stretching in # and v. The center &
of & is the span of X, The radical of ¥ is «, the span of X,
X, and X, If Z denotes the quotient algebra & /.7, the
Levi decomposition of ¥ gives

Y=Bod. (12)

It can be shown that & is isomorphic to 54, (R), the algebra
of real, 2)X2 matrices of trace zero. Let Z,= — X,
Z,=2X,,and Z, = X,. Then {Z,, Z,, Z,} is a basis for %,
and

[Z,,2,] = 27,
On the other hand, if

0 0 1 o0 0 1
=i o %=l 2) w=( o
“\1 o W 0 -1 s 0 0/

then { W,, W,, W,} is a basis for s, (R) and
(W W,] =2W,, (W, W,]= — W, [W.W,]=2W,

Hence % =s¢, (R). So if A denotes the Lie group of .7,
G=SL,(R) 4, where SL,(R) is the special linear group.

[Z2,Z,] = —Z,, [2Z2,2,]=2Z,
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[Strictly speaking,'® & is a quotient algebra of the full Lie
algebra of the heat equation. Recall that we constructed ¥
by setting g = 0 if g is taken to be any solution of the system
(5), the full Lie algebra is the span of {X;}, 1<i<6, and

= g(d /du) + (dg/Ix) (8 /dv); X, corresponds to a transla-
tion in u by a solution of (2); and & is the quotient of the full
algebra by the span of X, which is an infinite-dimensional
ideal.]

B. Genetics equation
We obtain

E=a.e” +a,e”*+a, {13a)
7 = ax(a ™ — ae ), (13b)
= [a, — ala,e™ — ae ) — ([@*x/Blae *lu, (13¢c)

and
= —(@¥/Bae” “u
+ [ —2aa,e™ + 2aa,e =~
+a,— (@®x/Blae ™ * v, (14)

wherea,, a,, a;, and a, are arbitrary. Again, let & denote the
Liealgebraand G the group. A basis { X; }, 1<i<4, for & can
be obtained as before:

X, = e""i + axe“‘—i— — aue™— g — 2ae*— 9
at dx du E
X, = e“"‘é— — ozxe‘_""i + (ae“" _&x, x “"')ui
at ox B ou
2
R ~ ],
av
a
X, =—,
"
and
a J
Xyj=u—+v—
¢ du dv
The table of commutators is as follows:
I Xl XZ X3 X4
X} O —2aX, —aX, O
X, 0 aX, 0
X, 0 0
X, 0.

Here X, corresponds to translation in ¢ while X, represents
stretching in u and v. The center Z of G is the span of X,
which is also the radical of &. If % denotes the quotient
algebra & /.Z, the Levi decomposition gives ¥ =% o Z.
Again, % is isomorphic to s4(R). Let Z, =(1/a)X,,
Z,= —(2/a)X,, and Z; = — (1/a)X,. (These transforma-
tions are valid only if @ #0; but that is a reasonable assump-
tion.%) Then {Z,, Z, Z,} is a basis for #, and [Z,,
Z,)=22Z,, [Z,, Z,)= — Z,, and [Z,, Z,]=2Z,. Thus
G=SL,(R)Z, where Z is the Lie group of Z.

C. Plasma physics equation

We obtain
E=a, +ayt +ast? (15)
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= (a5t /n + a,/2n)x, (16)
0= [as + (n — Vast /n — (asx*" /n?)]u, C17)
and
= _ﬁxzn—lu +v[a4 _&__}_ (n _A%t— ax* ]’
n 2n n n?
(18)

where a,, a,, a,, and a, are arbitrary constants. As before,
one can obtain a basis {X; ], 1<i<4, for the Lie algebra ¥:

_a
e
a x d v d
-t =
2 at + 2n Ox  2n
d txd [(n—=1) xz"] a
X, =12>— [———t———-— —_
? 6t+ n ox 7 | du
[zx2n—l [(n_z) Zn]}i
2 |fav
and
a d
Xy=u—+0v—.
TG v
The table of commutators is as follows:
X X X, X,
(r—=1)
X| 0 X, 2X,+ X, O
n
X, 0 X, 0’
X; 0 0
X 0

As in the case of the genetics equation, if & is the Lie algebra
and Z the span of X,, Z is the center of & . If & denotes the
quotient algebra ¥ /%, then ¥ =% © Z . As before, # is
isomorphic to s4(R). Let Z, =X, Z,=2X, and
Z,= —X,.Then [Z,, Z,]=22Z,,[Z,, Z,] =Z,, and [Z,,
Z,] = 2Z,, as required.

Remark: As indicated earlier, the symmetry groups of
Eq. (1) and the system (5) are the same. For instance, if the
terms depending on 7 and v are ignored, our X reduces to
that of Refs. 12-15. The tables of commutators are the same
and hence the groups are the same.

Ill. CONCLUSIONS

The structure of the groups of Lie symmetries of some
Fokker—Planck equations has been studied. While the impli-
cations of the connection between Fokker—Planck equations
and the group SL,(R) have yet to be investigated, it is clear
that a Bluman-type result'® would yield a classification of
Fokker-Planck equations based on the dimension of the
group of Lie symmetries. The examples presented here, as
well as some work in progress, strongly indicate the exis-
tence of such a result. They also lead us to the conjecture that
the group of Lie symmetries of every Fokker—Planck equa-
tion in one space dimension has the structure SL,(R)A.

The examples considered here have been studied earlier
by Bluman and Cole and by Nariboli, who found the infinite-
simal generators and hence the similarity solutions. One
might ask what the advantage is in studying the same equa-
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tions by the Ovsiannikov method. The answer is that the
presence of the extra variable v—the “superfluous variable”
is Ovsiannikov’s terminology' '—enables one to look for par-
tially invariant solutions,'”'® while it is impossible to do so
without it. To see this, some notation and terminology are
needed, which will be developed here. The reader is referred
to the work of Ovsiannikov'”"'® for a detailed discussion.

Let H be a subgroup of G, the group of Lie symmetries of
the system (5); H acts on the (2, x, u, v) space. If primes denote
transformed quantities (under the action of H), a function J
of t, x, u, and v is said to be an invariant of Hif I’ = I, i.e., if
It x',u',v')=1I(t,x,u,v). Asetof functionally independent
invariants I'?, I,..., I“of H is said to be complete if every
invariant J of H can be expressed as a functionof 7%, I'%,..., 1.
A manifold in the (t, x, u, v) space is said to be invariant under
H if it is invariant under each element of H. Let Y = ({) and
U={(¥). Then U= ¢(Y), where ¢ is a vector function, is
called an invariant solution (with respect to H ) of the system
(5) if the manifold U = ¢(Y') is invariant under H. If, on the
other hand, the manifold U= ¢(Y) is contained in some
manifold invariant under H, U is called a partially invariant
solution (with respect to H) of (5). Clearly, invariant solu-
tions are partially invariant, but the converse is not always
true.

Let H be generated by the set of infinitesimal operators
(X0, X X,K}, 1<K<r, where r is the dimension of G. A
complete set of invariants of H can be found by solving the
first-order, linear partial differential equation a'X, y I=0,
where the Einstein summation convention has been used and
where a’eR (1<j<K ). Now, in general, there may be more
than one invariant manifold containing the manifold
U = ¢(Y). Consider the smallest such manifold. It can be
described!” by means of some equations, say g of them, in-
volving 7%, I%,..., I*:

VU2 I =0 (i=12,..4) (19)

Let s denote the rank of the matrix (9F°/3U"), where
1<B< 4 1<r<2, and U = (J:)= (“). Let p = £— g. Ovsian-
nikov calls p the rank of the solution U = ¢(Y'). A dimension-
ality argument shows'”'® that a necessary condition for par-
tially invariant solutions of rank p to exist is

min{/— 1l,n — m}>p>¢£—s,

where n is the dimension of the space on which H acts and m
the number of dependent variables. In our case, n = 4 and
m = 2. One other condition that must be satisfied for partial-
ly invariant solutions to exist is g < m. In Ref. 12-15,m = 1,
so that this is impossible. Before proceeding to give an exam-
ple, we observe that our computations show only that it is
plausible that the special cases of the Fokker—Planck equa-
tion considered in this paper have partially invariant solu-
tions that are not invariant. [One reason for seeking such
solutions is that in many specific problems,?° invariant solu-
tions may not have any meaning (i.e., are not admissible) in
the context of the problems; in such cases, one could try
partially invariant solutions.] Regrettably, we have so far
been unable to find an explicit case in which a solution is
partially invariant under a subgroup H but not invariant
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under H or any other subgroup of G. Nevertheless, in the
expectation that the clue to such a construction might lie in
the plausibility argument, it is presented here. It should be
observed, however, that our remark about the necessity of m
being greater than 1 for partially invariant solutions to exist
is valid, no matter whether the partial differential equation
considered is a Fokker-Planck equation or some other equa-
tion.

Since the computations are lengthy, though straightfor-
ward, we shall consider only one example in detail. This
concerns the heat equation.

Consider the subgroup generated by X, and X,. To com-
pare our work with that of Refs. 12-15, let us suppress the
terms depending on 7 or v, so that the group acts on the (¢, x,
u) space.

Then X, = 3 /3t and X, = u(d /du). Let H denote the
subgroup generated by X, and X,. Let H, denote the sub-
group generated by X, alone and H, that generated by X
alone. Let H' be the subgroup of H whose generator is
aX, + BX,, with a, BeR. A complete set of invariants for H,
isI' = x, I? = u. The solutions invariant under H, are such
that ¥(x, u) = 0, or u = f(x), where f must satisfy a differ-
ential equation obtained by substituting « in Eq. (2):

f"(x)=0.

This gives # = ax + b, where a and b are arbitrary. A com-
plete set of invariants for H, is I'' = t, I* = x; there are no
invariant solutions. Now consider H ’. Invariants can be ob-
tained by solving

(aX, +BXJ =0 (a,BeR) 21)

A completesetisI ' = x,I? = ue ~#/*_Thesolutions invar-
iant under H' are of the form u = ¢/ f(x), where

frx)—(B/a)fix)=0. (22)
Observe that if 8 =0, H' reduces to H, and the solutions
given by Eq. (22 coincide with those given by Eq. (20). Ob-
serve also that there are no invariant solutions if @ = 0, since
H'would then reduce to H,. If e £0and 8 #0, Eq. (22) leads
to the solutions

u = &#/*(ae’P’ex + be~ /), (23)

where a and b are arbitrary. Now let us come back to the (¢, x,
u, v) space. Invariants for H are obtained by solving
(@X, +BXJ) =0, ie.,
ad a J

(a o P +Bvav)1_0'
A completesetis/' = x, 12 =ue #/*, and 1% = ve ~#/*,
Solutions of two ranks are possible. Those of rank one are the
ones invariant!”!® under H:

¥(x, ue %72, pe=P/%) = Q
and
'pz(x’ue — Bl/a’ ve —Bt/a) = 0’

where ¢, and ¢, are some functions. Assuming that the im-
plicit function theorem can be applied, we get
ue P® = f(x),ie.,

u=eP"f(x).

(20)

(24)

(25)
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The solutions of rank two are those partially invariant under
H:

Yix,ue ~ 7/ pe—B/%) = 0. (26)
Apgain assuming that the implicit function theorem can be
applied, we get

u=e""flAp) (27)

where A = x and u = ve ~#/%, Ovsiannikov’s algorithm for
constructing the partially invariant solutions now consists in
deriving a differential equation for f(4,u) by using the sys-
tem of equations (5) and the compatibility conditions
U =Vy and f,, = f,. as well as the relations 4, =1,
A, =0,u, =v.e P/ andu, = (v, — Bv/a)e~P"* (Here
vis what Ovsiannikov calls a superfluous variable.) The com-
putations are straightforward but a little tedious. One ob-
tains (assuming that £, #0)
B + 2t oy — WS — UiSuS o

+ i + 12 foa + B/apfS — B/ =0, -

As observed by Bluman and Cole'? in a similar context, this
is not much of a reduction of the problem of solving Eq. (2).
Still one can, in principle, obtain solutions partially invariant
under H by solving Eq. (28) first and then using that solution,
along with the equations A = x, and z = ve ~#/%, to solve
either of the equations

v, = (eP%/f,) e ="* — £), (29)
Bt/a
v = u(—12—+§) _ (,a +§ﬁ;). (30)

u ©

Let us consider some special cases now. Let f; =0.
Then Eq. (28) reduces to

W) + B /aufu) — B /a)f*u) = 0. (31)
If we further assume that 8 = 0, we obtain a subclass of solu-
tions partially invariant under H,:

Mf ") =0, (32)

ie.,

Sflu)=ap +5b, (33)
where @ and b are arbitrary.

Equation (29) now gives v, = v/a, which leads to the
solution v = &”° g(¢ ). It can be shown that this, together with
Eq. (33), gives the three-parameter family of solutions

u(tx) = ace™*+ V< 4 b, (34)

where g, b, and ¢ are arbitrary. Observe that these solutions,
while not invariant under H, since u is a function of ¢ as well
as of x, are actually invariant under the transformations

t'=t+ky,

x'=x+ky, (35)

u = ue(k, + ak,)/a® + b (1 _ e(k, +ak1)/a’)’
where k, and k, are arbitrary. These transformations de-
scribe simultaneous translations in #, x, and # and stretching
in u. It is easy to check that they form a group. However, that
group is not a subgroup of the six-dimensional group G
found earlier unless b = 0. This is because b 70 implies a

3046 J. Math. Phys., Vol. 26, No. 12, December 1985

translation in u, which is represented by the operator
X, = g(t,x)(d /0u); and X,, together with { X; }, 1<i<6, spans
an infinite-dimensional Lie algebra. Thus, if  #£0, the solu-
tions given by Eq. (34) are partially invariant under H, but
invariant under the subgroup (of the full group) generated by
X, X4 X, and X,. If b =0, they are invariant under the
subgroup generated by X, X,, and X, which is a subgroup of
G. 1t is plausible, though difficult to show explicitly, that the
general solution of Eq. (28) would lead to solutions of the
heat equation which are not invariant under any subgroup of
the full, infinite-dimensional group of Lie symmetries of Eq.
(2).

The analysis given for the subgroup generated by X, and
X applies to some other subgroups of G as well, for instance
the subgroup generated by X, and X,. Similar things can be
done for the genetics and plasma physics equations also.

Note added in proof: The condition that f satisfies Eq.
(28) is necessary but not sufficient for Eq. (2) to have solu-
tions of the type (27). This point, which will be pursued
further in a later publication, was made by Professor
D. R. K. S. Rao, to whom we are grateful.
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The infinite coupling limit of perturbative expansions from a variational

extrapolation method
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A method for extrapolating perturbative power series to infinity is described. It is a Borel partial
resummation stabilized by a variational parameter. Two kinds of series relative to the anharmonic
oscillators |x|k , k>0, are extrapolated in order to illustrate the effectiveness of the method: the
Rayleigh-Schrodinger series, on the one hand, which, after extrapolation, provides the strong
coupling expansion of the energy levels, and their lattice expansion, on the other hand, from

which is extracted the continuum limit.

I. INTRODUCTION

The extrapolation of a physical quantity to its value at
infinite argument from the knowledge of its perturbative se-
ries at the origin is needed in various circumstances, espe-
cially in computing the continuum limit of lattice strong
coupling expansions. The problem can be generally stated as
follows.

One considers a physical quantity X (z) as a function of
some variable z, which may be, for example, a coupling con-
stant or an inverse lattice spacing. When this variable goes to
infinity, the behavior of X (z) is assumed to be of the form

Z(Z)zz‘“ZApz‘”", p>0, (1.1)

P
where the coefficients 4, are unknown: it is the aim of the
extrapolation to obtain their value in terms of the perturba-
tive expansion of = (z) at the origin

22~ 2y (=) a,z", O<n<N. (1.2)
To be precise, the leading asymptotic index e is assumed also
to be known, since it is always provided by dimensional or
scaling arguments. As for the remaining S, it may or may
not be given a priori, and in the latter case it has to be fixed by
self-consistency. In most situations these indices fall in the
ranges — 1<a<1,0< B<2.

There exists a rigorous approach to such a standard
problem, generally restricted to quantum mechanics, and
various practical solutions, such as the well-established Padé
analysis. We shall adopt here the practitioner’s point of view
and in order to enlarge the panoply of numerical tools we
present a simple method, which we have found to be particu-
larly efficient in various cases, some of which are given be-
low. As usual, the efficiency criteria are the consistency of
the full available sequence of extrapolated values (i), which
have to appear precociously (ii), and this pattern must re-
main true where other approaches fail (iii).

Our method is, roughly speaking, a Borel-like resumma-
tion stabilized by a variational parameter. It is described in

* Stagiaire de Recherche du Gouvernement Algérien.
Y Unité de Recherche associée au Centre National de la Recherche Scienti-
fique.
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Sec. I1, and applied in Secs. III and IV to two very different
extrapolations, although both concern the energy levels of
the Hamiltonian H (k ):

H(k)=p*+glx|*, k>O0. (1.3)

This has provided for a long time a canonical testing
ground.' In Sec. III, the (true) strong coupling expansion of
the levels is derived from their weak coupling expansion
(thus z==g, the coupling constant). By itself this result i$ use-
ful, since generally the extrapolants work only at finite cou-
pling, the main difficulty being to resum the Rayleigh—
Schrodinger (asymptotic) series. In Sec. IV we derive the
continuum limit of the strong coupling expansion of the
ground state. In this case the variable z is the inverse lattice
coupling and the limit we seek is given by 4 ,, p =0, in the
expansion (1.1).

All these examples are considered according to various
values of the anharmonicity parameter & in the range k£ > 0,
and some of the associated series are known to be very diffi-
cult, even “impossible,”* to extrapolate. We feel that the
present method greatly improves the situation in this parti-
cular framework and, as it is not restricted to quantum me-
chanics, our hope is that it can facilitate the analysis of var-
ious lattice expansions in field theory.

Il. CONSTRUCTION OF THE EXTRAPOLANTS

Taking into account the set of input parameters pre-
viously defined, i.e., {a,,0<n<N, a, B}, we first construct
N + 1 polynomials P, (4 ) according to

PA)=3 &l n— I+ ) ~Ya+1V/ B,
H

0<I<n<N. (21)
It will be clear in the following that A, which we treat for the
moment as a variable, is for the extrapolation a variational
parameter and as such, it will be fixed at some positive value
in terms of the input parameters. It is useful to observe that

‘Z" A)=P,_,A) P,,(0)=I"“(a;n)a,., (2.2)
711-;,1:'=/1} — —-Zir(%)r—l(i‘_;_‘), l<ri<1(\; X
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Therelation (2.3), where A 7 denotes the ith root of P, (4 ), has
a simple geometrical interpretation: the first root A | is the
common barycenter of all the n-polygons constructed with
the n roots of P, (4 ).

As a next step we consider the one-dimensional integrals
I,(z, A) involving the indices @ and B previously defined:

Iz, A)= ﬁz'r ueti=lg—Am—ul gy 50, (2.4)
0

From this definition it is obvious that

Liz=0%A4)=2T(@+1)/B)+0(Z+ 1), (2.5)

Iz, A =0)=2T (@ +1)/B)),

al,

1 BA)= — L) (2.6)

On the other hand, the change of variable v = Azu in defini-
tion (2.4) gives an equivalent representation,

Lz, A)= Bz~ °A ““"f

0
which displays the z = + o behavior of I,(z, A ) for A >0

oo

B
eI lem A gy (27)

I,(z,ﬂ.):z‘“Za)L(/{ z=27, p>0, (2.8)
with
wpA)=(—1)°PBA ~*~!=Ber Y p+ (@ +1+Bp)
(2.9)

Thus, comparing the relations (1.1) and (1.2) and (2.8)
and(2.5)showsthat % (z)and [;(z, 4 ), />0, have the same kind
of formal expansions at z= + o and z=0". Our method
of extrapolation can be interpreted as choosing these inte-
grals as a “basis” in which to expand 2 (z). The coefficients of
this expansion are fixed from the knowledge of the z=0
perturbation series Xy () and, as we shall see, turn out to be
the polynomials P, (4 ). Our nth-order extrapolant o,(z, A )
then takes the form

oz A)= ; Pz, A), O<I<n<N. (2.10)

In order to prove that o,, 2z, 4 ) and = (z) match atz = 0™, we
observe that, from relations (2.2) and (2.6),

do,

)= Pyl (a2, 211)
in such a way that
A
0ulei2) =00, 0+ [ Pulpilysrle s, 212)

for all z allowing the 4 integration (which excludesz = + o
due to the end point singularity x4 = 0}. Since, from relations
(2.2) and (2.6),

0,2, 0)= Ef‘ a,Z, 0<I<n, (2.13)
the representation (2.12) indicates that o, (z, A )and ¥ (z) have
the same expansion (1.2) at z = 0% up to order n, 0<n<N,
independently of A {4 >0). The z= + o« extrapolation is
then provided by definition (2.10), where I,(z, A ) is replaced
by its asymptotic expansion [(2.8) and (2.9)]. Identifying the
result with the form (1.1) gives the extrapolated values of 4 ,:
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AP~A ’;) P>0,

A4, = Zw},(/l WP (A) 0<IKn<A. (2.14)
We must now comment on the A dependence of the ex-
trapolants 4 ;, which follows from Eq. (2.11):

dA : n41

= =a} AP )
It indicates that for any p>0 [or any z > 0 in relation {2.11)]
theroots A { of P, (4 ) stabilize the nth-order extrapolants 4 ;.
As n increases, these roots (or their real parts) spread over a
region R, increasing in magnitude but always containing
A1, as indicated by relation (2.3). Moreover, at least in the
examples we have investigated, the variation of 4 ;{4 ), when
A describes R,,, is limited to small oscillations: this can be
interpreted as an indication of convergence towards a A-in-
dependent value, as it should. Yet at each order of the extra-
polation an optimal value 4, can be chosen inside R,,, as an
illustration of “Stevenson’s principle.”* However, taking ad-
vantage of the central position of A |, which we have already
emphasized (and as A | >0,) we make in what follows the
simple choice 4 = A }, independent of the order. This com-
pletes the definition of our sequence of extrapolants in terms
of the input parameters.

It is clear from the above derivation that we remain at
the level of formal series manipulations. Some comments
can be made, however, in order to justify our choice for the
“basis” I,(z, A ). First, these functions (with A = 1) already
appear in perturbative expansions of multidimensional func-
tional integrals.® Second, and this gives some hints about the
convergence of the extrapolation, they realize a particular
Borel resummation of X, (z), which can be seen in the follow-
ing way. The Borel transform p(u) of 2 (z) with indices (a,
B ) is defined as

(2.15)

plu) = a,u"T —1(“_;”), 30, (2.16)
in such a way that
2@=6[ ey pldy 2.17)
0

On the other hand, it can be checked from their definition
that the polynomials P, (4 ) are generated by e** p(u), i.e.,

e*plu) = Y w'P,(A) uxO. (2.18)
n>0

Thus, if A is such that the relation (2.18) extends to # >0, the

continuation it implies for p(x) can be put into the integral

(2.17), which is then at order n nothing else than o,(z, 4 )

[from definition (2.10) with 7, (z, A ) given in definition (2.4)].

Hl. FROM WEAK TO STRONG COUPLING: THE
ANHARMONIC OSCILLATOR EXAMPLE

As a typical illustration of the previous method we con-
sider the strong coupling regime (g — + oo)ofthe L th ener-
gy level E, (g), L>0, of the quantum mechanical Hamilton-
ian H, given in definition (1.3). It is known from scaling’
that they behave according to a convergent expansion of the
form (1.1), where
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TABLE 1. First-order approximant 4 } of the leading coefficient A, of the strong coupling expansion for the ground state of the Hamiltonian H, , for various

values of k. The exact results 4, are taken from Ref. 2.

k i 3 1 3 4 6 8 10
A} 0918 22 0.874 18 0.806 88 0.743 54 0.666 73 0.680 30 0.707 90 0.739 98
A, 0.922 45 0.878 94 0.808 61 0.743 88 0.667 98 0.680 70 0.704 05 0.728 48
<Ao
<0.729 60

a= —-2/2+k),
ie.,

E,_(g) =g2/(2+k) zApg_4P/(2+k), P>0-
4

Our aim is to express the coefficients 4 , p>0, in terms of (a,
B) and the perturbative expansion of E; (g)atg =0":

E (g)=Y a,g" O<p<N.
p

B= —2a, (3.1)

(3.2)

(3.3)

This approach is thus an improvement of earlier ones® un-
dertaken in the same spirit, since it seems there does not exist
a specific algorithm to generate the coefficients 4 .

We first consider the ground state Ey(g), whose Ray-
leigh-Schrédinger series (3.3) begins with

ay=14 a,=2'" k) ~'k7/2). (3.4)
This allows us to compute the root A } defined in Eq. (2.3),
AY =2 [rr(k\r ~\(k /2)[ ~'(k /4), (3.5)

which is positive, as required (but unbounded as k goes to
infinity). It is instructive to write explicitly the first-order
approximant 4 } of 4, from Eq. (2.14), i.e.,

( - l)p+ ‘(ﬂ, i )(2—4p)/(2+k)

p

1

72+ k)
xr“(p+1)r(41’—2) (3.6)
24k /)’ ’
which gives, for the first values of p (p =0, 1, 2)
Ay =(1/2r(A1)YE+0r(k /(k + 2)),
Al =[1INrk+2)] (A})~Y2+Br2/(k + 2), (3.7)

Ay =[ -1k +2)] (A1) - *+2r(6/(k +2)).
It can be verified in the soluble example of the harmonic
oscillator k = 2 that these expressions are then the exact
ones. In this case the approximants are independent of the
order n since A | turns out to be the multiple common root of
all the polynomials P, (4 ). We give in Table I some values of
the leading coefficient A } as a function of the anharmonicity
parameter k and later in Table III {first line) the values of A |
and 4 } when k<4. Since A ] is exponentially divergent as
k — + o, the agreement of the values implied by Egs. (3.7)
with the true ones, which is perfect at X = 2, must be lost
when k increases. Despite the fact that only a, and a, were
used as input, the agreement is seen to be rather good over a
large range of anharmonicity.

This feature persists for higher levels, as we show now in
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the case of the x* anharmonic oscillator, as a standard exam-
ple. The first terms of the series (3.3) in such a case are

ay=L+1}, a,=3a3+3} (3.8)

and at first order the leading behavior of E,(g) for
g — + o is found to be

E, (g)~g' (L +)**C(L),
with
C(L)=(3/a)"*r @1+ 2L + 1)72]. (3.10)

The numerical variations of C (L) with L,upto L — + o,
shown in Table II, indicate a general agreement with the
exact values within 3% at most.

We turn now to the investigation of the higher-order
corrections. From the last comment at the end of the pre-
vious section, these are expected to be small, even conver-
gent, at fixed A = A |, when the asymptotic indices (@, 8)
ensure Borel resummation of the Rayleigh-Schrédinger se-
ries. We thus compare these indices with the leading expo-
nential behavior of the coefficients a,,, when n goes to infin-
ity, which is known to be’

(3.9)

a,~(—1)y'I'(nk/2 —1)+14), L=0. (3.11)
The convergence can be expected when
1/8>k/2—1, ie k<3. (3.12)

We have not studied examples ruled out by the criteria (3.12)
but we think that a higher order can be stabilized by relaxing
the constraint A =A}, as is obviously necessary when
k — + . As the typical anharmonic oscillator x* lays in
the admissible range (3.12), we have computed the sequence
of approximants to Ay, 4,, and 4, for its ground state. These
are listed in Table III up to the order N ~ 15 and the results
obviously support our conjecture. It is also interesting from a
practical point of view to observe that high precision is
reached within the first few orders.

We thus think that the method, at least when the anhar-
monicity is not too strong, provides us with a systematic,

TABLEII. First-order approximant C (L Jofthe L thlevel of theanharmonic
oscillator H,, as given by Eq. (3.10), for various values of L. The exact values
are taken from Ref. 9.

L 0 1 2 3 4 5 +
C(L) 1.6800 13811 1.3510 1.3425 1.3389 1.3371 1.3345
Exact 1.6832 1.3940 1.3842 1.3804 1.3789 1.3781 1.3765
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TABLE II1. Numerical values at increasing order n of the extrapolants of
the three first coefficients Aq, 4,, and A, of the strong coupling expansion
(1.1) in the case of the ground state of the anharmonic oscillator H,. The
values for A, and A, are taken from Ref. 9, and from Ref. 10 for 4,.

n Al A? —10°X4]
1 0.666 730 450 0.144 323 759 0.884 194
2 0.667 449 228 0.144 012 579 0.875 615
3 0.667 883 970 0.143 749 081 0.866 275
4 0.667 962 767 0.143 689 382 0.863 736
5 0.667 986 291 0.143 668 319 0.862 702
6 0.667 987 601 0.143 669 783 0.862 628
7 0.667 987 692 0.143 666 874 0.862 621
8 0.667 986 823 0.143 667 968 0.862 695
9 0.667 986 578 0.143 668 303 0.862 718

10 0.667 986 335 0.143 668 660 0.862 746

11 0.667 986 304 0.143 668 709 0.862 750

12 0.667 986 253 0.143 668 794 0.862 758

13 0.667 986 264 0.143 668 776 0.862 756

14 0.667 986 250 0.143 668 800 0.862 758

Exact value 0.667 986 259 0.143 67 ~0.863

simple, and analytic algorithm for going from weak to strong
coupling expansions.

IV. EXTRAPOLATION OF LATTICE SERIES

As a different kind of application of our method, we
compute the continuum limit of a family of lattice strong
coupling expansions. The series we have chosen gives in that
limit the ground state Ey(g) of the Hamiltonians H, pre-
viously considered, according to

Eqlg) =g”** Velk), 4.1)

ek)=[(k+2)/2k] lim {**+23()}. (4.2)
t=+

In the relation (4.2), X (¢ ) denotes a perturbative series corre-

sponding to the expansion in the inverse coupling of the

functional integral associated to H, , within the regulariza-

tion provided by a one-dimensional lattice of spacing a. This

expansion reads

Iy(t)=3a,t", ap=1, a,= —2I3/k)[~Y1/k),

4.3)
where ¢ is a dimensionless variable
t=q @+kikg=2k je.,a—0=t~ + . (4.4)

A detailed derivation of these relations can be found in Refs.
2 and 3.

Our objective here is to compute €k ) from the knowl-
edgeof Z (1), n<N ~20,since thelimit (4.2)implies that X (¢)
behaves at = + oo according to the form (1,1) where the
index a is

a=k/k+?2) (4.5)

As a first technical difficulty, absent in the previous exam-
ple, it thus appears that the remaining index £ is unspecified.
The other difficulty is that %' (¢ ) extrapolates badly, accord-
ing to previous analyses, for some specific values of the an-
harmonicity. In fact the behavior of the input series 2y (?)
presents the following characteristics.>®

(i) For k£ < 1 the series is asymptotic:

a,~(—1)'r'n2/k~—-1) asn— + . (4.6)
It is Borel summable in the interval <k < 1 and when k <3

there is no successful extrapolation of the series (the Padé
approximants converge to a wrong answer?).

TABLE IV. Range of values found for fand ey, by applying the criteria (4.8) at order N for various choices of the anharmonicity parameter k. Here, €y is the
N th-order approximant of €{k ) defined in Eq. (4.2) for the ground state of H,.. The exact values are taken from Ref. 2.

N k B €n Exact value
5 0.34-0.41 0.857 -0.912
10 i 0.32-0.37 0.882 -0.949 0.922 45
15 0.31-0.35 0.890 -0.916
20 0.30-0.34 0.928 -0.949
5 0.47-0.51 0.846 —0.865
10 3 0.45-0.50 0.865 -0.872 0.878 94
15 0.40 - 0.47 0.863 -0.892
20 0.41-0.46 0.875 -0.886
5 0.63 - 0.68 0.795 -0.805
10 1 0.62 - 0.69 0.799 -0.809 0.808 61
15 0.55 - 0.68 0.803 -0.816
20 0.60 - 0.63 0.808 -0.811
5 1.0 - 15 0.653 -0.676
10 4 10 -15 0.663 -0.680 0.667 98
15 10 ~-1.5 0.651 -0.671
20 1.28-1.33 0.6680 — 0.6685
5 0.75-4.8 070 -0.95
10 o 0.75-2.7 078 -13 1.2337
15 09 -1.85 0.83 -0.96
20 0.95-1.65 091 -12
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(ii) For 1<k <2 the series remain asymptotic, the large
orders being unknown. Various extrapolations work.

(iii) For k> 2 the series has a finite radius of convergence.
As k increases it becomes more difficult to extract the con-
tinuum limit, especially at K = + o« (the square well).

Taking these facts into account, we want to apply our
method to some characteristic values of k, i.e., k =1,%, 1, 4,

+ . We want also to stick to our simplifying choice

A=A, which is admissible, since here

=3 (B )

(4

i.e., A} is positive ( #> 0) and bounded for all k. The results
€, we obtain in that way for €(k) at order p are thus B
dependent and this freedom has been restricted by self-con-
sistency, as we look for the minimum in £ of the function
4, (B) defined by

4,(8)=3 £r T -1 2, sup (1, n — 10)< p<n.
P €,
(4.8)

In fact we allow for 4,, ( ) a variation of one order of magni-
tude around its minimum: this gives an “admissible” range
of values for B, and the corresponding extrapolants € ,.
These results are listed in Table IV for the chosen values of k,
and they display a significant improvement over previous
approaches,”> especially as kK — 0. We emphasize that the
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harmonic oscillator case is exactly treated with the value
B =1, and that our estimate of 8 from the criteria (4.8) is
consistent with the large-order behavior given in Eq. (4.6),
which indicates that

1/ B>2/k -1,
ie, (4-9)
BB k)=k/2—k), k<1, B.()=1}

Our main conclusion is to observe that satisfactory results
are obtained with a reasonable amount of perturbative terms
(N ~10) on the whole range of values of k, in spite of the very
different kinds of behavior of the extrapolated series. This
indicates that such a method may be successfully applied to
lattice expansions in field theory.
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An algorithm for constructing a Hamiltonian from the generators of a dynamical group G, which
is invariant under the operations of a symmetry group H C G, is presented. In practice, this
algorithm is subject to a large number of simplifications. It is sufficient to construct an integrity
basis of H scalars in terms of which all H scalars can be expressed as polynomial functions. In
many instances the integrity basis exists in 1-1 correspondence with the Casimir operators for a
group-subgroup lattice based on the pair H C G. When this is so the theory embodies natural
symmetry limits and analytic results for observables can be given. Examples of the application of
the algorithm are given for the dynamical group SU(2) with symmetry subgroups C; and U(1) and

for SUN) D SO(3), N = 3, 4, and 6.

I. INTRODUCTION

The physical properties of many systems are determined
by a dynamical group G. Often G is a finite-dimensional Lie
group, whose Lie algebra G is spanned by a set of operators
X;, i = 1,2,...,n = dim(G), the infinitesimal generators of G.
The dynamical properties of the system are then defined by
specifying a Hamiltonian. The Hamiltonian is a function of
the basis vectors of G, H = H(X). This function can be ex-
pressed as a graded and symmetrized power series in the X,

HX)=4 O+ 4 (il) X, +(1/2) 4 52])Xi Xj
+(1/3!)A£3)k X, ijk + e (1.1)

The terms homogeneous of degree d in the X; may be taken
as symmetric under permutation of the operators. If they are
not symmetric, they may be written as the sum of a symmet-
ric part and an antisymmetric part. The degree of the anti-
symmetric part can be reduced by one using the commuta-
tionrelations of G, [X;, X;] = C f‘j X, . Asaresult, there are
(n +d — 1){/(n — 1)ld ! operators which are homogeneous of
degree d in the n generators X, and fully symmetric under
the action of the permutation group P,. These operators
span a linear vector space of operators, U¢(G). The direct
sum of these operator spaces is called the universal envelop-
ing algebra of G, U(G) = 25_, @ U?(G) (see Ref. 1).

If the physical system possesses a symmetry group
H C G, then the Hamiltonian must be invariant under the
action of H. This severely restricts the form of the expansion
(1.1), since the Hamiltonian must now be a sum of the H
scalars of U (G); that is, operators which transform under the
identity representation ¢ ¢(H ) of H. The determination of the
H scalars in U(G) is a classic group theory problem resolved
by a simple algorithm.

Algorithm:

(1) Determine I'*(G ), the representation of G carried by
U4(G).

{2) Determine the number of times y(H) occurs in
I'¢(G) under the restriction of G to H.

(3) The basis operators for each y*(H ) are the H scalars
in U%(G).
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If, in addition, the Hamiltonian is to display time reversal
invariance and be Hermitian, the expansion (1.1) must be
further restricted to accommodate the requirements of these
order-2 discrete operations.

If G, is a subgroup of the dynamical group G containing
the symmetry group (H C G; C G ), the invariant operators
of G, (Casimir invariants) are H scalars in U(G). If a set of
subgroups G, (including H and G ) exists with the property
that the number of H scalars of degree d is equal to the num-
ber of distinct products of degree d of the Casimir operators
of the G,, then the search for H scalars can be resolved by the
construction of a group—subgroup lattice. When this is possi-
ble, major simplifications follow since the Casimir operators
and their spectra are known for the simple Lie groups. In
particular, the existence of such group—subgroup chains pro-
duces a theory that embodies natural symmetry limits and
has analytic expressions for observables.

Il. GUIDELINES AND SIMPLIFICATIONS

The algorithm presented above is much easier to state
than to implement. However, in many cases of physical in-
terest (e.g., restriction to boson Hilbert spaces) a number of
simplifications occur, making it unnecessary to deal with the
full group theoretical machinery implicit in steps (1)—(3). For
this reason we devote this section to a number of guidelines
for using the algorithm, to the conditions under which sim-
plifications occur, and to methods available for implement-
ing the simplifications in an economical way.

(1) The representation I'?(G ) of G on U%(G) is generally
reducible. It is then useful to carry out the reduction

I(G)=3 o I'*(G) (2.1)

into a direct sum of irreducible representations I' * (G ), since
a great deal is known about the irreducible representations of
Lie groups. In particular, standard tools can be invoked to
effect the reduction of I'*(G ) to y *(H ).

(2) The X; span the adjoint representation of G. The
symmetric tensor product X; ® X; ® -+ ® X, can then be
computed, and its irreducible content deduced by applying a
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symmetric plethysm to the adjoint representation of G (see
Ref. 2).

(3) When U(G) acts in an invariant Hilbert space, which
carries an irreducible representation I"#(G ), the number of
inequivalent irreducible tensors of type (4 ) [i.e., tensors that
transform irreducibly under I'*(G)] that occur in U(G) is
equal to the number of times ( £} occurs in the decomposition
of (1) ® (u)(see Ref. 3).

(4) If two sets T 1 and T *2 of irreducible tensor opera-
tors of degrees d, and d, > d, are equivalent within each in-
variant Hilbert space, then 1, = A, and T ** can be obtained
by multiplying T *' by a function of the Casimir operators of
Gofdegreed, —d,, T > =F(C)T ™.

(5) When U (G) acts on an invariant Hilbert space which
carries an irreducible representation I'*(G'), where u is a
Young pattern of arbitrary size and row lengths (generic or
nondegenerate case), the number of inequivalent tensors of
type (4 ) that occur in U(G) is equal to the number of zero
weights that occur in the representation I'*(G) [e.g., 2, 3, 5
for the adjoint representations of SU(3), SU(4), SU(6), respec-
tively].?

(6) Under restriction of the action of U(G) from generic
to degenerate classes of representations, characterized by
having one or more Young partition row lengths equal to 0
or more than one of equal length (i.e., [k ] or [1 *], for boson
or fermion representations of SU(N ), N > 2), the inequivalent
tensor content of U(G) can be reduced in three ways: (i) some
operators may have only zero matrix elements within the
restricted class of Hilbert spaces under consideration,; (ii) in-
equivalent tensors of the same type in U(G) may become
linearly dependent on restriction to a special class of Hilbert
spaces; and (iii) functionally independent operators {e.g., the
Casimir operators) may exhibit functional dependences on
restriction to degenerate Hilbert spaces.

{7) When U(G) acts on nongeneric or degenerate repre-
sentations of type I" #(G ), the number of inequivalent irredu-
cible tensors of type (4) that occur can be determined by
using a simple algorithm.

(i) Determine the highest weight in ().

(ii) Determine the largest subgroup K C G which
leaves this highest weight invariant up to a phase factor.

(iii) Determine the number of times the identity repre-
sentation of K, ¥ 4K ), is contained in the restriction of

r')G)to K.

This number is equal to the number of inequivalent tensors
of type {4 ) which occur in U(G), and these operators are the
basis vectors on which the ¥ %K) act. This algorithm is an
implementation of remark (3), above, for degenerate repre-
sentations. For generic representations, X is equal to the
Cartan subgroup, so remark (5) is a special case of this result.

(8) As d increases, the number of G tensors in U?(G)
increases rapidly. It then becomes useful to apply the same
methods to the description of irreducible tensor operators as
have been applied to a description of irreducible representa-
tions. In the latter case, a complete set of fundamental irre-
ducible representations is introduced, with the property that
every irreducible representation can be obtained as a
“stretched” (fully symmetric) product formed from
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members of this fundamental set.> A semisimple group or
algebraofrank / hasexactly/ fundamentalirreducible repre-
sentations. Similarly, in the case of tensor operators, a com-
plete set of fundamental irreducible tensor operators is intro-
duced, with the property that every irreducible tensor
operator can be obtained as a “stretched” tensor product
formed from members of this set.® The set of fundamental
tensor operators is finite; a folk theorem says that the num-
ber of non-Casimir fundamental H-scalar tensors is twice the
number of missing labels in the reduction of representations
of the dynamical group G to the symmetry subgroup H (see
Ref. 6). The number of missing labels depends on the class of
representations of G under consideration and decreases as
the degeneracy increases. The complete set of fundamental
tensor operators is called an integrity basis for U(G).

(9) It is possible to construct generating functions for the
irreducible tensor content of U¢(G) in terms of the integrity
basis for U(G).

(10) The simplifications brought about by the introduc-
tion of generating functions in the integrity basis encounters
a minor problem; namely, not all possible products of ten-
sors in the intregity basis may be independent. The generat-
ing function must take account of this.

(11) The generating function for the irreducible G-tensor
content of U¢(G) can be transformed into a generating func-
tion for the H-scalar content in U?(G) using the known
branching rules of G| H.

(12) The generating functions and branching rules for
Lie subgroups of Lie groups generally do not incorporate the
discrete operations under which the Hamiltonian must re-
main invariant. The two most important discrete transfor-
mations for our purposes are space reflection P and time
reversal 7. Both of these discrete operations are of order two.
As a result, under each discrete operation the Lie algebra of
G splits into two parts corresponding to the positive and
negative eigenvalues ( + 1 and — 1) of these discrete trans-
formations. Only H scalars that are positive eigenvectors of
P and T can occur in the expansion (1.1).

(13) Hermitian conjunction is an operation on represen-
tations of an algebra G rather than on G itself. The Hamil-
tonian must be invariant under Hermitian conjugation.
When G is compact, the adjoint representation [see remark
(2)] of the algebra G is Hermitian. The H-scalar operators
that occur in U?(G) are then either self-adjoint or occur in
Hermitian adjoint pairs, since U?(G) is a symmetric d th-or-
der tensor product of self-adjoint operators. Each self-ad-
joint operator in U(G) introduces one real parameter while
each Hermitian adjoint pair of operators introduces one
complex parameter.

In the following four sections we illustrate the use of the
algorithm presented in Sec. I as well as the mechanisms and
procedures listed in this section, for four dynamical groups
of physical importance. These are SU(2) (point group tensor
harmonics, Morse oscillator, and isospin), SU(3) (Elliott
model), SU(4) (vibron model), and SU(6) (interacting boson
model).

iIl. DYNAMICAL GROUP SU(2)
In this section we consider SU(2) as a dynamical group
in three manifestations. In the first case the symmetry sub-
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group H is taken to be the discrete group C,. This makes
contact with previous work in ligand field theory. In the
second case the symmetry subgroup is taken to be U(1). The
SU(2) D U(1) structure is the simplest case in which Gand H
are both Lie groups. This situation is encountered, for exam-
ple, with the Morse oscillator™® and in isospin theories.” In
the third case the dynamical group G'is taken to be the direct
product group SU(2) ® SU(2) with the symmetry subgroup
H again taken to be U(1). This example serves as a prototype
for semisimple Lie groups containing a common Lie sub-

group.

A.SU(2) OC,

The Lie algebra SU(2) of the Lie group SU(2) is spanned
by the three basis operators J;, which may be taken in either
the Cartesian (i = x, y,2) or spherical (i = +,3, — ) basis.
The universal enveloping algebra U[SU(2)] has the form

FJ)=ACT+ 4", +(1/2)49) 3,3,

+(1/3)A% T I T+ (3.1)
The series coefficients 4 (), are invariant under permuta-
tion of the indices. There are 4(d + 1)(d + 2) independent
homogeneous symmetric polynomials of degree d in the gen-
erators J,. These polynomials carry a representation I'* of
SU(2), which is reducible for d> 1 [cf. Sec. II, remark (1)].
The irreducible constant of I'¥is DL, L =d,d — 2,...,1 or 0
[cf. Sec. I1, remark (2)]. For any rank L, only one inequiva-
lent tensor of rank L occurs, Y 5(J) [cf. Sec. II, remark (3)].
The terms in U? [SU(2)] homogeneous of degree d in the J,
can be written [cf. Sec. I, remark (4)] as follows:

A9 3,3, -3, =T A G YED, (32
where the sum extends over all non-negative values of N and
L such that 2V + L ='d and — LM< + L. The spherical
tensor operators Y %,(J) are obtained from the corresponding
spherical functions Y,(6,4) by the substitutions
(sin @) e***—J _ and cos 6—J,.

The spherical tensor operator Y %,(J) can be constructed
as a stretched, or symmetrized, L th-order tensor product
based on Y },(J). The integrity basis for U[SU(2)] therefore
consists of the two operators, J«J and Y !(J) [cf. Sec. II, re-
mark (8)]. The generating function for the irreducible SU(2)
tensor content of the SU(2) enveloping algebra is

1
(1—D2JJ)1—=DJ)

G [D;SU(2)] = (3.3a)

=3 m) D 33" (3.3b)

Here m'3) is the multiplicity of occurrence of the term
(J:J)¥ Y £(J)inthed th-order symmetrized tensor product of
the basis operators J; with themselves [cf. Sec. II, remark
9

The generating function (3.3) may be converted to a gen-
erating function for scalars in the symmetry subgroup as
follows [cf. Sec. II, remark (11)]. The generating function is
first expanded as a power series in D, the C; invariant opera-
tors in the expansion are retained while all other tensor oper-
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ators are projected to zero, and the expansion is then finally
resummed. The only C, scalar operators in U[SU(2)] are J-J
and Y 5,(J), with M a multiple of 3 and L> |M |. An integrity
basis for this set of operators is JoJ, ¥ ¢(J)~J5,and Y3, ;(J).
The latter operators may be replaced by J 31 . The generating
function for C, scalar operators in U[SU(2)] is thus

G(D;SU(2) D C,)

1
T (1-D¥I1—-DJ,)
1 D33 }
X 34a
[1—113.13+ 1—-D%J3 (3.4a)
=3 mi) . . DUFINIPE, V@) . (34b)

Products of the form J°, J>_ are not functionally indepen-
dent of the other members of the integrity basis. This pro-
duct can be expressed in terms of J+J and J2. The structure of
the terms within the curly brackets { } in (3.4a) ensures that
only functionally independent terms are retained in the se-
ries expansion of the generating function [cf. Sec. II, remark
(10)].

From (3.3) it follows that the Hamiltonian for a system
with dynamical group SU(2) and symmetry subgroup C; has
the form

HQJ) =3 4%, s (353 )™, (3.5)
with J_ for M > 0, J_ for M <0, and M a multiple of 3. The
Hermiticity requirement on the Hamiltonian places the fol-
lowing reality restrictions on the coefficients:
A =A% M

Point group tensor harmonics have been used to con-
struct Hamiltonians for systems with crystal and ligand field
symmetries, '’ but such constructions have not been coupled
with the use of integrity bases and generating functions.

B. SU(2) DU(1)

In this case the enveloping algebra remains unchanged.
However, the subgroup scalar operators change because the
symmetry subgroup is different. So whereas results (3.1)-
(3.3) still apply, (3.4) and (3.5) must be replaced by

1

G [D;SU(2) D U(1)] = DTN (3.6a)
=3 mig) (39" I3, (3.6b)
HJ) =Y 4§ 3IVIT7, (3.7)

with all coefficients in (3.7) real. The integrity basis for U(1)
scalars is smaller than that for C, scalars since U(1) is larger
than Cy: U(1) D C,. As aresult the generating function (3.6)
and expansion (3.7) are simpler than (3.4) and (3.5).

Quite often the Hamiltonian is computed within a single
invariant subspace of G. In such a space the values of the
dynamical group Casimir operators are fixed and can be ne-
glected. For example, in a fixed-J space the Hamiltonian for
SU(2) D U(1) systems assumes the simple form
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HQ) =3 4, Y5(Q). (3.8)
Such a Hamiltonian has been used to describe the Morse
oscillator.” Up to terms of degree 2, the Hamiltonian is

Hyore = Ao+ 4, Y5 () + 4,Y5(J)

=B, + B, J, + B,J2. (3.9)

C. SU(2) ¢ SU(2) D U(1)

The Lie algebra for this direct product group is the di-
rect sum algebra spanned by the six generators J,(a),
a=12i= +,3, —. The generators of the two SU(2) sub-
groups (@ = 1,2) commute. The symmetry subgroup U(1) is
generated by J4(1) 4+ J5(2).

The generating function for the irreducible tensor con-
tent of the SU(2) @ SU(2) enveloping algebra is

G[D;SU(2) @ SU(2)]
= {[1 — D2J(1)}J()][1 — D*J(2)-3(2]]
X[1—DJ(1)+I2N}

=3 M, D A IIOIOIN (321321

X [IWI“ 13217, (3.10)

whered = 2N, + 2N, + L, + L,. From this, the generating
function for U(1) scalars in U[SU(2) ® SU(2)] can be con-
structed. The result is

GID:SU(2) @ SU(2) D U(1)]
- 1] G.[DSUR) > U]

X=GIZ[D;SU(2) @ SU(2) D U(1)], (3.11)
where each G, [D;SU(2) DU(1)] has the form (3.6a) and
G,,[D;SU(2) @ SU(2) D U(1)]

_{ 1 D2 J_(1)J . (2) ]
1-D3J (1)N_2) 1-DA_(1J3, 21"
(3.12)

The integrity basis for U(1) scalars in the enveloping algebra
of SU(2) ® SU(2) conmsists of J(a)d(a), Ji@) (@ =1,2),
J. (1)J_(2) and J_(1)J(2), with the understanding that
cross terms involving the last two terms J_ (1)J_(2) and
J_(1)J.(2) are not functionally independent of the remain-
ing terms.

The most general Hamiltonian for a system with dyna-
mical group—symmetry subgroup structures SU(2)
® SU(2) D U(l)is

H[J(1),3(2)]
=3 4D s I [I2-32)1™

X I5(1)2352 (I (W _@)1°[I (1T, (1%, (3.13)
where either k, =0 or k; = 0. The reality conditions re-

quired by the Hermiticity of H are

@) —4@r
N Nyngniksk 3 Ny Npnynik 3ks*

(3.14)

In an effort to reduce the number of parameters in the
Hamiltonian (3.13), a unitary transformation may be ap-
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plied. The most general suitable transformation is
exp{i[@,ds(1) + #,J5(2)]}. At best this can transform two
complex parameters to real values. Since the number of com-
plex parameters in (3.13) of degree d=1,2,34,. is
0,1,2,6,..., only Hamiltonians of maximum degree 2 can be
expressed in terms of the operators J(a)J{a), J;(@), and
I (I_(2) + I _(1J(2) = 2[I(1)-J(2) — J5(1)J5(2)]. These
five operators exist in 1-1 correspondence with the invariant
operators in the following chains of dynamical subgroups:

SU,(2)®SU,(2)

TN

U (NoU,(1) SU|,o(2)

\/

TR

(3.15)

As a result, the integrity basis in (3.13) can be replaced by
invariant operators from dynamical group chains only for
Hamiltonians of maximum degree 2 and then only because
of the possibility of performing a unitary transformation.
These group chains have been used to describe the spectra of
triatomic molecules. '

Iv. 80(3) D SO(3)

In this section we consider SU(3) as the dynamical group
and SO(3) as its symmetry subgroup. This is the underlying
structure of the Elliott model.'>? It also occurs as a subalge-
bra in the vibron and interacting boson models (Secs. V and
VI, ahead). The embedding of SO(3) in SU(3) is defined by the
irreducibility of the defining three-dimensional representa-
tion of SU(3) on restriction to the subgroup. Two cases are
considered, the generic case in which U[SU(3)} acts on an
invariant Hilbert space of arbitrary symmetry type, and the
degenerate case in which only symmetric {bosonlike} Hilbert
spaces are considered.

A. Generic case

The tensor content of the enveloping algebra of SU(3) is
obtained by reducing the symmetric tensor product of the
adjoint (octet) representation, [f] = [21] =(1,1). This has
been done for low degree by using the method of S’ functions,
or plethysms.'* The number of inequivalent tensors of type
(.9), of dimensions 4( p + 1)(q + 1)( p + q + 2), that occur
in U[SU(3)] is equal to 1 + min( p,q} if p 4+ 2¢ = O{mod 3)
and zero otherwise [cf. Sec. II, remark (5)]. Thus there are
two inequivalent octets, three 27-plets (2,2), one each of the
decouplets (3,0) and (0,3), etc.

In describing tensor types, we adopt the Cartan notation
() rather than the Young partition notation [f]. In this
notation

Hi=fi—fi =2(a,-,M"]/(a,., a;). (4.1)
Here f; is the length of the ith row in the Young partition

and g, is the overhang between the ith and (i 4 1)st row.
Further, M " is the highest weight in the representation space
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[M" = f forU(N),SO(V ), USp(NV )], and thea; arethehighest
weights of the / fundamental irreducible representations of
the simple Lie group. The integer u, is the number of times
the ith fundamental irreducible representation occurs in the
stretched tensor product from which the representation with
highest weight M ” is constructed. By adopting this notation,
we bring the construction of representations and of irreduci-
ble tensorial sets into close analogy with one another [cf. Sec.
II, remark (8)}.

The generating function for the irreducible tensor con-
tent in the SU(3) enveloping algebra is®

G [D;SU(3)]
=[(1 = D?*C?(1 — D°CY)
X(1 = DU U,)(1 — D*U,U,) !
D333
1D }

1
X [ T (4.2)

= zm‘p‘;’D"U{‘ U4, (4.3)
where m},':’ is the multiplicity of occurrence of tensors of type
( p,g) in U [SU(3)]. Here C* and C? are the second and third
Casimir operators of SU(3), D U, U, represents symbolically
the adjoint representation, D?U,U, represents the octet,
which occurs in the symmetrized square of the adjoint repre-
sentation (Gell-Mann’s d coupling'®), and DU} and D U3
represent the 10 and 10, or (3,0) and (0,3), representations.
Only five of these tensor operators are functionally indepen-
dent; in particular, the cube of D U, U, is a polynomial in the
remaining operators.’

The SO(3) scalar content of U[SU(3)] can be obtained as
described in Sec. III. The generating function (4.2) is expand-
ed, the SO(3) scalar operators within each SU(3) tensor are
projected out, and the expansion is resummed. A SU(3) ten-
sor of type ( p,g) contains a SO(3) scalar exactly once if p and
g are both even, zero otherwise. The operators C2,C> are
SO(3) scalars. The representations (2,2) obtained from the
two octets each contain one SO(3) scalar

(DUU,)X (DU, U,}»D U2 U2 D J+J,
(DU, U)X (DU, U,)}»D VU2 D X,,

(D2U,U,) X (D 2U,U,}»D*U? U2 D X,. (4.4)

An additional independent SO(3) scalar can be formed from
the square of the 10 or the Tﬁ
(DU} P—D °U§
DX, (4.5)
(D*U;*—D U3
The generating function for SO(3) scalars in U[SU(3)] is'®
G [D;SU(3) D SO(3)]
=[(1—-D*C*1—D*C1 —D*J-J)] "
(1+D°X)
(1—D°%X;)(1 — D*X,)
The square of the operator X is a polynomial in the remain-
ing five members of the integrity basis.

(4.6)
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The effect of discrete transformations [cf. Sec. II, re-
mark (12)] on the Hamiltonian H [SU(3) D SO(3)] is deter-
mined by considering the effect of P and 7 on the generators
X; of SU(3). All eight generators are invariant under P,
which therefore imposes no additional constraints on the
Hamiltonian. The effect of the time reversal operator T is
nontrivial. The generators of SU(3) can be written as an
L = 1 spherical tensor (L) and an L = 2 spherical tensor (Q),
with eigenvalues ( — 1)~ under T

SUE) =L + Qs{ — L+ (+ 1)Q.

The six operators which appear in (4.6) can be expressed in
terms of these spherical tensor operators as follows'®:

C* =((L-L +2Q-Q),

C’ =L-QL-4QQQ,

JJ=LL,

X; =L-QL,

X4 = La Qab ch Lc ’

X6 = €abe de ch Qef La Lde‘
Of these, only the operator X, goes into its negative under
time reversal (TX4T ~' = — X,). Asaresult, if it appears in
the Hamiltonian it must be multiplied by an imaginary num-
ber. The remaining five operators are positive under time
reversal and so each must be multiplied by a real parameter
when appearing in a time reversal invariant Hamiltonian.

The Hermiticity requirement imposes no additional rea-

lity conditions on the coefficients 4 {¢), in the Hamiltonian.

freig
The first five SO(3) scalars in (4.8) are self-adjoint and X is
anti-Hermitian. As a result, any term in the Hamiltonian
containing the operator (X¢)"® must be multiplied by a real or
imaginary coefficient, depending on whether n, is zero or
one. No other values of n are possible by (4.6).

A generating function for the number of SO(3) scalars,

n'?), of degree d is

4.7

(4.8)

1+DS
(1-D*1—D?%%1—D¥

G(D)= =3 D4 (49

To terms of degree d = 4 a SU(3) Hamiltonian with SO(3)
symmetry contains 2 + 2 + 4 = 8 terms: J%, C% X,, C%; (J%)?,
J*C?, (C%?, X,. Acting within a single SU(3) representation,
four of these terms become redundant. The resulting four-
parameter Hamiltonian has been studied extensively over a
wide class of rotational nuclei.’”%°

Less the operator X¢ and the Casimir invariants for the
dynamical group SU(3) and the symmetry subgroup SO(3),
there are two SO(3) scalars. This is twice the number of miss-
ing labels in the reduction of SU(3) to SO(3), in agreement
with the missing label folk theorem.

B. Degenerate representations

Degenerate representations are constructed from fewer
than the full complement of fundamental representations
possessed by a semisimple Lie group of rank /. As a result,
one or more of their Cartan representation labels u; vanish.
For SU(3) the degenerate representations have labels ( p,0) or
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(0,q). They are symmetric representations based on the 3 or 3
fundamental irreducible representation.

Under reduction from generic to degenerate representa-
tions, simplifications occur in the enveloping algebra. These
simplifications are of three types [cf. Sec. II, remark (6)].*

(i) The Casimir operators are no longer independent. In
the present case C° is a function of C2.

{ii) Some tensor operators have only vanishing matrix
elements within degenerate representations. For example,
tensor operators of type (p,0) or (0,g) have only vanishing
matrix elements within degenerate representations [cf. Sec.
II, remark (3)}.

(iit) Linear dependences occur among formerly indepen-
dent operators of the same tensor type when restricted to
particular classes of degenerate representations. For exam-
ple, thetwo octets D U,U, and D U, U, become proportional
within the representation ( p,0) or (0,¢). This can be seen, for
example, by computing their expectation values within the
coherent state representation.?!

The generating function for SU(3) tensors in U[SU(3)]
acting on degenerate representations is*

G(D;UUy) =[(1-D2C})(1 —DUU,)]"".  (4.10)

From this, the generating function for SO(3) scalars is easily
derived as

G[D;SU3) O SO3)] = [(1 — D2C¥(1 — D3I, (4.11)

Within a single representation C? can be neglected. The Ha-
miltonian then becomes simply a function of the total angu-
lar momentum operator J2. Invariance under time reversal
and Hermitian conjugation requires that the Hamiltonian be
areal function of J°. The absence of additional SO(3) scalars
besides the Casimir operators of SU(3) and SO(3) is consis-
tent with the missing label folk theorem.®

The problem of replacing an integrity basis by the invar-
iant operators of a group—subgroup lattice has a clear-cut
solution when the dynamical group is SU(3) and the symme-
try group is SO(3). In this case there is only one lattice,

SuU(3)
(4.12)

S0(3)

In the generic case, this replacement is possible only for
terms up to degree d = 2. For d = 3 the group lattice pro-
vides three scalars while the integrity basis requires four. For
d = 4 the group lattice fails to provide yet another scalar
(X,). In the case of degenerate representations, the Casimir
operators of SU(3) and SO(3) coincide precisely with the in-
tegrity basis. As a result, the integrity basis can be replaced
by the group—subgroup lattice.

V. SU(4) D SO(3)

Diatomic®® and triatomic?* molecules have recently
been described in terms of the dynamical group SU(4). The
basic bond excitations that are important are assumed to
have quantum numbers J” = 1, 0*. These are created by
operators b} = (7,7 ,0%), m = + 1,0, — 1. The dynamical
group associated with each bond is generated by the bilinear
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number conserving operator products b, b,. These 16
opeators generate U(4). Removing the first-order Casimir
invariant £, b b, yields 15 generators of the simple Lie
group SU(4). This group acts in a Hilbert space, which car-
ries a completely symmetric, or boson, representation of
SU(4) with representation labels (¥,0,0).

In the event that several (covalent) bonds are present in a
molecule, the dynamical group is assumed to be a direct pro-
duct of SU(4) dynamial groups, one for each bond. That is,
G =SU,(4) & SU,(4) ® --® SU,(4), where k is the number
of bonds. The 15k generators of G are b ()b, (i)

—1[ 3, b, )b,()),,, where 1<u, v<4, and 1<i<k. The

dynamical subgroup for the ith bond, SU;(4), acts in a bo-
sonic Hilbert space, which carries a completely symmetric
representation (&;,0,0) of SU(4). The total Hilbert space is
the direct product of each of these completely symmetric
subspaces, one for each bond.

The semisimple direct product dynamical group G con-
tains a “collective” or “diagonal” subgroup SU, (4), with
generators BB, —1 [2, B B,16,,, where B} is the
collective operator B ;" = 2f_, b (i). Under restriction of
G to SU, (4}, the Hilbert space on which G acts reduces to a
direct sum over SU(4) invariant subspaces with Young parti-
tions containing N, = 2 N, boxes and no more than k or
four rows, whichever is smaller.

The transformation properties of the generators of U(4)
under the proper rotation group SO(3), the order-2 group
symmetries P (space reflection), T (time reversal), and Her-
mitian conjugation, are determined as follows. The U(4) gen-
erators are expressed as spherical tensor operators, using
vector coupling coefficients where necessary:

TE = (r+7)L) = Y (mlm'|LM) 7} #,.,

m,(m’)
S=0%5, (5.1)

P,=n*G+0*# P_=int5—o"#)

The operators 7,5 are related to ,0 by

T =(—)"r_,y, T=0. (5.2)
The operators 7, rather than , transform under D '[SO(3)].
The operators T* and § are rotational scalars, 7V and P _,
are vectors, and T® is a spherical tensor of rank 2. Since
P(mo)P~'=(—m +0), T*) and Sareeven and P, are
odd under space inversion. And because 7'(7,0)T ~! = (#,5),
T and P_ are odd under time reversal and the remaining
operators are even. All irreducible tensorial sets are Hermi-
tian in the sense they obey O%* =(— 1) O~ ,,. Notice
that the choice (5.2) for the transformation properties of the
7 operators under time reversal differs from the standard
transformation 0%, = ( — 1) ~™0*_,, for operators based
on angular momentum (odd under time reversal). This
choice was made because the 7 operators are associated with
dipole displacements, which are even under time reversal.

The effect of the order-2 discrete operations, P, T is sum-
marized in Table 1. They effect a decomposition of the Lie
algebra G into two subspaces

G=S,+S,, 5.3)
where S, is even and S, is odd under the discrete operation.
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TABLE I. Effect of discrete operations on generators of U(4).

S.:Even S,:0dd Subgroup Quotient
P—Space inversion TOTO TS P, P_ U3) e UQ1) SU(4)/U(3)
T—Time reversal TO.T%P, S TOP_ SO4) U(4)/S0(4)

For the parity operation, S, forms a subalgebra in G, while
for time reversal the odd subspace S, forms a subalgebra in
G. The reason is as follows: The group elements in U(4) are of
the form exp(iX), where X € G. Under time reversal

T [exp(iX)]T ' = exp[T(X)T ~'} = exp[ — {TXT ~Y)].
(5.4)

The operation T leaves invariant the subset of elements in G
generated by the X’s, which obey T7X7T ~! = — X. A similar
argument holds for Hermitian conjugation.

A. Diatomic molecules

For molecules with a single bond, the dynamical group
SU(4) acts only within fully symmetric representations. This
is a very degenerate class of representations. Accordingly,
the generating function for the SU(4) irreducible tensor con-
tent of U[SU(4)] is relatively simple,*

G[D:SU@) =[(1—D*CY)1 -DUU,)"'. (5.5

Here D U, U, represents the adjoint representation of SU(4)
[i.e., the generators of SU(4)] and D 2C? represents the sec-
ond-order Casimir operator of SU(4). Since this is constant
within any representation and only one representation is
considered for diatomic systems, this part of the generating
function will be ignored in the remainder of this subsection.

Next, it is necessary to determine the SO(3) content of
the SU(4) irreducible tensors in the enveloping algebra. This
can be obtained by determining the U(3) content of the SU(4)
tensors (f,, 45, 45) that occur and then determining the
SO(3) scalars (excluding pseudoscalars) in these U(3) repre-
sentations. As the U(3) subalgebra (79, T, T?)is even un-
der space inversion, each U(3) irreducible representation in
(41 p2s p15) Of SU(4) carries a good parity label. We are inter-
ested in the SO(3) scalars in positive parity representations of
SU(3).

The adjoint representation (1,0,1) of SU(4) carries one
0% representation of SO(3), with basis operator n,

= (r*#)®. The representation (2,0,2) of SU4) [ie.,

(DU,U,)] contains five positive parity representations of
U(3). Four of these contain SO(3) scalars. Two of these sca-
lars are self-adjoint and there is one Hermitian adjoint pair.
The two self-adjoint representations of SU(3) are (0,0) and
(2,2); they contain SO(3) scalars (n,)*> and
[(7*#) P+ #)?]©. The Hermitian adjoint pair (2,0) and
(0,2) contain the SO(3) scalars [(7*&)7*5)]® and
[le™* 7)o ).

More generally, when N = 2K or 2K + 1 the represen-
tation (V,0,V) of SU(4) contains K + 1 positive parity self-
adjoint SO(3) scalars and K (K + 1)/2 pairs of Hermitian ad-
joint operators. The generating function for SO(3) scalars in
U[SU@4)] is
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G[D;SU(4) D SO(3)]
=((1 = Dn,){1 = D?[(r* &) D7) @]O})~!

1
X[ 1 —D[(r*5)x*5)]@
D 2[(0.+1~7'.)(a.+ﬁ,)](0) ]

+ 1 __DZ[(0.+17.)(0.+7'7',)](0)

(5.6)

The integrity basis for SO(3) scalars in the SU(4) enveloping
algebra consists of the four operators n,,, [(7+ #) @7+ 7)@]©,
[(m* ) 5))°, and [0+ 7)o+ #)]°.

The operators n,, and [(7+ #)P(r+#)?)? are invariant
under the three discrete operations: P, T, and 1 (Hermitian
conjugation). The remaining two operators are even under P.
The effect of time reversal and Hermitian conjugation is

T {al(a*o)x* ) + Bllo* o+ #]} T~

= a*(7*5)m* 6] + B *[(o* 7)o T )], (5-7a)
{ellr*o)m*a)] +Bllo* Flo*]°}!
=B*(*5)75)]? + a*[(e* Ao )] (5.TH)

The effect of these two operations is to impose additional

reality restrictions on the coefficients that appear in an ex-

pansion of the form (1.1). In particular, the coefficients of

[(m*&)7r*a)]® and [(c* F)(o™ #7)]” must be real and equal.

This condition causes modification of the generating func-

tion (5.6):

G[D;SU4)DSO3)ea P2 T2 1]

= ((1 = Dn,){1 — D*{(mr™* &P m* #)¥]O))
X(1 = D2{[(x*5)m* &) + [lo* ot MO}~

(5.8)

The integrity basis contains one first-degree operator and

two second-degree operators. To second order, the Hamil-

tonian is a linear combination of the four operators T,

[TH) T O with L = 0and 2, and [P, P ] with real coeffi-

cients.

These three operators may be replaced by Casimir oper-
ators for the group lattice

- M)\
v (3’\ SO(@) . (59
SO (3)
The generators for the subgroups are
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U(3) T(O) T(l) T(2)
SO(4): T® P, .
SO(3): Tw
The generators for SO(4) are chosen as 7" and P, rather
than 7" and P_ (which generate the time-reversed subgroup
SO-(4), see Table I) in order to yield wave functions that are
real. The operator n_. is the first-order Casimir operator for
U(3). Only two of the three operators [(7+ 7)) (7 #)L)]©,
L =0,1,2, are independent within fully symmetric represen-
tations. This is a consequence of the existence of only K + 1
independent self-adjoint operators of degree d = 2K. The
operator n, = C'[U(3)}(L = 0—n2) is already included as
an element in an integrity basis of Casimir operators. We
may choose either of the other two operators (L = 1,2) as an
additional member of the integrity basis. The operator with
L = 11is the second-order Casimir operator of the rotational
subgroup SO(3) with generators (7*7#)),. Finally, we may
make the identification
C?[SO(4)] — C*[SO(3)]
=P P,
= [(m*a)r*3)]? + (e 7o 7)1 + 2n,n, + 4.
(5.10)
The generating function for even parity, time reversal invar-
iant, Hermitian SO(3) scalars in the SU(4) enveloping alge-
bra, in terms of the integrity basis of Casimir operators, is
therefore
G[D;SU4)OSO3)e P T o 1]
= (1 — D*C*[SU4)))~!
X {1 = DC'[U3)])(1 — D>C*[SO(4)])
X({1 — D*C*[SO(3)]}} ~* (5.11)
Thus, in the case of fully symmetric representations of SU(4),

the Casimir operators for a group lattice are sufficient to
construct all rotational scalars of any order.

B. Triatomic molecules

For molecules with two bonds, the dynamical group is
SU,(4) ® SU,(4). The SU,, (4), a = 1,2, act in Hilbert spaces
H, and H,, which carry fully symmetric representations
{N1,0,0) and (N,,0,0) respectively. The direct product Hilbert
space is reducible with respect to the diagonal subgroup
SUp (4). The irreducible content of this Hilbert space con-

sists of representations with Young partitions
[i=N+N,—K, f,=K f,=0, K=01.2,.,
min(N,,Vy).

The irreducible tensor content in U[SU,(4) ® SU,(4)]is
constructed from the generating function for the SU,, (4) ir-
reducible tensor content in U[SU (4)] acting on the degen-
erate representations in the class [ £}, /5,0]. This generating
function is*

G[D;SU(4)]
={(1 —D*CY(1 — D3*C%(1 — DU,U,)(1 — D2U,U,) !
% 1 [ 1 D3, U ]
(1—-D2U%) (1 = D3V3U,) (1—D3U,U2)
(5.12)
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Two of these factors (underlined) occur in the generating
function introduced in (5.5). The SO(3) scalars, which are
derived from those two terms have a structure which has
already been determined. The remaining terms in (5.12) give
rise to SO(3) scalars not previously considered.

For concreteness, suppose one of the SO(3) scalars
of degree d =2 constructed in Sec. VA above for
SU(4} D SO(3) has the structure B; X, X;. Then a set of sca-
lars for SU,(4) ® SU,(4) D SO(3)is
B [X:(1) + X (2)] [X(1) + X;(2)]

= B;;X,(1)X;(1) + B, X,(2)X,(2) + Bij{xi(l)’xj(zz}'

5.13)
The first two terms are the SO(3) scalars constructed for each
bond separately. The third term, in which the bracket { , }
indicates symmetrization with respect to the bond indices, is
new and represents a rotationally invariant bond~bond in-
teraction. This construction is perhaps most familiar for the
SU(2) case, where for J =j;, +j, one has that J* = j?
+ 35 + 2§z

In general, it is possible to construct operators invariant
under the subgroup H C G by constructing Casimir covar-
iant operators of the direct product group G, ® G, (G,,G,
isomorphic to G ). This construction proceeds as follows. If
C2=B, ; X;X; is a Casimir invariant for G, one can con-
struct the Casimir covariant operator C%
= B,;{X,(1),X;(2)} for G, ® G,. This operator is not an in-
variant of G, or G, separately, but is an invariant for the
direct product group. The construction of Casimir covar-
iants extends easily to higher-order Casimir operators and
larger numbers of isomorphic subgroups.

The interbond interactions of degree d = 2, which are
constructed from the SO(3) scalars arising from the under-
lined terms in (5.12), can be written down immediately from
the operators in (5.8) using the result (5.13):

(i U
(@) 7))
{m o)(m6),} + (" Dl 7))}

The additional SO(3) scalars, which cannot be constructed
from the operators in (5.6), are obtained from the remaining
terms of the generating function (5.12). The additional SO(3)
scalars of degree d = 2 are

D 2U1U3—’ { (ﬂ'+ﬁ-)(ll ),(77'+ ’7~7')(21) } (0)»

(5.14a)

(5.14b)
DU {(m*a),lot 7)) ? and  {(0*7)y,(m*6),} .
The discrete operations of time reversal and Hermitian con-
jugation impose constraints on the coefficients of the two
terms arising from D ?U3. The independent SO(3) scalars
involving both the #’s and ¢’s (5.14a) and (5.14b) may be
conveniently rewritten in terms of the P . operators of (5.1).
The five interbond interactions of degree d = 2 are then

(TE, TEN©, with L =0,1,2,
{P,(1), P2}, o= +,—. (5.14¢)

The total number of terms of degree up to 2 in the Ha-
miltonian with dynamical and symmetry groups
SU4) ® SU(4) D SO(3) is 13. Each bond contributes one
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linear and three quadratic terms, while the bond-bond inter-
action introduces five additional terms. These operators do
not form an integrity basis of SO(3) scalars in
U[SU(4) ® SU(4)] since new tensors occur for degree 3 (e.g.,
D3C?, D3U%U,, and D *U,U3).

SUl (4) ®SU_2 (4)

|

U (3)8U,(3)

Up (3 SO, (3)®50,(3)

It is possible to replace the SO(3) scalars in
SU(4) ® SU(4) up to degree 2 by the Casimir operators be-
longing to a group—subgroup lattice. A number of lattices are
possible. We present one lattice which is particularly well
matched to the SO(3) scalar operators given in (5.14}):

T

S0, (4)

S05(4)

(5.15)
S0 p4)

SOD(3)

In this group—subgroup lattice there are three types of sub-
group restrictions:

G, eG,DOH, 9 H, (5.16a)
G 9 G, DG,, (5.16b)
G, D H,. (5.16c)

Here G, is a Lie algebra of operators for bond i, H; is a
subalgebra, and (H, )G, is a diagonal (sub)algebra whose
basis vectors are direct sum operators of the form
X;(D) = X;(1) + X,(2), where X,(a) is a boson number-con-
serving operator for bond a.

The group to subgroup restrictions of the form (5.16a)
generate SO(3) scalars for each bond separately. The opera-
tors so generated have the form (5.8) or with the identifica-
tion 1 « 2, (5.14a). The group to diagonal-subgroup restric-
tions of the form (5.16b) generate SO(3) scalars describing
bond-bond interactions. For example, the difference
between the second-order Casimir operator of U, (3) and
those of U,(3) and U,(3) is a sum of cross terms given in
{5.14c):

C[Up(3)] — {C*[U,(3)] + C*[U,(3)1}
= X {T¢, 1810

L=0,1,2

(5.17)

[Note that with i/ all three of the operators {T'"), T'{*)}®
are independent while if / = j only two are. This can be seen
by expressing these operators as linear combinations of the
operators {(m* m;*)“),(7, 7,)*'} using Racah recoupling
techniques and noting that the operator with L = 1 vanishes
by symmetry if i =j.] And finally, the diagonal group to
diagonal subgroup restrictions of the form (5.14c) are useful
for expressing the bond-bond scalar interactions as linear
combinations of Casimir operators:
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-
C*[SO,(#)] — C*[SO,(3)]

- z (€[50, (4)] — C*[$0,(3)] ]

= {P,(1), PL(2)},
C*[SU,(4)] — C*[U,(3)]

- 3 (OIS0, 4] - C{U01])

=4 (P (1), PL(2}O+ 3 {P_(1), P_(2)}®.  (5.18)

Additional chains in the group~subgroup lattice (5.15)
are possible whenever a mapping M of the Lie algebra G into
itself exists whose square is the identity (involutive automor-
phism).?* The Lie algebra G then splits into eigenspaces of M
with eigenvalues + 1 and — 1,

MGM !

G=KoP —» KOP,

(5.18a)

(5.19)

restriction (5.16a) can be replaced by an alternative restric-
tion

G oG =K, eP)o (K,oP)
—G% =K, o K,) o (P,OP,). (5.20)

This means that if the X;(c) are even and the Y,(a) are odd
under M (a = 1,2), the generators X}(D ) and YD ) are

XHD)=X;(1)+ X,(2), YMD)=Y;(1)-Y,;(2.  (5.21)

Each of the four group-subgroup reductions contained in
(5.9) obeys this automorphism property. The operators ob-
tained by including group-subgroup chains formed in this
way are not independent of those occurring in the chains
already present in (5.15).

For symmetric triatomic molecules (e.g., CO,) it might
be expected that the quantum numbers ¥, and N, describing
the two bonds are equal. (In fact, spectral data have been
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fitted with N,~2N,.%?) In the case that N, = N,, one of the
representations that occurs in SU,(4) D SU,{4) © SU,(4)is
of the degenerate type ( #, = 0, £, = N,0). Within this repre-
sentation the generating function for SU(4) tensor operators
reduces to*

G[D;SU,(4) e SU,(4)]

= [(1 = D*CY1 — D’C)1 — DU U1 — D2R)] .
(5.22)

In this class of degenerate representations, the tensor opera-
tor D U, U, is proportional to D U,Us,. As a result, the three
SO(3) scalars {(7*#)L), (7+7)5'} become linearly depen-
dent, and the number of independent parameters in the Ha-
miltonian (to second degree) is reduced by 1.

C. Polyatomic molecules (Poly > 3)

Molecules with three interatomic bonds must have four
or more atoms, or must have three atoms in a cyclic configu-
ration. The dynamical group for the vibron model of such
molecules is SU,(4) ® SU,4) ® - SU,(4). In the reduc-
tion to the diagonal group SU,, (4), generic representations,
(415 2y p25) with the gz, all nonzero, will typically occur. The
generating function for the tensor content of U[SU(4)] on
such representations is known.® Although it is fairly compli-
cated, terms of degree less than 3 that occur in this generat-
ing function are identical to those that occur in the generat-
ing function for the degenerate class of representations
(2415 $42,0). Therefore, the Hamiltonian describing a poly-
atomic system has the same structure as the Hamiltonian
describing a two-bond triatomic system to second degree. It
may be constructed as follows.

(1) Include terms of the form shown in (5.8) for each
bond, i = 1,2,...,k.

{2) For each atom sharing bonds i and j, include terms in
the Hamiltonian of the form (5.14) with the substitution
(1,25, ).

In going from the generic representation ( g, t,, i5) to
the degenerate representations (g, £,,0), (1,0, i21),
(O, i1, i5), no simplifications occur through second degree.
The simplification that occurs for the slightly more degener-
ate representation (0, u,,0) has been described at the end of
Sec. V B. The most degenerate representations ( 4,,0,0) and
(0,0, u5) have the same degenerate enveloping algebra, de-
scribed in Sec. V A.

VL. SU(6) O SO(3)

Nuclei exhibiting low-lying collective excited states
have been described in terms of the dynamical group SU(6)
(see Refs. 26-30). The basic excitations of importance are
assumed to have quantum numbers J” = 07,2*. These are
created by operators b =6%dy),
m= +2,+ 1,0, — 1, — 2. The dynamical group is generat-
ed by the bilinear number conserving operators b, b,.
These operators generate U(6). Removing the first-order Ca-
simir invariant 3, b} b, =s%s +d *d = N, where N has
the interpretation of half the number of valence nucleons (or
nucleon holes), yields thirty-five generators of the simple Lie
group SU(6). This group acts in a Hilbert space that carries a
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completely symmetric, or boson, representation (N,0) of
SuU(6).

In the event that a distinction is to be made between
protons and neutrons, collective operators b ./ (i), i = m,v,
are introduced.?®*=3° From these operators, 72 number con-
serving, charge conserving operators can be constructed,
b ()b, (i). Removal of the invariants 5.7 s, +d }d, =N,
and s;fs, +d ) d, =N, leads to the direct product dyna-
mical group'SU,.(6) ® SU,, (6). This group acts on the direct
product of two symmetric Hilbert spaces, (N,,,()) ® (N,,0).
Under restriction to the diagonal subgroup SU,(6)
C SU,,(6) @ SU,(6), this Hilbert space reduces to a direct
sum of Hilbert spaces characterized by Young partitions
(N, + N, — KK, 0),K=0,1,..,min(N,.,N,).

In both cases the symmetry subgroup is SO(3). For the
model in which proton-neutron equivalence is assumed
(IBM-1), only the most degenerate class of representations,
[¥,0] = (N,0), occurs. For the model in which protons and
neutrons are considered to be distinguishable (IBM-2), the
next most degenerate representations of the type [ f], /5,0]
must also be considered.

It is convenient to express the generators of SU(6) as
spherical tensor operators as follows:

TE =(d+d)L = S em2am|LM)d}d,,
m,(m’)

(6.1)
D,=d*5+s*d, D_=id*5—s%d).

An additional SO(3) scalar, § = s*s, is included among the
generators of U(6). Here

d,={(—)"d_,, (6.2)
where ~ denotes the time reversal operation. All these ten-
sor operators are Hermitian in the sense that OL*
=(— 1M O~ ,,. The 15 operators T**) (L = 1,3), D_ are
negative under time reversal. The latter generate a subgroup
SO (6) of SU(6).

§=s,

A.1BM-1

The generating function for the SU(6) tensor content of
U[SU(6)] acting within the most degenerate class of repre-
sentation (NV,0) is>!

G[D;SU(6)] = [(1 — D*C?)(1 — DU,U,) . (6.3)

Here D U,U; represents the 35-dimensional adjoint repre-
sentation of SU(6) and D *C?is its second-order Casimir oper-
ator. Since the Hilbert space for a nucleus is taken to be a
single SU(6) invariant subspace, the Casimir operator may be
dropped from the generating function.

Next, it is necessary to determine the SO(3) content of
each SU(6) irreducible tensor operator in the enveloping al-
gebra. The only SU(6) tensors that occur are (K,0°,K), of
degree K. The adjoint representation (K = 1) contains one
SO(3) scalar, n, = (d *d)®, the d-boson number operator.
The next representation (K = 2) contains seven SO(3) sca-
lars, of which three are self-adjoint and there are two Hermi-
tian adjoint pairs. These operators, together with their
group-subgroup parentage, are summarized in Table II.
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TABLE II. SO(3) scalars in the SU(6) enveloping algebra, up to second degree, and the classification of their group theoretical parentage. Representation

labels are given in terms of Young partitions.

SU(6) SU(s) SO(5) Form
[219 [0 (00) (d*d)®
(429 [0) (00) S [@*dy-d+ay-1®
[42%] (00) Li_negr combinations of forms:
(22) [d*d)t'd+d)-'1?, L =0,..4
[2] (00) [@*5d +521@
[24] ((X)) [S+ a )(2)( 5+ a )(2)](0)
[3 13] (30) [( d+d +)(2)($)(2)](0)
[323] (30) [(S+ d+ )(2)(32 )(2)](0)

The number of missing labels in the reduction of sym-
metric representations of SU(6) to the subgroup SO(3) is 3.
The missing label folk theorem suggests that there should
therefore be six SO(3) scalars in the SU(6) D SO(3) integrity
basis for symmetric representations, in addition to the sec-
ond-order Casimir operators of SU(6) and SO(3). Seven inde-
pendent SO(3) scalars are listed in Table II. Note that
[(d* d)Od +d ) = [(d * d ). The operator C(SU(6)]
is not listed. Also, only three of the five operators
[(d* d)E) d*d )X 1 (L =0,1,2,3,4) are independent. The
operator with L = 1 is the Casimir operator of SO(3). As a
result, the folk theorem is valid in this case.

The fact that only three of the five operators
[(d*d)Ed* d)*']® are independent can be seen in two
ways. Standard tables show that the representations [0] and
[423] of U(5) contain one and two SO(3) scalars, respectively.
Alternatively, these five operators may be obtained from the
ordered operators[(d * d *)*)(d d )* ] using Racahrecou-
pling techniques. Two of these ordered operators vanish by
the symmetry of the 3j symbols.

The generating function for SO(3) scalars of arbitrary
degree in the enveloping algebra of SU(6) is

G [D;SU(6) D SO(3)]

= FD)FQ(DF\D\FP(D)FP(D), (6.4)
F8)= [1 _D(d+ 3)(0)]—1’
FP={1-D?[(d*d)\"d*d)"]?

}'7(12) = {1 Dz[(d +3)‘2’(d +§)(2>]<o)} -1
DZ[(S+3 )(2)(d + a)(Z)](o)
2[ (e + 7\ 4+ 7\2)700)° (6‘5)
D [(S d)( )(d d)( )]()
F(22) = { 1— Dz[(d +§)(2)(d +§)(2)](0)} -1
Dz[(s+a)(2)(s+a)(2)](o)
1— DZ[(s+a )(2)(S+¢~1)(2)](0) :
]
U(S): T(O) T(l) T(2) T(3)

SO(6): 7 T®

SO(5): o TO

SU(3): T

SO(3): Tw

Two different SO(6) subgroups may be chosen, with generators
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To second order the Hamiltonian with dynamical
group-symmetry subgroup structure SU(6) D SO(3) is

H=en,+ 3 AP[@*3)fa+d) =]

L=024
+ a[(d +§)(2)(d +§)(2)](0) + ar[(s+a )(2)(s+ a )(2)](0)

+8 [( d +§)(2)(d +§)(2)](0) +B '[(S+ a )(2)(S+ a )(2)] (0)_
(6.6)
Invariance under time reversal requires all parameters to be
real. Invariance under Hermitian conjugation requires, in
addition, thata = a’, 8 = B'. As aresult, there are six inde-
pendent real parameters in (6.6) corresponding to the linear
SO(3) scalar n, = T and five quadratic SO(3) scalars
[T(L)T(L’](O), L =024, [T(z)D+](O)’ and [D+D+](°).

The linear operator T'® and the four quadratic operators
[TET"]9 with L = 2,4, [T®D,]°, and [D_.D_]® pro-
vide an integrity basis for Hermitian, time reversal invariant
SO(3) scalars in fully symmetric representations [V,0] of
SU(6). These operators can be related to the Casimir opera-
tors for the group lattice

Su(6)
U (5) so (6) SU(3). (6.7)
S 0(5)
S0O(3)
The generators for the subgroups are
T(4)
D,
D, +xT®with y* =3
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SO(6):
SO{6):

T(l)’ T(S)’ D+,
T(l)’ T(3)’ D_.

(6.8)

All generators of SO,(6) are negative under time reversal. The subgroup SO(6) is chosen as a matter of convenience. The
quadrupole operator D, is able to generate states from the vacuum [(s*}* |0)] with respect to which all Hamiltonian matrix
elements are real. Relationships between Casimir operators of the groups in (6.7) are

C'[U(5)] = T = n,,

CUs)] - CIsos) = Y

L=02,4
C’[80(6)] — C*[SO(5)] = [D..D,]?,
C*[SO(5)] — C*[SO@3)} = [TT]°,

[T(L) T(L)](O),

(6.9)

C’[SUQ)] — C*[SOB3)] = (D, +xT?)D, +xTV)°, withy*=3%,

CZ[SO(3)] — [T“)T(”](O).

B. IBM-2

When a distinction is to be made between protons and
neutrons, the dynamical group is SU,(6) ® SU,(6) (see
Refs. 28-30). These groups act in Hilbert spaces H, and H,,,
which carry fully symmetric representations (¥,,0) of
SU,.(6) and (N,,0) of SU, (6). The direct product Hilbert
space H, ® H, is reducible with respect to the diagonal
subgroup SU,(6). The irreducible content of this Hilbert
space consists of representations with Young partitions
[fi=N,+N,—K,f,=K,0,K=0,1,2,..., min(N,, N,).

_J

G [D;SU(6) D SO(3)]
= [(1 = D2C}1 —D3*C*1 — D U,U;)(1 — D?U,U,|(1
D3, U?
(1—D3U,U2 ] '

1
ot
(1—D°Uy U,)

Once again, the Casimir operators are now explicitly includ-
ed in the generating function because several irreducible re-
presentations occur in the reduction of H,, ® H,.To second
order, two new tensor operators besides C? occur, D 2U, U,
and D ?U,U,. The operators C, D U, Us, and D *U,U, each
contribute one self-adjoint SO(3) scalar.

The degree-2 SO(3) scalars describing the proton—neu-
tron interaction, which are derived from the term
(1 — DU,Uy) !, and whose structure can be inferred from
the scalars in (6.8), are

(TE, TENO, with L =0,24,
(6.11a)

(r?,0,.,1% {(D,,, D}
In these expressions the brackets { , |} mean that the opera-
tors within should be symmetrized with respect to the inter-
change of proton—neutron indices.

The three additional self-adjoint operators of degree
d =2, which are derived from the additional terms
(1-D%*C»)~ (1 —D?*U,Us)" Y, and (1 — D2U,U,)" ", are
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In addition to the SO(3) scalars, which can be construct-
ed from the generators of SU,,(6) alone or of SU,,(6) alone
(Table II), there are scalars which are “cross terms.” These
describe specifically the proton-neutron interaction, and
first occur for d = 2. Many of these operators can be con-
structed from the second-degree operators given (6.8). The
structure of all SO(3) scalars can be determined by construct-
ing the generating function for the SU, (6) tensor content in
U[SU(6)] acting on degenerate representations in the class
( @4 142,0), and then constructing the SO(3) scalar generating
function. The tensor generating function is

-D?u,u,)] !

(6.10)

{d*d)-,d+d)P}® withL =13,
(6.11b)

d;d)od; d,)® or equivalently {D_,,D_ }©.

The total number of terms up to degree d = 2 in the
Hamiltonian with dynamical and symmetry groups SU_,(6)
X SU,,(6) D SO(3) is 20. Of these, six describe the protons
alone and six the neutrons. The proton-neutron interaction
is described by eight terms. Five of these are obtained direct-
ly from the scalar operators in SU(6) D SO(3) as Casimir
covariants using the construction of (5.13). The remaining
three terms, given in (6.11b), are sometimes called Majorana
terms.

It is possible to replace the SO(3) scalars in SU_(6)
X SU.,, (6) up to degree 2 by the Casimir operators belonging
to a suitably chosen group lattice. As in the case SU(4)
® SU(4) D SO(3), this group lattice can be chosen to reflect
the construction of the proton-neutron interaction terms
from those of the simpler model with proton—-neutron equiv-
alence [cf. (5.15)]:
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SU_(6) @SU_ (6)

- \ ~ -
- N \\\
— N -
— \\
u_(s) @Uv ) SU,(6)  SO.(6) @ SO (6)

N RS

SO (5 OSOU(S) SO _(6)

O

\L><//

SOD(5)

\i

800(3)

Once again, this lattice provides a clear separation of the
SO(3) scalars describing protons alone or neutrons alone
from those describing the proton—neutron interaction. The
former are derived as Casimir operators of direct product
groups with the latter obtained from diagonal subgroups. To
guide the eye, in (6.12) heavy solid lines are used to indicate
diagonal group to diagonal subgroup connections, broken
lines for direct product group to direct product subgroup
connections, and regular solid lines to indicate the direct
product to diagonal subgroup connections. This lattice does
not describe an integrity basis for terms of degree d3.

Many additional groups can be placed in the group lat-
tice with SU,.(6) ® SU,, (6) as the dynamical group and SO(3)
as the symmetry subgroup. First, “off-diagonal cross-pro-
duct terms” such as U, (5) X SO, (6) can occur. Second, D *
subgroups can occur by the process described in (5.20). And
finally, subgroups can be constructed by combining two
groups, G; and G/, in an out of phase way. For example, the
quadrupole tensor for the Lie algebra SU(3) for the proton
and neutron subgroups of the dynamical groups are

Q,=[d*5+s*d+yld*d)?],, withyl=%,
(6.13)
Q, =[d*5+std+yld*d)?],, withy2=2.

When the two factors y, and y, are chosen with the same
sign the standard diagonal subgroup SU(3) results. When
they are chosen with the opposite sign the subgroup called
SU*(3) results. In this group—subgroup reduction the repre-
sentations of SU_ (3) are combined with the conjugate repre-
sentations of SU,,(3) and then reduced.

Vii. SUMMARY AND CONCLUSIONS

An algorithm has been presented for constructing a Ha-
miltonian from the generators of a dynamical group G,
which is invariant under the operations of a symmetry sub-
group H C G. Such an algorithm is necessary to determine
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I\;vhen the H scalars on which the Hamiltonian depends can
be replaced by the Casimir operators for the members in a
group—subgroup lattice.

In principle, the algorithm is simple; it is certainly
straightforward to state: The terms homogeneous of degree
d in the universal enveloping algebra of the Lie algebra of
G, U“(G), carry a representation of G, which in general is
reducible. Under reduction to the subgroup H C G the
number of times the identity representation, ¥ “(H ), occurs in
U“(G) can be determined. The basis vector operators for
these identity representations are the H scalars in U“(G)
from which the Hamiltonian can be constructed.

As the implementation of this algorithm is usually
somewhat less than straightforward, and since there are sim-
plifications that reduce the complexity of the results in many
cases of physical interest, a number of guidelines for using
and simplifying the algorithm have been presented. The ma-
jor part of these simplifications are effected by introducing
generating functions for the irreducible tensor content of
U“(G). For several cases of physical interest these functions
have been constructed explicitly. Furthermore, it is shown
how these functions can be used in turn to construct generat-
ing functions for the H scalars in U 4(G).

Generating functions are generally available only for
connected Lie subgroups of Lie groups. The effects of dis-
crete operations (such as space inversion, time reversal, and
Hermitian conjugation), which must also leave the Hamil-
tonian invariant, must be studied separately. These symme-
tries impose additional reality constraints on the parameters
which appear in the Hamiltonian. Thus, they may reduce the
number of H scalars which can appear in the integrity basis
for the H scalars in the universal enveloping algebra of the
dynamical group G from which Hamiltonians can be con-
structed.

The use of this algorithm was illustrated first for the
dynamical group SU(2). In the case that H C SU(2) is finite,
the algorithm leads to the construction of the point group
tensor harmonics as linear combinations of the spherical ten-
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sor operators. These have been used in the field of solid state
physics to describe ligand and crystal fields.

The algorithm was then used to construct the integrity
basis for SU(3) D SO(3), SU(4) D SO(3), and SU(6) D SO(3).
In addition, another algorithm was presented for construct-
ing the integrity basis for direct product dynamical groups.
The problem of replacing the integrity basis by the Casimir
operators belonging to a group—subgroup lattice was also
considered for the three cases SU(N) O SO(3), ¥ = 3,4, and
6.

Compact simple Lie groups have been used to illustrate
the algorithm stated in Sec. I. However, the algorithm can be
applied to noncompact and nonsemisimple groups as well:
The universal enveloping algebra, U(G}, is structurally the
same whether the group is simple, semisimple, nonsemisim-
ple, compact, or noncompact.>? Each subspace U¢(G)is fin-
ite dimensional if the algebra is finite dimensional. Its reduc-
tion into G-invariant tensor operators proceeds without
change. When G is noncompact, the irreducible representa-
tions so obtained are finite-dimensional but nonunitary. The
H scalars in these finite-dimensional representations can be
obtained as before. The only change brought about by the
use of a noncompact dynamical group G is in the reality
restrictions on the complex parameters, which appear in the
Hamiltonian H, brought about by the requirement that H be
Hermitian. If G’ is a noncompact dynamical group obtained
by analytic continuation of the compact group G, then
straightforward analytic continuation of the computation of
the integrity basis of G D H can be used to construct the
integrity basis for G’ O H. This remark extends to the
group—subgroup lattice as well.

It would be useful to have a criterion for determining
completeness of an integrity basis. The generating function
for the G tensor content of U(G), and the extension of this
generating function to one for the H scalars in U(G) suffices.
However, construction of the latter from the former may be
difficult. A more easily and directly applicable criterion,
such as the missing label folk theorem, would be useful. This
result holds for a number of the applications considered, and
fails to hold for several applications also considered above.
Something like it should be true, but we cannot recommend
it as a test for completeness of an integrity basis.

The dependences, which occur among inequivalent sets
of tensor operators with identical transformation properties
on restriction from one class of representations to a more
degenerate class of representations, can be studied using as a
tool the coherent states associated with the dynamical group
G. The close relation between coherent states and indepen-
dent tensor operators can be seen as follows. Generalized
coherent states are defined by specifying (i) a Lie group G, (ii)
a Hilbert space in which G acts (in this case, a class of repre-
sentations), and (iii) an extremal state within this class of
representations. An immediate output of the coherent state
construction procedure is a stability subgroup (in this case,
K ). The structures used in the construction of coherent states
are exactly those used in determining the number of inequi-
valent tensors of a given type that act within a class of repre-
sentations [cf. Sec. II, remark (6)]. The expectation value of
these operators with respect to the coherent states provides a
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system of functions in which linear dependences show up
clearly on restriction to a more degenerate class of represen-
ations.

In this work we have not investigated the problem of
constructing the most general group—sub group lattice based
on the dynamical group-symmetry subgroup pair G D H.
This is the counterpart of the problem of determining the
integrity basis for the same pair of groups. The objective of
such a study would be the development of an algorithm for
constructing a “universal enveloping” group—subgroup lat-
tice, which could be compared with the integrity basis and
from which a minimal complete group—subgroup lattice
could be isolated and put in 1-1 correspondence with the
elements in the integrity basis.

Note added in proof: The concept of integrity basis de-
veloped in the context of invariant theory was studied exten-
sively in the past century by Molien, Grace, Young, and
others. See Wey!** for extensive references. The use of integ-
rity bases in physical applications is implicit in the work of
many authors. Explicit use of the integrity basis appears in
the work of Judd,** Smith and Wybourne,>*> Wybourne,*®
Killingbeck,*” and McClellan.® We are indebted to Profes-
sor Wybourne for providing this brief outline of the use of
the integrity basis concept in physical applications.
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The Green’s function for a finite linear chain
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A new expression for the Green’s function of a finite-length one-dimensional harmonic lattice
with nearest-neighbor interactions is reported. Simple closed expressions in terms of Chebyshev
polynomials are developed for periodic, fixed, and free end boundary conditions.

I. THE GENERAL GREEN’S FUNCTION

The finite-length one-dimensional single-component
harmonic lattice with nearest-neighbor interactions is a well-
studied standard model whose natural frequencies and nor-
mal modes are well known for a variety of boundary condi-
tions.'

However, the real space representation of the Green’s
function for this model has only been developed as a deter-
minantal expression for periodic boundary conditions. We
shall show here that the Green’s function for this model can
readily be derived as a simple closed expression in terms of
Chebyshev polynomials for a wide range of different bound-
ary conditions.

The equations of motion for the ¥ atom lattice may be
written in dimensionless units as

2zu(n) —u(n + 1) —u(n — 1) =0, (1)

where u(n) is the displacement of the nth particle from its
equilibrium position, #n lies in the range 1<n<N, and
z =1 — »? where w is the dimensionless frequency.

This model is usually constrained by one of four sets of
boundary conditions expressed as constraints on (0} and
u(N+1): (i) periodic boundary conditions, where
u(N + n)=u(n); (i) both ends clamped, so that
u(0) = u(N + 1) = 0; (iii) both ends free, so that #(0) = (1)
and u(N)= u(N + 1); and (iv) one end free and the other
clamped, for example #(0) = u(1) and u{N¥N + 1) =0.

The Green’s function? for the model is the solution to
the inhomogeneous equation

zG(n,m)— 1Gn—1,m)— 1 G(n+1,m) =6, ,, (2)

for all N>n, m>0. When n3#m, we note that the difference
equation (2) is the recurrence relation for Chebyshev polyno-
mials,? and that consequently the solution to Eq. (2) must be
a sum of Chebyshev polynomials. As the solution must also
obey the time-reversal requirement that G (n, m) = G (m, n),
the polynomials with the appropriate symmetry to be includ-
edare T, ,,(2), Ty (2 Uy —1(2)and U, , ,,_(2).
Direct substitution into Eq. (2) reveals that
— U|y_ m—1(2) is a particular solution to the equation,
while the other three polynomials are solutions to the related
homogeneous equation (1). Hence the Green’s function may
be written in general form as

Gmm)=A@RT,_,(2)+ BT, .2
+CAU, i@ = Uppom —1(Z), ()
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where 4 (z), B (z), and C (z) are determined by the boundary
conditions.

Il. APPLYING THE BOUNDARY CONDITIONS

The solutions under the four sets of boundary condi-
tions may now be found as follows.

{§) Periodic boundary conditions: The Green’s function
depends only on the relative position n —m so that
B(z) = C(z) =0, and 4 (z) is the site diagonal Green’s func-
tion, G(n,n). For an infinite chain it is known that
G(n, n) = (2 — 1)~ Y250 that

G(”’m)=Tn—m(z)/VE _l—'Uln——ml——l(z)' (4)
For a finite lattice, periodic boundary conditions can be writ-
ten as G(N, 0) = G (0, 0) so that

A(2)=Uy_,(&)/[Tnlz) —1]. (3)
The Green’s function for N particles subject to periodic
boundary conditions is then

G(n,m=Gyln—m)
_ Ton@Uy )
Tyiz)—1
(ii) Both ends clamped: The boundary conditions are

G (0, m) = G (N + 1, m) = 0, regardless of the value of m >0.
The first of these conditions is

G(0,m)=0=(4(z)+ B{2)T,(2) +(Clz) - )U,,_,(2).

The only solution valid for all m is when B (z) = — A4 (z) and
C(z) = 1. Then

GIN+1L,m=0=AE)Ty,\_mlE)— Ty,
+ Uniml2) = Uy_ (2
= { —24(2)2 — )Uyl2)
+ Ty 1@ U, (),

Uln—m|—1(z}' (6)

so that
Ty, (@) _ Uni1(2)
@ —1)Unlz2) Toyy,—1

Hence the Green’s function for the N atom chain with
clamped ends is

Alz)=

Usn1(2)
Tonial2)—1
- U|n—m|—1(z)+ Uiim_1(2)
=Gy 2 —m) — Gy 20+ m), (7)
where Gy (m) was defined in Eq. (6).

Gn,m)=(T,_,@)—T,, )
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(iii) Both ends free: The boundary conditions when both
ends are free are designed to ensure that the force on each
end of the chain is zero. This is ensured by setting
G (0, m)=G (1, m)and G (N + 1, m) = G (N, m). The first of
these conditions can be written as

G0,m)—G(l,m)=0=A4E)T, &) — T, )

+ B@(Tnl2) — T, 11 2))

+ CENUn_1(2) — U, (2))

—(Up_ 16— U, )
Using the identities for Chebyshev polynomials,’
Tnl2) = 2T 11 (2) — (2 — YU, (2) and Up_1(2)
=2zU,,(z) — T,, ., 1 (2), we find that the solution, valid for all
m,isB (z) = 1 + z4 (2)and C (z) = (1 — 2%)4 (z) — z.Substitut-
ing these into Eq. (3), we find the Green’s function to be

Gin,m)=A)NT,_nl)+ T, )}

_U|n—m|—l(z)_Un+m—l(z)' (8)

The value of 4 (2} is then found from the boundary
condition at the other end of the chain. Here
G(N + 1, m) =G (N, m), so that

0=A@)[Ty_nl@+Tyym-10)
—Tyi1-mld) = Tnyml@)}
—Uy_m_1@)— Uy_m_2l2)
+ Uy ml@)+ Unsm-1(2)
= {24 (2)(2 — DUy _,(2) — 2Ty (2)}
X{Up_28) = U, _1(2)}
so that
Ty(z) — Usw_1(2)
@ —N)Uy_yl2) Tonld)—1

A=

and

3069 J. Math. Phys., Vol. 26, No. 12, December 1985

Ginym)=2=1 AT )
Tonle) — 1

- U[n—ml—l(z) - Uu+m—2(z)
= G,n(n —m)+ Gy(n +m —1). 9

(iv) One end clamped, the other free: The Green’s func-
tion that obeys the free boundary condition
G (0, m) = G (1, m)is givenby Eq. (8). The clamped boundary
condition on the far end, G(N + 1, m) = 0, determines the
value of 4 (z) through

GIN+1,m=0=A@){Txy_ml)+ Tn,nE)

—Uy_m(@) = Uy m—1(2)
so that
Afz)= UZN(Z)/[T2N+ 1(2)+ 1]»
and the Green’s function is
G(n,m)= [UZN(Z)/T2N+I(Z) + 1] { T,_.02

+Tn+m—](z)} - Uln—ml—l(z)

- n+m—2(z)' (10)

Consequently, we have found that the Green’s function

for a finite-length one-component one-dimensional lattice

with nearest-neighbor spring constants may be expressed in

simple closed form in terms of Chebyshev polynomials, the

exact form being determined by the applicable boundary
conditions.

!See, for example, Mathematical Methods in One Dimension, edited by E. H.
Lieb and D. C. Mattis (Academic, New York, 1966).

2E. N. Economu, Green’s Functions in Quantum Physics (Springer, New
York, 1979).

3See Chap. 22 in Handbook of Mathematical Functions, edited by M.
Abramowitz and I. A. Stegun (Natl. Bur. Stand., Washington, D. C,,
1968).
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The integrability of a two-dimensional Hamiltonian in which the potential depends explicitly on
the momenta is investigated. Hamiltonians of this kind are encountered in the description of the
motion of a particle in a magnetic field. Two integrable classes of potentials are identified and the
second integral of motion is constructed for each of them. The singularity analysis of the
equations of motion is also performed, confirming once more the relation between the (weak)

Painlevé property and integrability.

I. INTRODUCTION

The purpose of this article is to study two-dimensional
Hamiltonian systems corresponding to the motion of a parti-
cle in a plane under the influence of a scalar potential and a
transverse magnetic field. The Hamiltonian is postulated to
have the form

H=}(p: +p))+4xyp, +Blxyp, + Wixy)  (1.1)
where A, B, and W are, at this stage, arbitrary functions of
the coordinates x and y, and p, and p, are the momenta
canonically conjugate to x and y. We are interested in estab-
lishing the conditions on the scalar and vector potentials W
and A = (4,B), under which the system becomes integrable,
i.e., a second integral of motion exists.

The problem of finding integrable dynamical systems of
physical interest is a difficult one. Research in this direction
has been actively pursued during the last few years for a
variety of reasons. These include the good physical proper-
ties of integrable systems, namely the regular behavior of
trajectories and the related predictability of the behavior of
the system over long periods of time. In particular, integra-
ble systems with well-behaved integrals of motion will not
exhibit chaotic behavior. A knowledge of these sytems, on
the other hand, helps in the study of “neighboring” noninte-
grable systems, e.g., in the investigation of the onset of chaos.

Even for Hamiltonian systems not too many results are
known. The Toda and Calogero systems'~ are among the
rare examples of integrable N-particle systems on a line with
pair interactions.

For a two-dimensional Hamiltonian system the prob-
lem should, in principle, be a simpler one. In order to ensure
integrability, all that is needed is for a second constant of
motion, independent of the Hamiltonian, to exist. Even in
this case few general results are known, but the combined use
of different techniques has made it possible to identify quite a
few two-dimensional integrable systems of interest, and in
some cases whole classes of such systems.

A straightforward method, due to Bertrand,* involves a
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direct search for additional integrals of motion, making the
assumption that these constants are polynomials in the ve-
locities (or momenta). The coefficients of the polynomial are
functions of the coordinates and are obtained by solving cer-
tain, in general nonlinear, partial differential equations. This
direct method is most powerful in the simpler cases, when
the additional integrals of motion are first- or second-order
polynomials in the momenta. It has been generalized to the
case of quantum mechanical integrable systems,>® and ap-
plied to the case of two- and three-dimensional nonrelativis-
tic one-particle Hamiltonian systems with velocity-indepen-
dent forces.>™ In this case the existence of second-order
integer polynomial integrals of motion has been related to
the separation of variables in the corresponding Hamilton—
Jacobi or Schrodinger equation.

The drawbacks of the direct method are quite obvious.
It cannot be applied to find nonpolynomial integrals of mo-
tion, which are known to exist and to be of interest.® More-
over, even in the polynomial case, the method becomes ex-
tremely cumbersome for polynomials of order higher than 2
in the momenta. More significantly, there is no guarantee
that we will be able to solve the differential equations in-
volved in the reconstruction of the coefficients in the polyno-
mial.

Other methods are hence needed to identify integrable
systems or at least to pinpoint candidates for integrability. A
powerful tool for this purpose is the Painlevé criterion,’
based on the study of the singularity structure of the solu-
tions in the complex time plane. According to this criterion,
a system is a candidate for integrability, if it does not allow
any moving critical points, i.e., if the only singularities (in an
arbitrary solution) that depend on the initial conditions are
poles. The application of the Painlevé criterion has led to the
identification of several two-dimensional integrable Hamil-
tonian systems.

As mentioned above, Hamiltonian systems of the type

H=1(p2+p})+ Vixy), (1.2)
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with a second integral of motion that is quadratic in the
momenta, have been completely classified.>” The integral of
motion in this case has been shown to be the sum of a second-
order element in the enveloping algebra of the Lie algebra of
motions of the plane ¢(2) [or its complexification e(2,C) if
complex Hamiltonians are considered] and a function 4 (x,y),
related to the potential ¥ (x,y). A classification of quadratic
integrals of motion then amounts to a classification of such
second-order elements in the enveloping algebra into orbits
under the action of the corresponding Euclidean Lie group
E(2) [or E{(2,C)]). In the real case four types of such orbits
exist, corresponding to potentials allowing the separation of
variables in the Hamilton—Jacobi (or Schrodinger) equation
in Cartesian, parabolic, polar, and elliptic coordinates, re-
spectively. In the complex case, three more orbits, and corre-
spondingly, three more integrable types of potentials exist.>’

Some partial results also exist'®"* for integrals of mo-
tion of the order 3,4, or 6. Here group theory is somewhat
less helpful, since only the highest-order terms in the polyno-
mial lie in the enveloping algebra of e(2).

An interesting and different approach has been adopted
by Hall.'> He generalizes the concept of integrability by al-
lowing the second integral of motion to depend explicitly on
the energy E. Such an integral will have different values on
each energy surface, may have different properties on differ-
ent subsets of energy surfaces, and may indeed only exist on
certain subsets. Such “configurational invariants,” in Hall’s
terminology, are of considerable interest in both classical
and quantum mechanics. Indeed, in quantum mechanics
they could be used to analyze accidental degeneracy of cer-
tain energy levels, rather than of the entire energy spectrum.
We shall not go into this interesting question in the present
article.

In this paper we concentrate on the Hamiltonian (1.1)
and restrict ourselves to systems that allow integrals of mo-
tion that are first- or second-order polynomials in the veloc-
ities (or momenta). Indeed, the integral of motion will be
written as

C=gX* +8,xp + &P +kox +k,p+h, (1.3)

where g;, k;, and 4 are functions of the coordinates x and y
only. By assumption, they are thus independent of time ¢ and
energy E.

In Sec. II we first analyze the linear case, i.e.,
8o =&, = &, = 0in(1.3). As usual, such an invariant leads to
potentials with purely geometric symmetries. The quadratic
case (at least one of the g;’s nonvanishing) is more interest-
ing. As in the case of velocity-independent potentials (1.2),
we are led to consider several cases, corresponding to differ-
ent types of separable coordinate sytems. A major complica-
tion arises in the present case: the linear terms k,(x,y) and
k,(x,p) are present and cannot, as opposed to the case of ve-
locity-independent potentials, be set equal to zero as a conse-
quence of time reversal invariance. The g; terms of (1.3) will
again lie in the enveloping algebra of e(2), not, however, the
linear terms.

In Sec. III we obtain the most general Hamiltonian (1.1)
allowing a “Cartesian” type integral of motion. The motion
of a particle in several special cases of such Hamiltonian
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systems is investigated in Sec. IV: we present some bounded
trajectories and special Poincaré sections. Section V deals
with the Painlevé analysis of the general system found in Sec.
III: the potentials and the integral of motion in general in-
volve Weierstrass elliptic functions and hence have interest-
ing periodicity properties. Some conclusions are presented in
Sec. VI. The Appendix deals with a “degenerate” case of the
Cartesian type of integral of motion, occurring only for com-
plex Hamiltonians and reflecting the existence of isotropic
(zero-length) momenta in the complex case.

Il. FORMULATION OF THE PROBLEM

The equations of motion for the system with Hamilton-
ian (1.1) are

x=§£=px +A’

Ip
. OH
V=, TR

” (2.1)
JH

= ——-—=-W_—A4 — .
x Ix x *xPx xpy
. JH
py, = _E= - Wy _Aypx —Bypy’

or, after eliminating the momenta,
X= —W,+A44, + BB, +y4, —B,),

2.2)
y= —W,+44, + BB, — x(4, — B,).
Putting
N=A,—B, V=W-—44*+ B3, {2.3)
we simplify the equations of motion to
f= _ ¥ )
X  + 2y, 2.4

and the Hamiltonian to
H= 4+ ) + V(xp). (2.5)
Once £2 and V are determined we can use the definitions

(2.3) to reconstruct the scalar potential W and the vector
A = (A4,B), up to a gauge transformation

(-5,

where ¢ (x,y) is an arbitrary function.

We will consider the Hamiltonian system in the form
(2.4) and (2.5) and investigate the conditions under which the
system admits a second integral of motion C, independent of
the Hamiltonian and linear or quadratic in the velocities.

(2.6)

A. Linear integral of motion

Let us first consider the linear case, i.e.,

C =folxy)k + filx oyl + h (x,p), (2.7)
where again f; and / are independent of time and energy.
Following Bertrand’s method we impose dC /dt = 0, use the

equations of motion (2.4), and equate the coefficients of each
term in x and y to zero. We obtain

Jox =0, fi,=0, fo, +fix=0, (2.8)
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—fi2+h, =0, f2+h, =0, fo¥,+fiV,=0.

(2.9)
Thus
o=y +B, fi= —ax+vy. (2.10)
The compatibility condition 4,, = A, for (2.9) gives
folds +£:2, =0,
For a = 0 we find
V= V y .{2 - .{) y h = h ,
) ) ) .11)

E=yx—PBy, h)=0()
For a#0 an adequate translation in x and y permits the
choice 8 = ¥ = 0 so that, putting @ = 1, we have

We see that a linear integral of motion (2.7) exists if and only
if both ¥ and £ are invariant either under translations in
some direction, or under rotations about some point (which
we have translated to the origin).

Hall'? has studied the less restrictive case of a linear
constant depending explicitly on a fixed value of the energy.
In that context he found extended families of solutions.

(2.12)

B. Quadratic integral of motion

Let us now consider a quadratic constant of motion Cin
the form (1.3). The condition dC /dt = 0 directly implies

g0x=0’ g2y=0’ g0y+glx=0’ gly+g2x=0’

(2.13)
so that
go=ay' —fy+35,
&= —2axy+Px—yy+& (2.14)

g2=ax2+7x+§’
and the constant C reduces to
C =alxy — yx)* + (xp — pX)(Bx + yp) + 6x*
+ &7 + Exp + kolxp)x + ky(x )l + h (x,p).
(2.15)

It was shown in Ref. 12 that a weaker requirement,
namely, that C be a configurational invariant that may de-
pend on the energy E, implies that F = }(g, — £5) + (i/2)g,
should be an analytic function of z = x + iy. It is a simple
matter to verify that (2.15) satisfies this requirement. Since e,
B, v, 8, &, and £ are constants, the quadratic part of C can be
interpreted as a second-order element in the enveloping alge-
bra of the Lie algebra e{2), with a basis consisting of two
translations x and y and the rotation (xp — yx). Performing a
Euclidean transformation of the x,y plane (in general a com-
plex one) including reflections of x and y, and if necessary
taking linear combinations of C and H, we can reduce C to
one of the following seven cases™’: (1) the Cartesian case,
a=B=y=0,§/6—-()#e,e=+1,

C,=3*+kox + ky+ h; (2.16)
(2) the degenerate Cartesian case, a=8=y=0,
§/6-C8)=¢,
3072 J. Math. Phys., Vol. 26, No. 12, December 1985

Co=x(x + )+ kox + ky + I (2.17)
(3) the parabolic case, @ =0, 82 + 9 # 0,

Cs = x(xy — yx) + koX + kyy + b; (2.18)
(4) the degenerate parabolic case, a =0, ¥ = €if # 0,

Co=R+ ey —yx) + kX +ky+ k. (2.19)
In the case @ # 0, define

Br B:-y
A==t ¢ A= -6, 2.20
1=, 6 A yyamhs ¢ (2.20)
o=(12a)A? +12)'/2, 2.21)

We then have (5) the spherical case, a # 0,4, =4, =0,
Cs=p—yxf —kox + ky y + h; (2.22)

(6) the elliptic case, @ # 0, (A1, 4,) # (0,0), 4, # +id,,
Cs=(xp —yif’ + olx®> — j*) + ko + by y + b (2.23)

(o is the focal distance); and (7) the degenerate elliptic case,

a#0,A,=+il, #0,
Co=xp—pxfP+E+pF+kox+kiy+h (2.24)

In addition to (2.13) the condition dC /dt = 0 implies the

following system of differential equations:
kox —81£2=0, ki +£ 2=0,
2802 —28, 2 + ko, + k. =0,
—28V, —&V,—k, 2+ h, =0,
— 81V —28V, +k 2+ h, =0,
koV, +k,V, =0,

with g; asin (2.14).

In general these equations are not easy to solve. The
polynomials g; should be chosen in one of the “standard”
forms implied by the expressions C,, ... , C; above and each
case must be considered separately. In this article we restrict
ourselves to the Cartesian and degenerate Cartesian cases,
i.e, we put @ =B = y in (2.14), so that g, g,, and g, in the
integral of motion (1.3) are constants.

(2.25)

lil. THE CARTESIAN CASE
A. Derivation of basic equations
Consider the case a =8=y=0,£/(6 —¢)# +iin

Eqs. (2.14). Performing an appropriate rotation and linear
combination with H, we reduce C to the form C, of (2.16):

C=43*+kox+k,y+h. (3.1)

Equations (2.25), following from the condition dC /dt =0,
reduce to

2+ ko + ki, =0, ko, =0, ki =0, (3.2)
kon+hy=0’ _k1‘0+hx_Vx=09 (3.3)
koV. + k\V, =0. (3.4)

The case of a purely scalar potential, considered
earlier’” corresponds to k, = k, = 0,2 =0, ¥V (x,y) = V,(x)
+ V,(y). From now on we assume that at least one of the
quantities &, or k, is not identically zero.

Equations {3.2) can be immediately solved and imply

k0= _gy(y)’ k1= —f:t(x)’ ‘Q=fxx(‘x)+gyy(y)'
(3.5)
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The compatibility condition A,, = k,, for the two equations
(3.3)is

Vo + k82, + ko2, =0,
which can be integrated to yield

Vixw) =f(x18,, () + 8( ) fax (x) + ulx) + (1),  (3.6)
where u(x), f(x), v( ), and g{ y) are functions of one variable as
indicated. Equation (3.4) reduces to
8y [8fcxx + 18y +us] +1i[fB)y + 8, frx +0,] =0.

(3.7)
Defining

Fix)=u+f%/2, G(y)=v+g/2, (3.8)
and performing some simple manipulations, we transform
(3.7) to the form

G F

2 4 X +gfm +f£?"_v:v_=0. (3.9
g8 f £ 8

Taking the mixed derivative d 2/dx dy of (3.9) and separating

variables we find
1 d fox

(3.10)

Integrating (3.10) we obtain the following equations for the
functions f(x) and g( y):

fa=af*+Bf+7,

gyy= —agz+6g+§’

(3.11)

where a, 5, ¥, 8, and § are constants.

Returning to Eqgs. (3.3) and (3.4) and their consequences,
we can express the potentials and all other relevant quanti-
ties in terms of the functions f(x) and g( y):

Q=alf’—g)+ B + 88 +7+¢,

V=2 1P —EE% P+ tr+ k- £ e 1)
ko= —g, ki=—/fo (3.12)

h=—(@3)g+2* =3 +Bllg—r)
+16@ ) +vig—2)+ g —«f.

All the Greek letters represent arbitrary constants. The
functions f and g introduced in (3.5) are defined up to an
arbitrary additive constant.

The problem of constructing the integrable Hamilton-
ian H, the constant C and the field £2 has thus been reduced
to solving Eqgs. (3.11). Let us now examine these equations.

B. Analysis and solution of basic equations

(la) a=B=56=0, y{ = O: In this case f and g are sec-
ond-order polynomials and we can, after a possible transla-
tion, put

V=1{4x*+By), 02=10,
where A4, B, and (2, are constants.
This case describes a harmonic oscillator in a homogen-

eous magnetic field and the equations of motion can be
solved explicitly. {See Sec. IV.)

(3.13)
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(1b) a=B=6=0, {=0 y 7 0 (or y=0, { 3~ 0): In this
case we have

V=14x+By, 2=0,

(4, B, and 2, are constants).
(2a) a=0, B6 = 0: Adding constants to fand g we can
eliminate the constant terms in (3.11) to obtain

S =B 8, =08 (3.15)
Depending on the signs of 8 and § we find that fand g are
either trigonometric or hyperbolic functions.

(2b) a=0, =0, B~ 0 (or 6 £ 0, B=0): We find that f
is a trigonometric or hyperbolic function and g a quadratic
polynomial (or vice versa).

(3) a % 0: Adding appropriate constants to f and g we
reduce (3.11) to

(3.14)

fa=af*+V, 8,= —ag’+§. (3.16)
Putting
f=23ey/aF ((€,ay/3)"*x), (3.17)
g= — 2/ =365 /aF(( — ea /3)'%),
where €, = + 1 and F(z) satisfies
F'=6F%+¢/2, €= +1, (3.18)

we express both f(x) and g{ y) in terms of the Weierstrass
elliptic function

Fiz)=Plz—k; €h), (3.19)
where k and A are arbitrary constants. The function P (z; g,,
gs) is, in general, a doubly periodic function of the complex
variable z, analytic in z except for an infinite number of sec-
ond-order poles (e.g., at z = 0). In the limit when one or both
of the periods becomes infinite, the Weierstrass elliptic func-
tion is expressed in terms of elementary functions (trigono-
metric, hyperbolic, or inverse powers). Notice that, e.g., for
¥ =0, ¢ =0, in (3.16) a particular solution is

flx)=6/ax? g(y)= — 6/ay*. (3.20)
Many other special cases can be extracted from Eq. (3.11).

IV.EXAMPLES OF TRAJECTORIES AND POINCARE
SECTIONS

In this section we shall study numerically some exam-
ples of Hamiltonian systems of the type (2.4) and (2.5), both
integrable and nonintegrable ones.

Let us first consider the integrable case (3.13), i.e.,
a=8=6=0 in Egs. (3.11). Thus, we have
V = }(Ax* + By?), 22 = const, and the equations of motion
can be integrated analytically. Equations (2.4) in this case
lead to a fourth-order differential equation for x and y sepa-
rately and, e.g., for x we obtain

x4+ A4+ B+02%% +ABx=0. (4.1)
The solutions of the characteristic equation are
P={—(4+B+02?
+¢[(4+B+ 2% —44B1%/2,
=+1 j=1.2 (4.2)
Assuming that all four roots + r,, + r, are different, we
obtain
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|
0.6
0.4

0.2

FIG. 1. A periodic trajectory for the potential ¥ = (x* + y%)/2 and constant magnetic field 2 = 3. The period is T = 4.

0.8+
0.6
0.44

0.2 1

-0.4

FIG. 2. A nonperiodic bounded trajectory for the integrable Hamiltonian with ¥ = x*/2 + y*/4 and £2 = 3. The frequencies in this case are not comeasurable.

3074 J. Math. Phys., Vol. 26, No. 12, December 1985 Dorizzi et al. 3074



x(t)=ae™ + be " +ce +de” ",
yt)=(1/0rr)[rdd + ri)ae™ — be™™) (4.3)
+ryd + R Y™ —de=™)],

where a,...,d are arbitrary constants. We see that the motion
is bounded (and quasiperiodic, i.e., restricted to a torus in
phase space) if r, and r, are pure imaginary. This happens if

(A+B+2%>44B>0 and A+B+022>0. (4.4)

The trajectories are actually periodic in configuration space
if »,/r, is a rational number.

In Fig. 1 we present a trajectory for the case4d =B =1,
{2 = 3. Conditions (4.4) are satisfied and we have r, = 2i,
r, = i/2, so the trajectories are periodic with period T = 4.
An integrable bounded, but nonperiodic trajectory is shown
in Fig. 2, where we have chosen4 =1, B=1,and 2 = 1.

A very useful tool in studies of two-dimensional Hamil-
tonian systems are the Poincaré sections, defined as follows.
Consider a Hamiltonian system with Hamiltonian
H (x,y,p, ,p,). The phase space is of dimension 4, but since the
total energy H = E is an integral of motion, the trajectories
in phase space are restricted to a three-dimensional mani-
fold, so that, e.g., p, can be expressed in terms of p, , x, and y.
A Poincaré section is obtained by intersecting this three-
dimensional fixed energy manifold by a hyperplane, e.g., the
hyperplane x = 0. If the system is integrable, the Poincaré
sections are regular, since they are sections of a torus. For
chaotic systems, on the other hand, points are scattered on
the Poincaré sections in an irregular manner.

Figure 3 represents such a regular Poincaré section for

0.8
Q.6 1

DAJ

o.zﬁ

dy

O.OW

-0.21
-0.4

-0.6

-0.8

the integrable system discussed above with4 = 1,B =, and
£2 = § and initial position (x,,y,) = (1,0).

For comparison we also have studied some nonintegra-
ble Hamiltonian systems. We again consider the potential
V =} x* +}y? but introduce a nonconstant magnetic field

2=3+cx, c=const (4.5)
(the only integrable case corresponds to ¢ = 0). For small
values of ¢ (¢ < 1) the system remains close to the integrable
one and the lack of integrability is not visible in the numeri-
cal studies. For ¢ =3 a trajectory is shown in Fig. 4 and it
does not seem to differ qualitatively from the nonperiodic
“integrable” trajectory of Fig. 2. The fact that the system is
not integrable manifests itself quite clearly on the Poincaré
section of Fig. 5.

Finally, in Fig. 6, we show a trajectory for a different
integrable system, namely,

V = (cosh ax + cosh By)’, £ = a? cosh ax — 7 cosh By,
4.6}

corresponding to the case when Egs. (3.11) are linear. The
trajectories in this case remain bounded.

The trajectories for trigonometric-type potentials, or
the doubly periodic ones involving Weierstrass elliptic func-
tions, do not, unfortunately, remain bounded, so there is
little point in presenting them on figures. In the case of the
elliptic functions this is due to the fact that the quadratic
terms in the two equations (3.11) have opposite signs, so ei-
ther the for g contribution to the potential will be repulsive
and the other one attractive [see, e.g., (3.20)].

dx

T T T T T T T T T T -7 T
-1.24 -1.22 -1.20 -1.18 -1.16 ~-l.14 -1.12 ~i.10 ~-1.08 -1.06 -1.04 -1.02 -1

1 T T 1
-0.98 -0.96 -0.9¢ -0.92

FIG. 3. A Poincaré section for the integrable system with ¥ = x?/2 4 y*/4and 2 =3.
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T T T T T T T T Y T T T T T T 1 T T 4
-1.2-1.4 -t -09 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 0.2 0.1 O 0.1 0.2 63 0.4 0S5 06 0.
x

FIG. 4. A bounded nonperiodic trajectory for a perturbed nonintegrable system with ¥ = x°/2 + y*/4 and magnetic field 2 = 3(1 + x)/2.

14 e _." L
0.8
0.6
0.4

0.2 4

dy

°
0.2
0.4
-0.64

-0.6 -

-1

FIG. 5. A Poincaré section for the same nonintegrable system as in Fig. 4.
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-0.35 -0.30 0.5 0.0 -0.15 <-0.10 -0.05 0.00 0.05

FIG. 6. A trajectory for the integrable system with ¥ = (cosh ax + cosh Ay)* and £2 = a* cosh ax — B2 cosh By.

V. PAINLEVE ANALYSIS OF THE CARTESIAN CASE
We recall that the equations of motion are
X= -V, +, y=—V, —0x, (5.1)

where {2 and V are expressed in terms of two elliptic func-
tions f(x) and g( y) by the following steps.
If fand g satisfy

S =af*+Bf+v, &,= —ag +8g+¢,
then 2 =f,, +g,, and

V=(a/3)g—f - [B+8)/2)g—f) +«lg—f)+,
where x and v are arbitrary constants. In the following, a
will be taken equal to 3.

The singularity analysis is somewhat unusual in this
case, because when x and y go to infinity, the elliptic func-
tions do not go to any limit. This prevents x and y from going
to infinity in a finite time. Rather, the singularities at finite
times occur when x and y go to poles, respectively, of fand g.
Indeed, when x goes to a pole of fat a finite time #,, y cannot
go to a regular point of g but must go to a pole as well.

Let x,be a pole of fand y, a pole of g. From Egs. (5.2) one
can see that fbehaves as

f~2/(x - x0)2:
while g behaves as
g~ —2/(y =y
Balancing the leading powers in (5.1), we see that x — x; and

y — yomust behave as z!/4, wherez = ¢ — t,. Note that all the
terms in Eq. (5.1) are dominant and behave as z~7/%. As usu-

(5.2)
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al, ¢, is one of the free parameters of the expansion but x, and
yo are fixed as they must be the locations of poles of the given
functions f and g. From there on, the Painlevé analysis fol-
lows as usual: We write

4, Y—Jo ~Bz'*.
Balancing the coefficients of the leading powers, we find
only one relation between a and 5, namely,

a’B? = 16(a* + B?).
The resonances are found tobe at — 1, 0, 4, and 3. As usual,
— 1 is related to the arbitrariness of ¢, and O reflects the
freedom of a (or S), since we have only one relationship
between a and B. The other resonances are half-integers,
therefore the expansion does not have the full Painlevé prop-
erty. Still the expansion may be of “weak Painlevé” type'®
because a power z'/2 in the expansion is a “natural” one since
the leading behavior goes as z'/4. In order to check for the
resonance condition, one must first expand fand g to order 3
in {(x — x,) and ( y — y,), respectively, then substitute expan-
sions of {x — x,) and (y — y,) in terms of z. Checking the
resonance conditions (especially at order 3) is a very tedious
task, which was accomplished using the REDUCE formal lan-
guage. Both resonance conditions were actually found to be
satisfied and no logarithm enters in the expansion, which is
thus indeed of the “weak Painlevé type,” as expected for
integrability.

VIi. CONCLUSIONS

The main result of this paper can be summarized as fol-
lows.

X —xo~az!
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(1} We have shown that a nonrelativistic Hamiltonian
system with the Hamiltonian (1.1), involving both scalar and
vector potentials, admits a quadratic integral of motion C,
only if the terms in C that are quadratic in the velocities are
actually second-order operators in the enveloping algebra of
the Euclidean Lie algebra with the basis {X, y, xp — xy}.

(2) We have completely analyzed the case of “Cartesian”
and “degenerate Cartesian integrals of motion, i.e., the case
when the coefficients g; of the second-order terms in the
constant C are independent of the coordinates. The most
general integrable system of the Cartesian type is given by
(3.12), where f(x) and g( y) are solutions of the elliptic-func-
tion-type ordinary differential equations (3.11). In general,
f(x) and g( y) are doubly periodic functions of the (complex)
variables x and y, respectively.

(3) We have investigated periodic and nonperiodic
bounded trajectories and also Poincaré sections for several of
the obtained integrable systems and compared them with
some nonintegrable ones.

(4) We have shown that, in general, the obtained integra-
ble systems manifest the “weak Painlevé property,” i.e., the
solutions may have moving poles and rational branch points,
not, however, logarithmic ones. The case of a pure scalar
potential is an exception. Then V(x,y) = F(x) + G (y) and
2 = k, =k, = 0. The functions F (x) and G ( y) are arbitrary,
the equations of motion separate in Cartesian coordinates,
and the singularity structure of the solutions can be arbitrary
[depending on the form of F (x) and G ( y)].

Several comments are in order here.

(i) In general the vector and scalar potentials will be dou-
bly periodic in the complex x and y planes, though of course
one or both periods may, in special cases, be infinite. In the
general case the motion is unbounded. Periodic potentials
are of obvious interest in crystallography and solid state
physics and we plan to return to the case of integrable Ha-
miltonian systems with potentials expressed in terms of
Weierstrass elliptic functions.

(ii) The case when a magnetic field is present is much
more difficult to treat than the case of a purely scalar poten-
tial, when the existence of an integral of motion quadratic in
the velocities is tantamount to the separability of the Hamil-
tonian in one of several coordinate systems. This is the rea-
son why we have restricted ourselves to two of seven classes
of quadratic integrals of motion. The other classes are pres-
ently under study.
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APPENDIX: THE DEGENERATE CARTESIAN CASE

As mentioned in Sec. II, if the variables x and y, as well
as the potentials, are allowed to be complex, isotropic vec-
tors exist in velocity space and they lead to “degenerate”
orbits of second-order integrals of motion. One such integral
is the “‘degenerate Cartesian integral”

C=x(k+ i)+ kox +k,y+h.
[See (2.17) and Ref. 7.]
In the coordinates

(A1)

z=x+, Z=x—1Iy
the constant C reduces to

C= )P +i5)+ koz+k 7+ h,
and the equations of the motion are

f= —2V, — iz, %=2V,+ifl
Putting

dcC

=y,

dt
using the equations of motion, and equating the coefficients
of each term to zero, we obtain

ko, —i2=0, koz + kl,z =0, k;=0 (A4)
h,—2V, —V, —iky2=0, h, —V, + ik, 2=0,

(A2)

(A3)

(AS)
koV; =k, V, =0. (A6)

We can easily integrate for k,, k,, and £2:
ki=¢:z) ko= —1(2Z+ dolz), (A7)
i=¢;2)— @127 (A8)

The compatibility condition h,; = h;, for Egs. (AS) implies

W= (b1 —100)+Z2d101"" —S161) (A9)
leading to
2V = uglz) + zu\(2) + @/2)do i — 619 0')
+ &/6)¢:1 41" — 01 81). (A10)

Equation (A 6) now reduces to
(— @1 Z+ dolluy +24 (2) + F#/2)B (2))

+ ¢i(up +Zu; + /24" + Z°/6)B'(2)) =0,
where

AR)=¢od ' —d1do, Ble)=d1d1" -1 7.

Equating to zero the coefficient of each monomial in Z, we
obtain

—31¢1 Blz) + (4,/6)B'(2) =0,
— @1 4(2) + (¢o/2)B(2) + (#,/2) A '(z) =0,
—dlu +dodz)+u; ¢, =0,

o + o 4, =0. (A11)
From the first equation we immediately deduce
Blz)=ke3,
which yields an equation for ¢, only:
161 —d1 b1 =kéi. (A12)
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Once ¢, is known, we obtain a linear third-order equation for
& The two last equations allow the calculation of «, and u,
in terms of ¢, and ¢,.

Let us now integrate Eq. (A12). Multiplying by ¢ {'/¢ }
we obtain

Bi B/t — b1 1Bl =ke T,
that is,

(@1/83) =2k¢y, @17 =2k(pi o1 +1b7)

if k #£0, we set

W=t +1, (A13)
thusu'=¢, + Iz +m,

b, =u —lIlz—m,

u'"? = 2ku")u' — Iz — mp, (Al4)

" Nu" =2k (W — Iz — m),

u" =plu — 122 —mz — n)?, p = const,
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that is, « is an elliptic function and ¢, is defined in terms of u
by (A13).
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The primary purpose of this paper is to show that infinitesimal velocity-dependent symmetry
mappings [(a) ¥’ = x’ + 6x', 8x' = & ‘(x,x,t }6a with associated change in path parameter (b)

t =t + 8t, 8t = £ °(x,x,t)] of classical (including relativistic) particle systems (c) E {%,x,x,t) =0
are expressible in a form with a characteristic functional structure which is the same for all
dynamical systems (c) and is manifestly dependent upon constants of motion of the system. In this
characteristic form the symmetry mappings are determined by (d) £ ' = Z {(x,x,t) + x'€°,£°
arbitrary; the functions Z‘ appearing in (d) have the form (¢) Z‘ = B4¢,,(C',...,C";t), 0<r<2n,
A = 1,...,2n, where the B “ are arbitrary constants of motion and the C ’s appearing in the functions
g', are specified constants of motion. A procedure is given to determine the g/, . For Lagrangian
systems it follows that velocity-dependent Noether mappings are a subclass of the above-
mentioned general symmetry mappings of the form (a)}-(e). An analysis of velocity-dependent
Noether mapping theory is included in order to compare for Lagrangian systems the procedure
for obtaining the characteristic form (e) of the general mappings with the procedure for obtaining
the well-known formula (f) Z § = H %(x,x,t }dZ /3x’ (Z = constant of motion), characteristic of
velocity-dependent Noether mappings. It is shown how any given velocity-dependent symmetry
mapping function Z ‘(x,x,t ) (including Noether mappings) can be expressed in the form (e). A
collection of variational formulas and identities is derived in order to develop from first principles
the velocity-dependent symmetry mapping theory. Throughout, comparisons are made between

velocity-dependent and velocity-independent symmetry theory.

I. INTRODUCTION

An infinitesimal mapping which maps the solution set of
a system of differential equations into itself is said to be a
symmetry mapping of the system of equations. In a series of
earlier papers'™'* the authors have investigated various rela-
tionships between infinitesimal symmetry mappings of clas-
sical (including relativistic) particle dynamical systems"’

EG,.. %0 5, XXX )
i=1,..n, (1.1)

and their constants of motion. (For further references see
Sarlet and Cantrijn.'®) The infinitesimal mappings consid-
ered in those papers were of the form

= E{#xx,t) =0,

X=x+6x, 6x'=E&xt)da, (1.2)
t=t+6t, 6t=Ext)a. (1.3)

It is to be noted that the functions £ (1.2) which determined
the point mappings and the functions £ ° (1.3) which deter-
mined the associated change in path parameter ¢ were as-
sumed to be functions of only x’ and ¢. We shall now refer to
such mappings as velocity-independent in order to distin-
guish them from velocity-dependent mappings determined
by mapping functions & {X,x,? ), £ °(x,x,t ) to be considered in
this paper.

The primary purpose of this paper is to show that gen-
eral infinitesimal velocity-dependent symmetry mappings of
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classical particle systems are always expressible in a form
with a characteristic functional structure which is the same
for all second-order dynamical systems (1.1) and is manifest-
1y dependent upon constants of motion of the system. In an
accompanying paper (paper II of this series)'’ the character-
istic functional structure of velocity-independent symmetry
mappings is obtained for systems of first-order differential
equations. In future papers knowledge of the characteristic
symmetry structure will be applied to linear dynamical sys-
tems and to dynamical systems with cyclic coordinates. Ad-
ditional relationships between velocity-dependent symme-
try mappings of general dynamical systems and constants of
motion will also be considered in later papers.

In this present paper we start from first principles and
develop (from the local point of view) the variational proce-
dures for determining general velocity-dependent symmetry
mappings of dynamical systems (1.1), with emphasis on La-
grangian systems.

For Lagrangian systems velocity-dependent Noether
symmetry mappings are a subclass of the general velocity-
dependent symmetry mappings. Such Noether mappings are
known to be expressible in a form with a characteristic func-
tional structure which is the same for all Lagrangian systems
and dependent upon constants of motion of the system. It
therefore follows that this known Noether structure must be
expressible in the form of the above-mentioned general
structure we have obtained, and this will be shown. A clever
mathematical technique used by Candotti, Palmieri, and Vi-
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tale'®'? in their analysis of the inverse Noether theorem is
essential to our derivation of the characteristic functional
structure for general symmetry mappings. For this reason,
and to make it convenient to compare the methods of deriv-
ing the characteristic functional structures associated with
these two respective classes of symmetries, we include an
extensive presentation of Noether theory as a prerequisite to
our analysis of general symmetry mappings.

Throughout this paper, where it is of interest, we shall
make comparisons between velocity-dependent and veloc-
ity-independent symmetry properties.

In the formulation and analysis of infinitesimal velocity-
dependent symmetry mappings of dynamical systems we
have found that certain basic variational formulas and iden-
tities are frequently used in a number of different deriva-
tions. Therefore, before proceeding with any dynamical
symmetry analysis per se we shall first develop in Sec. II a
collection of useful fundamental variational formulas and
identities. These will be derived in a systematic manner from
a few basic variational definitions. Not only will these for-
mulas expedite many derivations in this paper, but we be-
lieve they will be useful for future reference. For complete-
ness many of the formulas will be given in a more general
form than actually required in this paper.

In Sec. III we apply the variational formulas developed
in Sec. II to formulate several important variational identi-
ties which involve the Lagrangian operator. Two of these
identities clearly show the distinction in functional structure
of the variation of the Lagrangian operator based upon infin-
itesimal velocity-dependent and velocity-independent map-
pings. A third identity gives a decomposition of the variation
of the Lagrangian operator which will be used to show that
the variation in path parameter 8¢ may be arbitrarily chosen
in the formulation of velocity-dependent symmetry map-
pings.

In Sec. IV the identities developed in the previous two
sections are employed to formulate conditions in order that
infinitesimal velocity-dependent mappings define general
symmetry mappings of an n-dimensional Lagrangian dy-
namical system. These conditions are in the form of a system
of n partial differential equations in the » + 1 unknown
mapping functions £ {(x,x,t ), £ °(x,x,t ). By a decomposition of
the mapping functions £ { = Z' + x'€ °) the symmetry equa-
tions reduce to a system of n equations in the n auxiliary
mapping functions Z {(x,x,t ). The absence of £ °(x,x,t ) from
these latter equations indicates that in a velocity-dependent
symmetry mapping the function £ °(x,x,# ) may be chosen ar-
bitrarily. It then follows for each Z ‘ solution that a choice for
£ ° will lead to functions £ ' which together with £ ° determine
a velocity-dependent symmetry mapping. The symmetry
conditions are shown to be invariant with respect to the “La-
grangian gauge change” L—~L = L +d f(x,t )/dt.

In Sec. V a presentation of velocity-dependent Noether
theory is given. We define Noether mappings at the differen-
tial level (as opposed to a formulation based upon the vari-
ation of the action integral) in a manner which is applicable
to both velocity-dependent and independent mappings. For
velocity-dependent mappings this definition leads to condi-
tions which must hold identically in the %' and thereby

3081 J. Math. Phys., Vol. 26, No. 12, December 1985

avoids the situation in which every arbitrary mapping is a
Noether mapping.

By means of elementary analysis we obtain a general
solution of the Noether mapping condition for velocity-de-
pendent mappings. This familiar Noether mapping solution
has a characteristic functional structure which is the same
for all Lagrangian systems. In this form each velocity-depen-
dent Noether mapping is manifestly functionally dependent
upon a constant of motion of the dynamical system. The
mapping function £ ° is arbitrary. Due to this arbitrariness,
for any given constant of motion there is an associated class
of velocity-dependent Noether mappings. These Noether
mapping solutions are shown to satisfy the general velocity-
dependent symmetry mapping condition for Lagrangian
dynamical systems (derived in Sec. IV), thereby establishing
at the differential level that velocity-dependent Noether
mappings are symmetry mappings (as to be expected).

For any given velocity-dependent Noether symmetry
mapping (described above) the Noether identity (given in
Sec. III) shows that the well-known concomitant Noether
constant of motion is independent of the arbitrary mapping
function £ °. Moreover, this concomitant Noether constant
of motion is the constant of motion which appears in the
given Noether mapping. By an appropriate choice of the ar-
bitrary function £ ° this latter property is the inverse Noether
theorem as developed by Candotti, Palmieri, and Vitale.'81°

Section V also contains an analysis of the invariance of
velocity-dependent Noether mapping theory with respect to
the Lagrangian gauge change of Sec. IV.

In Sec. VI we develop a method for obtaining the char-
acteristic functional structure of the velocity-dependent
mappings which are solutions of the symmetry equations for
the class of dynamical systems (1.1). The structure of sym-
metry mappings for Lagrangian systems is included as a sub-
case. For the dynamical system (1.1), as in the case of the
Lagrangian systems, a decomposition in the mapping func-
tion £ { = Z' + x'€°) reduces the symmetry condition to a
system of n second-order partial differential equations in the
n unknown auxiliary mapping functions Z‘(x,x,). Here
again the absence of the mapping function £ ° in the reduced
system of equations indicates £ ° may be arbitrarily chosen.
However, except for the simplest dynamical systems this re-
duced system of partial differential equations remains formi-
dable.

As a prerequisite to deriving the characteristic func-
tional structure of the solution of this reduced system of
symmetry equations we examine the reciprocity between
any complete finite solution of the dynamical system (which
has 2n essential integration constants) and its associated set
of 2n functionally independent constants of motion. A con-
sequence of this reciprocity is that the constants of integra-
tion of any complete finite solution are also the respective
values which its associated constants of motion assume on
dynamical paths.

In principle, by means of any assumed finite complete
solution of the dynamical equations we show how the system
of n partial differential symmetry equations in the n Z {(x,x,t )
may be reduced to a system of n second-order, linear, homo-
geneous ordinary differential equations in » unknowns z(¢ ).
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Any number of the above-mentioned 2n integration con-
stants of the finite solution of the dynamical equation may
appear as parameters in this affiliated system of ordinary
linear differential equations. The general form of the solu-
tion of such a system of ordinary linear equations is known to
be a linear combination of 2n fundamental solution func-
tions. We thus conclude that when evaluated on dynamical
trajectories every solution of the symmetry equations must
be of this general form. ‘

In the solution of the affiliated system of linear equa-
tions we replace those constants of integration of the dynam-
ical equations, which now act as parameters, by their asso-
ciated (by means of the reciprocity mentioned above)
constants of motion. In addition the 2n constants of integra-
tion which originate in the solution of these affiliated equa-
tions are replaced by arbitrary constants of motion of the
dynamical equations. As a consequence of these replace-
ments the solution of the affiliated system of ordinary linear
equations is converted into a set of # functions of X', x’, and ¢.
We then prove these n functions will be a solution Z (x,x,t)
of the original partial differential symmetry equations. Such
Z 'solutions will be manifestly dependent upon the constants
of motion of the dynamical system and will have a character-
istic functional structure which is the same for all dynamical
systems. Moreover, we prove that every solution of the sys-
tem of partial differential symmetry equations is expressible
in this characteristic form. Thus velocity-dependent
Noether symmetry mappings, which have their own (famil-
iar) characteristic functional structure (as discussed in Sec.
V), can also be reexpressed in this general characteristic
form.

Finally, we show in detail how any given velocity-de-
pendent symmetry solution Z /(x,x,t ) may be expressed in a
form which has the characteristic functional structure of the
above-described general symmetry solution.

In Sec. VII we illustrate the theory developed in the
preceding sections by determining the symmetries of a one-
dimensional nonlinear dynamical system.

Il. BASIC VARIATIONAL FORMULAS AND IDENTITIES

Let x be the coordinates of a point P in a local region of
an n-dimensional space. A general curve y passing through P
is expressed in terms of a path parameter ¢ as x’' = x/{r). At P
the curve y has a tangent vector dx'/dt.

We consider infinitesimal point mappings with associat-
ed change in parameter defined by

B x4 6%, Sx'=E’ (— oy ) sa, 2.1)

T=t+40t, St=£° (— ot ) 8a, (22)
with inverse

x'=x — 8%, Ox'=¢f’ (— Xt ) da, (2.3)

t=1—61, St=¢£° (-d; Xt ) 8a. (2.4)

Based upon the mappings (2.1) and (2.2) we define to
within first order in Sa
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daxi_daii _ daxi
dt®  dt®  dt°
We shall subsequently express (2.5) explicitly in terms of
the basic mapping functions £/, £ © and their derivatives. At
this point we shall first establish a recursion relation
between? 5(d ® x'/dt *)and 5(d * ~ ! x'/dt* ~ !). We therefore
express (2.5) in the form

, a=12,... (2.5)

adai—(dda—l )ﬂ ida—lxi
dte  \dt die-')dt dt dt=-'’
a=12,... (2.6)
From (2.4) it follows that to first order in 8a we have
£= 1 —@. 2.7)
dt dt
Hence (2.6) may be expressed in the form
P d“x"=i(d"“i"_d““x") (d d*'x )d&t
dt® de\dt*-' dte-! dt dte-'/ dt
a=12,..., (2.8)

which to first order in da reduces to the desired recursion
relation?®
a i a—1 i a
52 x=i(¢sd ") d°x dot 12,
dte dt dre! dee dt’

(2.9)
Next we introduce a decomposition of the infinitesimal
mapping (2.1) by expressing 8x’ in the form

dx’

; ( dx
Ax'EZ‘(——— ,t)5 . 2.11
7 )% (2.11)

It follows from (2.1), (2.10), and (2.11) that

(8 ) (200 (00
(2.12)

Remark 2.1: We note that if the mapping functions &
and £ © are assumed to be velocity independent [i.e., £ (x,z),
£°%x,t)] then Z* must be at most linear in dx'/dt, since for
this case we have from (2.12) that Z* = Z { =¢£ ‘(x,t) — (dx"/
dr) £%x,t). 2! [ ]

As we shall demonstrate, the decomposition (2.12) in the
infinitesimal mapping will expedite many calculations.
More importantly, it will be shown in a straightforward fash-
ion by means of (2.12) that when velocity-dependent point
mappings of the type (2.1) are employed in the analysis of
dynamical symmetries then the §¢ occurring in (2.2) may be
arbitrarily chosen.??

Remark 2.2: When 6t = 0 a mapping of the type (2.1)
and (2.2) reduces by (2.10) to the form

¥ =x+ Ax', (2.13)
t=t, (6t=0). (2.14)

Thus we may consider the A variation to be a special case of
the 8 variation for which ¢ =t. It follows, therefore, that for-
mulas based upon the § variation [associated with the map-
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ping (2.1) and (2.2)] will reduce to formulas based upon the A

variation [associated with the mapping (2.13) and (2.14)] by

setting 8¢ = 0 in the former. [ |
We find from (2.9) and Remark 2.2 that

a i a—1 i
d’x =i(Ad "), a=12,... (2.15)
dt® dt\ dte—!
From (2.15) we immediately find for a = 1 that
i i
A% _dax (2.16)
dt dr
It now follows from (2.15) and (2.16) that?°
AdIx _d"Ax o, (2.17)
dr® dt®

We next determine the relationship between 8(d * x'/
dt°) and A(d * x'/dt *). From (2.10) we have
déx' _ dAx' " d' dx' dbt

dt dt = dr? dt dt’
By use of (2.18) we may express (2.9) for the case@ = 1 in the
form
dx' _dAx'  d*
b=t —
dt

dt dt
From (2.19) we obtain

(2.18)

st. (2.19)

d ( dx! ) d*Ax'  d3% d*x' dbt
—(6=)= . 2.20
dt\ dt dt? + de3 dt? dt (2.20)
By (2.20) we may express (2.9) for the case a@ = 2 in the form
d zxi d 2Axi d Sxi
= &t. 2.21
dt? dt? + dr3 2.21)
If we continue in a similar manner we find?
a i a i a+1 i
s4°x _d"Ax 4T X p—Ol,... (222)
dt° dt° dte+!

By means of (2.17) and (2.22) we obtain the desired relation-

ship

5 daxl =A daxi +da+lxi6t,
dt® dt® dre+!

It is now a straightforward procedure to express
8d x'/dt %), a = 1,2,..., as a function of the basic deforma-
tions 8x', 8t, and appropriate derivatives by use of (2.10) and
(2.22). We thus obtain

a=01,...

(2.23)

a 0 a i a i a+1 i
adx=d 6x_d_(£6t)+d x&,
dt® dte  dt*\dt dre+!
a=1.2,... (2.24)

Equation (2.24) can be rewritten in the expanded form

daxi=da6xl’—‘ a

8 [ al d““—'x‘d'at]
dt? dt? =0 r!(a__r)! dteti-r  drr
+47 X 5, a=12... .29
dre+!
We evaluate (2.25) for the cases o = 1,2,3:
i i i
@=1 9 _98x dx dét 2.26)
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@=2) & dx’ _ d %6x’ s d’x’d_&_ﬁ'd’&t
dt?  dr? dt? dt dt dt?’
(2.27)
d3x' d36x d3x' dbt
=3) § = — —_—
@=3) de3 de? dr® dt
d*' d*t dx' d36t
St ar a8
It is now convenient to introduce the notation
X = dd: f ,a=0,1,.; xi=x’ (2.29)

The variational formulas (2.1), (2.2), and (2.25) allow us
to define the § variation of a function G(xy, x5 _,,...,
XL X0 )=G (Xps Xp_ 1 3000y X1 Xt ) tO be?*

90 sxi, + 95 1,

a=0,.,N.
: at

OG (Xy, Xy _ 15 X1y Xoot )=

(2.30)

In a similar manner the variational formulas (2.13),
(2.14), and (2.25) allow us to define the A variation of G to be

AG (Xpy Xy _ 15000y Xy, Xool )= 6(3' Ax,, a=0,..,N.
(2.31)
By means of (2.22) and (2.30) we obtain
3G d° Ax' aG G
66 = - + - x:z + — 6t’
ax.  dte (ax:, T o )
a=0,.,N. (2.32)
With the use of (2.17), (2.31), and the definition
dG_ G G
= -, a=0,..,N, 2.33
raarwRCE R (2.33)
we express (2.32) in the form
5G = AG + id‘-t;- 5. (2.34)

From (2.30) with G=UV it immediately follows that

S(UV)= (U)W + UsV. (2.35)
Similarly from (2.31) we find
AUV)=(AUYW + UAYV. (2.36)

It follows from (2.31) and (2.33) by direct expansion [and
use of (2.15)] that

4 p6=09C (2.37)
dt dt

We use (2.34) and form

d d d?G dG dbét
—6G=—AG+—b6t+——. 2.38
dr dt + dr? t dt dt (2.38)

Again we employ (2.34) with G replaced by dG /dt to obtain
546 _ 546, d°G

— 4t (2.39)
dt dt  dr?
It now follows from (2.37}~2.39) that
d dG  dG dbt
—0G=6—+——. 2.40
dt dt + dt dt (240
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By use of (2.17) and (2.31) a straightforward calculation

shows that for G =G (xy, Xy _ ;5--., X15 X0, ) We have
AaG _9AG _ G 4 (d”Axf)
axt,  Ixi ox} oxi, \ dt®
O<a<N, B=0,1,.,N. (2.41)
A_aﬁ_aAG aG 4d (d"Ax")’ 8=0,1,..N.
or o  oxjaa\ dr®
(2.42)

lil. GENERAL AND VARIATIONAL IDENTITIES
INVOLVING THE LAGRANGIAN OPERATOR A,

The basic variational formulas developed in the pre-
vious section will now be used to derive several important
variational identities which involve the Lagrangian operator

A= ———. (3.1)

We shall, however, first give some general identities which
will be freely used in this section and elsewhere in the paper.
Since these general identities are easily verified by direct ex-
pansion we omit all derivational details.

By use of the total derivative operator (2.33) we find for a

function G = G (xy, Xy _ .- Xoot ) that
346 _dI6_, 52)
at dt dt Jt
9 4G _daG_, (3.3)
dx' dt dt 9x'
i_ 6 _4 a—G,E (?G , a=12.,N (34
oxi dt dt ox, dxi_,

By use of (2.33) and (3.1)}{3.4) we find for the above G
that

d? 3G

A; (dG) (3.5)
dr) di? 3x

A, (a—G) =9 AiG), (3.6)
at ot

A (S5) = A6 (3.)
dax’ Ix’

For a function L (X, x',t ) we have

d (AL _; aLr

—(=x—L)+—=xA,L 3.8

dt(ax"x )+8t_x () (3.8)

Based upon mappings (2.1) and (2.2) with the use of
(2.26), (3.1), and (3.8) it is easily verified for L = L (x,x,t ) that
dét__d [JdL s (3L

— 8x' —

oL 419 _4|oL —L)&t]
dr dr\ox o

— (6x' — x'8t) A;(L). (3.9)

If in (3.9) we eliminate 5L and 8x' by use of (2.34) and (2.10),

respectively, we obtain
d (dL

a=2 (3{ Ax’) Ax'A,(L).

Equations (3.9) and (3.10) are well known. We shall refer to
cither as the Noether identity.

(3.10)
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We now derive several identities which involve § A, (L)
and A A,(L ). We consider these identities to be of fundamen-
tal importance in the analysis of symmetries of Lagrangian
dynamical systems. The first identity follows immediately
from (2.34) when we replace G {X,x,x,t ) by A, [L (.x,t)].

Identity 3.1:

d

8 AL)=AA(L) +8t - A(L). (3.11)

By use of (2.31) [with G=A,(L)], (2.11), and (2.17) we
find

AANL)=H;Z'4+T;Z) +K,,Z )oa, (3.12)
where
Hylkxt )= A(L), (3.13)
ax/

Ty x, )E—a—, AJL), (3.14)
%

K5t )Ei, AdL). (3.15)
ax’

From (3.1) we find that H; defined by (3.13) is given by
_ 9L _
Yoo T
From (3.1) with the use of (3.4) (with G replaced by JL /3x')
the function J; defined by (3.14) can be expressed in the form

(3.16)

J H +Q, (3.17)
where
2 2
= 3.L - — 6'L -= — Q. (3.18)
ax'dx? Ix! Ix’

We next obtain an alternative form for A A, (L ) of (3.12).
By means of (3.1) and the identity (2.37) (with G = L ) we find

sty 4s(25)-a(2)

Use of (2.41) (with G = L and the choices @ =0 and a = 1)
allows us to express (3.19) in the form [recall from (2.11) that
Ax'=Z’ ba]

(3.19)

AAL)=AAL)+ (a’“ oz i’—L—.aZ.J)
dt x! axt  gx’/ ax'
9L 9Z° | OL IZ'] g, (3.20)
ax’ ' Ix’ Ix

By use of (3.3) and (3.4) (with G replaced by Z /) we ex-
press (3.20) in the form

AAL)=AAL)+

dt

a oz’
ax’ Ix'

ax’ dt ax
o gz1)
ax! axt

d(aL daz’

oL d oz’

. . (3.21)
ax dt Ix'

JdL c?Zf]
— ——| éa.
ax’ Ix'

Equation (3.1) allows us to write

G. H. Katzin and J. Levine 3084



oLdozl_d(dLoz)) 3zl L) 9L 9z’
dxidt 9x'  dt\gx! 9x ax Ixi 9%
(3.22)

With (3.22) used in (3.21) we obtain the above-mentioned
alternative form for AA;(L ) of (3.12).

Identity 3.2:
AAMLI=ABL) =25 (aL 97 )+A(Axf)A(L)
ax’ I
Ax’ d
9AxT d s L), 3.23
+ 2 ) (3.23

It is of interest to express 8 A;{L ) of {3.11) explicitly in
terms of the basic functions 8x' and &¢. To achieve this we
first express the right side of (3.23) in this form. By use of
(2.34) (with G = L) we may express A;(A L) in the form

d

A{AL)= A, [5L+LZ&—%(L 61)]. (3.24)

If we now use (3.5) (with G = L 6t ) we may write (3.24)in the

form
d d* [ a
AL =A,.(6L L—8t>——[——7L6t ]
(AL) to 7 g (FOY)

(3.25)
By use of (3.25) and (2.10) we express (3.23} in the form
2 J
AA(L)=A, (6L +L15t) —d—2 9L 36x
ax’ 9x'

(gf]x— )a&]+A(5x’ 5t A/(L)
+(%—6!5z— a&)dA(L) (3.26)

Employing (3.26) we express (3.11) in the desired form
which shows the explicit dependence upon 8x’ and 8¢ and
thereby obtain the following identity.

Identity 3.3:

OL 35x’
EPE

d
SA(L)=A, (6L L—6t)
(L) + y e

—(a—L.xf— )a‘st]+A(5x1—x15z}A(L)
3%
867 .jaat)
9OxT _ 51900) @\ (L), 3.27
+(ax" ¥ o) ar o) (3.27)
n

Inspection of (3.27) readily shows how the structural
form of § A,(L ) depends upon the velocity dependence of the
mapping functions 8x’ and &¢.

IV. SYMMETRIES OF LAGRANGIAN DYNAMICAL
SYSTEMS

Identities developed in the previous two sections will
now be employed in the formulation and analysis of infini-
tesimal symmetry mappings of #-dimensional, »> 1, Lagran-
gian dynamical systems
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AL)=0, L=L(xxt). (4.1)
Expansion of (4.1) by means of (3.1) leads to

AL)=H;% —R,=0, (4.2)
where H;(x,x,t ) is given by (3.16), and

Rifinij=— | 2L s 0L L %)

ax' dx’ I I

It is assumed that

det H; #0, (4.4)
so that we may define

H'Jﬂ =H7 (4. 5)

det H;

From (4.5) it follows that

HYH, =§. (4.6)

By use of (4.6} and (4.2) we obtain (R '=H #R,)

X =R (xx,t). 4.7)

Remark 4.1: The “ = > notation: Before discussing the
concept of symmetry mappings of a dynamical system we
first discuss the idea of “dynamical functional composition.”
By means of the dynamical equation (4.7) and its total deriva-
tives with respect to # we may eliminate from any function
[for notation refer to (2.29)] G (xh, xiy _ |- X4, X5,2), N>2,
all derivatives of the coordinates which are of order higher
than dx'/dt to obtain a function of dx'/dt, x',t. We indicate
this particular type of functional composition by the nota-
tion “ = .” For example, if from the dynamical equation we
obtain X = R (x,x,) then G (X,x,x,t) = G [R (x,x,t),x,x,t ]
=F(xx,t).

The appearance of the “ = * sign in place of the usual
=" sign in an equation indicates the above dynamical
functional composition is to be used to express all functions
appearing in the equation in terms of the “coordinates”
dx'/dt, x', t. For example, if the function defined by the oper-
ation [refer to (2.11) and (2.31)] AG (%,x,x,t} appears in an
equation which employs the *“ = > notation, then all deriva-
tives of the coordinates of order greater than dx'/dt are tobe
eliminated from the various partial derivatives of G and also
from the expanded expressions Z (x,x,t) and Z (x,x,t ). It is
understood equations so obtained by this procedure of dy-
namical functional composition are to hold only on dynami-
cal trajectories. We will retain the “ =" notation in such
equations as a reminder that these equations are to hold for
dynamical trajectories. [

With the above-described notational scheme in mind we
turn now to the formulation of the condition for a symmetry
mapping of Lagrange’s equation. An infinitesimal mapping
[(2.1), (2.2)] which maps the set of all solution curves of (4.1)
into itself is customarily said to be a symmetry mapping of
the Lagrangian dynamical system (4.1). Such mappings are
determined by the condition?’

SA,(L)=0. (4.8)

Mappings of the form (2.1) and (2.2) may be classified
with regard to the assumed explicit dependence of the map-
ping functions £, £° upon the X’ variables. There are four
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possibilities to be considered. However, in the analysis of the
symmetry mapping condition {4.8) we find it convenient to
define only two main types as follows.

(I) Velocity-dependent point mappings:

(@) &' =& xxt), £°=E%t), (4.9)

b & =& xxt), £°=E%x2). (4.10)
(II) Velocity-independent point mappings:

(@& '=&"xt), £°=E€%xt), (4.11)

B £ =E&xt), £°=£ %) (4.12)

To see how the form of the symmetry condition (4.8) is
dependent upon the assumed velocity dependence of £/, £°
we use (3.27) (Identity 3.3) to express (4.8) in the form

SA(L)= A, (6L+Lgt-6t)

ar? gz’ ox

_ d*[dL 95x! (aL x,_L) aat] ~o
x! x’ ’

(4.13)

Inspection of the symmetry condition in the form (4.13)
shows thatif £ ‘and £ °are both independent of &' [type (IT)(b)]
then it reduces to the form

(Inb) S AJL)= A, (8L + % 6t) =0. 4.14)
This form of the symmetry condition for completely veloc-
ity-independent mappings was previously obtained by Kat-
zin and Levine.?8 Since in (4.14) neither & * nor £ ° contain X/,
the expansion of (4.14) leads to n equations which must hold
identically in x. Consequently, this generally results in an
overdetermined system of equations to be solved for £ /(x,t),
£9%x,t). Hence not every dynamical system will admit sym-
metry solutions of the type (II)(b). Symmetries of this type
have been extensively treated in the literature.

Inspection of (4.13) shows that for type (II)(a) solutions,
for which £/ = £(x,t), £ ° = & %%,x,t ), the symmetry condi-
tion reduces to

() SAL)Z A, (5L +L %)

d> [(dL _, abt] .

tar [(axfx L) ax"] =0 &)
We are unaware of any systematic analysis of symmetries of
this type.

For both types (I}{a) and (I){b) of velocity-dependent
point mappings, when (4.8) is formally expanded [refer to
(2.30)] and use is made of (4.7) to eliminate all time deriva-
tives of x' of order higher than x’, we are led to a system of n
homogeneous, second-order, linear partial differential equa-
tions to be solved for the (n + 1) symmetry mapping func-
tions [£‘(k,x.2), & %k, %,2)] or [£(x,x,2), £ %x,2)].

This system of differential equations may be simplified
by changing n of the (n + 1) dependent variables from
£x,x,t) to Z {(x,x,t ) by the transformation

Elrx,t)=Zxxt) +x'£°. (2.12)

We are easily led to this simplifying transformation by in-
spection of (3.11) (Identity 3.1) which indicates the effect of
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such a variable change on § A,(L ). Sinced A,(L )/dt = 0, we
have from (3.11) that the transformation (2.12) expresses the
symmetry condition (4.8) in the form

(D(a), (T)b) AA;(L)=0. (4.16)

From the definition of the A operator (2.31) it is apparent
that the Z' (x,x,t ) are the only unknown functions occurring
in (4.16). [The detailed expansion of (4.16) is given in
Theorem 4.2 below.]

Remark 4.2: It is of significance that the elimination of
£ 'from (4.8) by the transformation (2.12) also resulted in the
simultaneous elimination of £ °. Hence for the case of veloc-
ity-dependent point mappings [type (I)] the solutions
Z!(x,x,t ) of (4.16) can be immediately used in (2.12) to obtain
the functions £’ (x,x,t ) with the functions £ %(,x,t ) arbitrarily
chosen. Thus for a given Z(x,x,z) solution any choice of
£ O(x,x,t )willleadtoanassociated £ (x,x,t jsuchthat £ & *will
satisfy (4.8), and hence define a velocity-dependent symme-
try mapping [(2.1) and (2.2)]. |

For the present purpose of comparison of (4.16) and
(4.13), and for later convenience in the analysis of Noether
mappings we briefly digress and employ (3.23) (Identity 3.2)
to express (4.16) in the form

o d? (3L JAx7\ .

(D), (Ifb) AA,(L)=A,(AL)— F(&—j por ) =0.

(4.17)

We may summarize the above results in the following
theorem.

Theorem 4.1: An infinitesimal velocity-dependent map-

ping
¥ =xi+6x', Ox'=¢£"kx,t)ba, (2.1)
t=1t+68t 6t=£%x,1)a, (2.2)

will define a symmetry mapping of a Lagrangian dynamical
system

A(L)=0, L=L({xxt), 4.1
if the mapping functions 8x', &t are solutions of the symme-
try condition

SAL)=0. (4.8')
The symmetry condition (4.8’) may be expressed in the equi-
valent form

, .
A, (5L+L£§) _ d” [ OL bx’
dt)  di*laxi ax
- (a—L_xf—L)Q‘-si] =0, (4.13)
% EYs

The velocity-dependent mapping functions 8x’,6¢ which are
solutions of (4.8’') are given by

8x' = Ax' + x'6t, (2.10)
Ax'=Z"(xx,t )5a, (2.11°)
&t = arbitrary, 4.18)

where Z' is a solution of the system of partial differential
equations determined by either of the following equivalent
conditions:

AA,(L)=0, (4.16')
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or

A(AL)— (4.17)

a (ﬁf; 5"“’) =0

dt*\ax’ ax' /

|

To obtain the partial differential equations for Z* (x,x,t ),

referred to in Theorem 4.1, we first make use of (3.12)—(3.15)
to express the symmetry condition (4.16) in the form

HZ/+J,Z + K270, (4.19)
where in (4.19) the functions J,j (*,x,2) and K;(%,x,t) result

from the elimination of any %° dependence from J,j (x,x,x,t)
(3.14) and K,j (x,x,x,t) (3.15) by use of (4.7) in that

Ty, ) = Ty [R (ex,t ) X3t |=T(%kx,t ), (4.20)

K xxt) = K, [R (kx0 )55, 1=K, (kxt).  (421)

Formal expansion of (4.19) with use of (4.7) leads to a
system of n homogeneous, second-order, linear, partial dif-
ferential equations to be solved for the n functions Z* (x,x,t )
only.

We may therefore state the following theorem.

Theorem 4.2: For a Lagrangian dynamical system

AL y=H,(%,%,t )/ — R,(x,%,t) =0, (4.2)
based upon the Lagrangian L = L (x,x,t ), where
H(xx,t )= asz ., (3.16')
ax’ Ix’
det H; #0, (4.4)
. a*L _;, 9L oL
Rem== lovae™ T ava al” )
the symmetry condition
AAL)=0 (4.16)
may be formally expressed in the form
H,Z'+J,Z'+K,Z1=0, (4.19)
where
H(xx,t)= a’;;g‘ ’, (3.13')
Iyt )= a:if ) (4.22)
IA(L )
K,;(xx,t J= (4.23)
ox’

For the dynamical system (4.2') the symmetry condition
(4.16") [or (4.19)] is equivalent to the following system of
partial differential equations for the symmetry mapping
function Z° (x,x,¢t ):

kA kYAl 3%z’
A :lb ?.b + C‘;b
Y 9% axb Y 9x° x® Y 9x* Ix?
3%*z/ 9%z 3z V-7 AU
+ D +Ej +H; —— + G —
Y 9x° 3t Y 9% 3t Y ot ar 7 axe
. 0Z7 9z
+F8— Fw +J; = P +K,Zi=0, (4.24)
where
A ®x,t)=H,R R, (4.25)
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B2t )=2H,R %, (4.26)
C 2% x,t )=H;%"x", (4.27)
D(xx,t )=2H,R", (4.28)
E 3kt =2H 5", (4.29)
AR dR* dR"®
,t —H e -I,R a’
Gylxxt)= (3x by — P xP+ o ) +Jy
(4.30)
Fj(xxt)=HyR * + J;x°, (4.31)
AH, AR,
kXt )=—=R*— —, 4.32
Jylxx,t) pYy pry (4.32)
K, (xx,t) Hi pa_ R (4.33)
X, X, )= - — —, .
g ox’ ax’

The function R“ (x,x,t ) appearing in (4.25)~(4.33) are defined
by R° = H* R, with R, given by (4.3'), and where HY is
defined by HY H;, = 6. |

The fact that the system of partial differential equations
(4.24) can be expressed formally in the condensed form (4.19)
will be utilized in Sec. VI to develop a procedure for solving
these equations for the vectors Z'(x,x,? ).

Since Z' = 0 is a solution of (4.24) [or (4.19)], it follows
from Theorem 4.1 that we may state the following corollary.

Corollary 4.1.1: The velocity-dependent infinitesimal
mappings defined by

ox' =6, (4.34)

(4.35)
will be symmetry mappings in that they satisfy the symmetry
condition (4.8). Such mappings will map points of each tra-
jectory into points of the same trajectory. [

Let us denote the symmetry equation (4.24) for Z* (x,x,¢)
by

SZ (kx,t)] =0. (4.36)
By inspection of (4.2) and (4.24)—(4.33), it follows that if

dA(L)

at

then the coefficients appearing in the differential equation
(4.24) [or equivalently (4.36)] will be independent of ¢. For
this case we have

9 qits _ i 9Z (xx,t)
2 5'(Z{xe)] =S [———at ]

8t = arbitrary

=0, (4.37)

(4.38)

which leads to the following corollary to Theorem 4.2.
Corollary4.2.1: ¥ Z' (x,x,t ) is a solution of the symmetry

“equation (4.24) associated with a Lagrangian dynamical sys-

tem (4.2) for which
9\ (L)
— =0, 4.37
ot ( )

then 3Z (x,x,t )/dt will also be a solution of the symmetry
equation. [ |

A result similar to Corollary 4.2.1 was previously ob-
tained for the case of velocity-independent symmetry map-
pings.’
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Remark 4.3: From (3.5) with G replaced by f(x,t) we
obtain the well-known result that

A, [L + %] —A(L). (4.39)
Therefore it is immediately obvious that if we define
I et =L () + LA (" 2 (4.40)

then the symmetry condition (4. 16) [for Z' (x,x,t )] will be in-
variant with respect to the Lagrangian gauge change

L—L =L +df (x,t)/dt. (4.41)

Consequently the set of infinitesimal velocity-dependent
symmetry mappings (2.1) and (2.2) of a Lagrangian dynami-
cal system as described in Theorem 4.1 will be invariant with
respect to this gauge change. A similar result was found for
the case of velocity-independent symmetry mappings.* W

Thus far we have found that the problem of obtaining
infinitesimal velocity-dependent symmetry mappings deter-
mined by the functions £ {x,x,t ), £ °(x,x,t ) can be reduced to
that of solving the system of partial differential equations
(4.24) for the functions Z'(x,x,t). For all but the simplest
dynamical systems this is a formidable task. However, as we
shall prove (in Sec. VI, every solution of the above-men-
tioned system of partial differential symmetry equations can
be expressed in a form which has a characteristic functional
structure which is independent of the specific dynamical sys-
tem being considered.

There exists a major subclass of solutions of the symme-
try equation (4.24) which is based upon the work of Noeth-
er.These known velocity-dependent Noether symmetry so-
lutions Z'(x,x,t) (discussed in Sec. V) also have a
characteristic functional structure which is the same for all
dynamical systems; however, in standard form the Noether
functional structure differs from the functional structure of
the general solution mentioned in the paragraph above. It is
not apparent how the functional structure of the Noether
subclass is reconcilable with the functional structure of the
general solution—but this will be shown in Sec. VI.

As is known, there is a direct relation between the
Noether subclass of symmetries and constants of motion.
We shall show there is also a relation between general veloc-
ity-dependent symmetries and constants of motion, al-
though more involved than in the Noether case.

To fully appreciate how velocity-dependent Noether
symmetries are related to the above-mentioned general ve-
locity-dependent symmetries and to compare the two meth-
ods used for obtaining these symmetries we first discuss
Noether theory in detail (in the next section} and then give a
detailed discussion of general symmetries in Sec. VI.

V. NOETHER MAPPINGS

An infinitesimal mapping (2.1) and (2.2) is said to define
a Noether mapping if there exists a function 7(x,x,¢ ) such that
the condition

sL+L %t _ _ A,
dt dt

is satisfied. It is to be noted that in this condensed form the

(5.1)
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Noether mapping condition is the same for both velocity-
dependent and velocity-independent cases.?’

Use of (1.1), (1.2}, (2.26), (2.27), and (2.30) allows us to
expand (5.1) to the form?®

L (g p)E

& (Ly )&, )y
ax' ax’ ox' ax’ ax’

+ S |Gor %) -+ (50 )]

V] 0
+‘7—L.§"+ a—L§°+L(a§ Wy % )
X’ ax’ at

ar . % ar
+ ox’ ¥+ or 0

The well-known classical case of Noether mappings is
the one for which the functions &', £, and 7 are all velocity
independent, i.e., £ (x,? ), & %x,t ), 7{x,t ). For this classical case
the Noether mapping condition (5.2) must hold identically in
the x’. In general this leads to a set of overdetermined equa-
tions in the unknowns £, £, 7, and hence there may exist
Lagrangians for which there are no Noether mappings of
this classical type.

It is readily shown at the differential level that any clas-
sical Noether mapping determined by (5.1) will be a symme-
try mapping. To see this we first note from (3.5) with the
choice G = r{x,t) that

A, dT(x,t ) ] —o0.

(5.2)

(5.3)

As a consequence of (5.3) it follows for classical Noether
mapping solutions of (5.1) that

A, [6L + 1% ] =0. (5.4)
Hence the symmetry condition (4.14) is satisfied by classical
Noether mappings.®

We now consider solutions of (5.1) which determine type
{I) velocity-dependent point mappings [(4.9) or (4.10)], where
the associated function 7 may or may not contain x'. We shall
refer to such solutions as velocity-dependent Noether map-
pings. As is known, such velocity-dependent Noether map-
pings are also symmetry mappings. In the latter part of this
section this will be shown at the differential level without
reference to the invariance of the action integral.

By means of (2.34) (with G = L ) we may express (5.1) in
terms of the mapping functions Z' (x,x,t ) [refer to (2.12)]. We
thereby obtain the Noether mapping condition in the alter-
native form

dr*

AL = — ba, (5.5)
dt
where
T*(%,x,t ) =LE® + 7. (5.6)
Expansion of (5.5) [refer to (2.31) and (2.11)] gives
oL 3Z° af*)..j (82’ 8Zi)
- - ~ 1 X'+ — x/+ —
(8x' ax’ + ox’ ax' \ dx’ ot
aL ar* ., Or*
_— Z —_— x' + —_— O, 5.7
+ ax’ + ax' at .7
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Note that the elimination of £ ‘ from the (velocity-depen-
dent) Noether mapping condition (5.1) by means of (2.12) has
again led to an equation in which £ ° does not appear and
hence may be considered as arbitrary. [See Remark 4.2 fol-
lowing (4.16).%°]

For the case of velocity-dependent functions 7{X,x,t ) it is
important to stress that in the Noether mapping condition
(5.1) and subsequently in (5.5) the *“ = sign is used rather
than the * = > sign. To understand the reason for this we
note first that for dynamical paths (denoted by the “ ="
sign) the Noether identity (3.10) reduces to

ar=2 (é£,2f) sa. (5.8)

dt \gx'
Hence if “ = > were used in the Noether mapping condition
(5.1), then by use of (5.8) it would follow that (5.5) could be
expressed in the form

d (dL _,; .
2(Lzivm) 20 59
dt (6)’:’ 59)
Solutions to (5.9) are given by
Z (x,x,t) = arbitrary, (5.10)
T*=M(x,x,t)— a—{‘,Z", (5.11)
ax'
where
M ., (5.12)
dt

i.e., M (x,x,t)is any constant of motion of the dynamical sys-
tem (4.1).

Ifin (2.12) we consider £ ‘(x,x,t ) as arbitrary in addition
to the above-mentioned arbitrariness in £ °(x,x,? ), then the
determined value of Z' (x,x,t ) will satisfy condition (5.10). It
then follows from (5.6) and (5.11) that a value of r{x,x,¢ ) will
exist corresponding to each such arbitrarily chosen £, £°.
The above analysis implies that if “ = > were used in (5.1),
any infinitesimal velocity-dependent mapping (2.1) and (2.2)
would be a Noether mapping. To avoid this situation the
Noether mapping condition (5.1) has been formulated with
the “ = ” sign.?® Consequently (5.7) must hold identically in
the %'.2! In contrast it is readily seen for the case of velocity-
independent Noether mapping [£’ (x,? ),£ %(x,t ),7(x,t )] that X
is the highest-order derivative of a coordinate which appears
in (5.2). Hence for the velocity-independent case it is imma-
terial whether or not “ =" or *“ =" is used in the Noether
mapping condition (5.1).

We now continue with the analysis of velocity-depen-
dent Noether mappings determined by (5.7). We observe that
if a set of functions Z {x,x,t ), 7*(x,x,t ) is a solution to (5.7),
then it follows from (2.12), (5.6), and the above-mentioned
arbitrariness in £ %(x,x,? ) that a solution to the Noether map-
ping condition (5.1) [or (5.2)] will be given by the functions

Elrt) = Z i) + K€1), (5.13)
£°(x,x,t ) = arbitrary, (5.14)
TiEx,t) = T*%,x,t) — L& %x x,1 ). (5.15)

[Note, however, for the case of velocity-independent
Noether mappings, it follows from the remarks in the para-
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graph immediately after (5.2) that the function & %(x,¢ ) will in
general not be arbitrary.]

We next determine the form of the functions Z /(x,x,t)
and 7*(x,x,? ) appearing in (5.13) and (5.15) by obtaining the
solution to (5.7). As mentioned above (5.7) must hold identi-
cally in X, This leads to the following equations in the un-
known functions Z (x,x,t ) and 7*(x,x,? ):

oL 3Z' | ar*

i - =0, (5.16)
% ox | ox
oL (az" y az") oL . ., o
—|— —_— + —=Z'+ —X'+ =0.
o \axl = T o ax ax ' o
(5.17)

Solutions to (5.16) and (5.17) can be obtained in terms of
the function L (%,x, ), provided det H;; #0 [see (3.16) for the
definition of H]. Sarlet and Centrijn'® obtained solutions to
(5.16) and (5.17) in their analysis of symmetries of Lagran-
gian dynamical systems (based upon the Cartan one-form)
which led to constants of motion of the Noether type.>?
Their solutions, however, were determined using the suc-
cinct methods of the modern techniques of calculus on mani-
folds. Palmieri and Vitale!® in their analysis of the inverse
Noether problem stated without detailed proof a special so-
lution to essentially {5.16) and (5.17) for the case where
L = L (x,x) and where the mapping functions are assumed to
have no explicit dependence on ¢. Saletan and Cromer in
their textbook treatment of an inverse Noether theorem [for
systems with L (x,x,t )] followed the method of Palmieri and
Vitale'® and essentially verified a solution to (5.16) and
(5.17). Candotti, Palmieri, and Vitale'® gave a detailed proof
of an inverse Noether theorem for the case L (x,x,# ) with the
assumption of velocity and time-dependent mapping func-
tions £ ,£ °. However, they based their work upon the condi-
tion 7 = 0 and hence did not obtain a general solution to (5.1)
[or (5.16) and (5.17)].

Due to the importance of Noether mappings as a sub-
class of the more general symmetry mappings to be consid-
ered in Sec. VI we shall solve in detail by elementary meth-
ods the Noether mapping conditions (5.16) and (5.17). Of
particular interest to us in the derivation of this Noether
solution is a technique employed by Candotti, Palmieri, and
Vitale,'® since we shall apply a similar technique in an analy-
sis of velocity-dependent general symmetry mappings. This
detailed derivation of the solution of the Noether mapping
conditions will also provide a unified notation so that the
reader may readily compare the method used to obtain the
Noether subclass of velocity-dependent symmetry mappings
with the method used to obtain the velocity-dependent gen-
eral symmetry mappings (treated in the next section).

From (5.16) the integrability conditions on 7* take the
form

74 az’

H; o —H, pYy =0. (5.18)
We define

Z=H,Z’, {5.19)
and by (4.5) and (4.6) find

Z'=HZ,. (5.20)
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By means of (5.20) we may express (5.18) in the form [use
being made of a formula for H* /dx* obtained from (4.6),
and the property dHj,/dx*=0dH,,/dx’, which follows
from the definition (3.16)]

74 9z,
-~ — — =0. (5.21)
ax ax’
The solution to (5.21) is
YA . .
Z, = —, Z(xx,t)arbitrary. 5.22
P, (2 ) ry (5.22)

From (5.22) and (5.20) we find that the integrability condi-
tion for 7* (5.18), obtained from (5.16), requires Z’ to have
the form
oz
I’
We now proceed with the integration of (5.16) by first
rewriting it in the form [with the use of (3.16)]
(L
ax’ Ix/ \ox'
If Z* in (5.24) is replaced by use of (5.23), the resulting equa-
tion may be readily integrated to give
_gm9L dL 9Z
ax i

Since Z (x,x,t ) is arbitrary there has been no loss of generality
in dropping an arbitrary additive integration function of x*
andt from (5.25). Theintegration of (5.16) is now complete; it
has led to Z' with the form (5.23) and 7* with the form (5.25).

Consider next the integration of the remaining condi-
tion (5.17). Use of Z' (5.23), 7* (5.25), along with (4.3) allows
us to express (5.17) in the form

az iz . aZ

H™R, — + —x" 4+ — =0.
ax™ ax™ at

From the decomposition of A;(L ) given in (4.2), along with

the use of (4.6), we may eliminate R, from (5.26) to obtain
daz az

Z'=HY Z (x,x,t ) arbitrary. (5.23)

(5.24)

Z") +H,Z'

(5.25)

(5.26)

—H™——A(L)= 5.27
i Fre (L) = (5.27)
If we evaluate (5.27) for a dynamical path we find
LZ2 (5.28)
dt

Hence the unknown function Z (x,x,?) appearing in (5.26)
must necessarily be a constant of motion of the dynamical
system (4.1).

It is next shown that a sufficient condition for a function
Z (x,x,t) to be a solution of (5.26) is that it be a constant of
motion of the dynamical system (4.1). Assume then that a
function Z (x,x,t) is a constant of motion of the dynamical
system (4.1) so that (5.28) holds. We thus have upon expan-
sion of (5.28)

oz . 3z .. Iz .
—_xmr _xm+ —_— =0, 5.29
prea iy ot (5.29)

Use of the dynamical equation in the form (4.7) allows (5.29)
to be written in the form
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Flix,t)=H™R, a_z + % my 92 -
axm ot
Since the function F (x,x,t ) vanishes at every point of every
dynamical path it must vanish identically in the space with
variables (¥',x',t ).>* Thusif Z (x,x,t ) is a constant of motion of
the dynamical system (4.1) it will identically satisfy (5.26);
this establishes the above-mentioned sufficiency condition.
Equations (5.16) and (5.17) have now been solved for
T*%,x,t) and Z'(x,x,t) given by (5.23) and (5.25), wherein
Z (x,x,t ) must be a constant of motion of the dynamical sys-
tem (4.1). It therefore follows that the solution to the alterna-
tive form of the velocity-dependent Noether mapping condi-
tion (5.5) has been obtained. These functions for 7* and Z*
when used in (5.13) and (5.15) lead to (£*,£ °,7), the general
solution of the velocity-dependent Noether mapping condi-
tion (5.1):

(5.30)

§'(x,x,t)—H"ng XEO, (5.31)
£O(x,x,t ) = arbitrary, (5.32)
ikxt)= — H™ ZL jzm +Z— L&Y, (5.33)

where Z (x,x,t) is a constant of motion of the dynamical sys-
tem (4.1) with Lagrangian L (x,x,? ).

Remark 5.1: The Noether mapping functions given by
Palmieri and Vitale'® can be obtained as a special case of
(5.31)+5.33) with the assumption that L =L (xx),
Z=2Z(xx),and £°=0.

The Noether mapping functions given by Candotti, Pal-
mieri, and Vitale'? can be obtained from (5.31)—5.33) with
the assumption that 7 = 0. In this case £ ° is no longer arbi-
trary and is determined by (5.33).

The Noether mapping functions obtained by Sarlet and
Cantrijn'® in their search for generalized symmetry map-
pings with a concomitant constant of motion of the Noether
type were essentially the same as (5.31)5.33). ]

We now establish at the differential level that the above-
obtained velocity-dependent Noether mapping functions
(5.31)5.33) determine symmetry mappings of the dynami-
cal equation (4.1). To show that an infinitesimal velocity-
dependent mapplng (2.1) and (2.2) defined by mapping func-
tions £, £° is a symmetry mapping it is sufficient to show
that the associated mapping function Z' [refer to (2.12)] sat-
isfies (4.17). Since the Z’ and 7* associated with the Noether
mapping functions £, 7 [refer to (5.13), (5.15), (5.31), and
(5.33)] satisfy (5.5) it follows for Noether mappings that
(4.17) immediately takes the form

2 |
sy = - [a (L) + £ (L 2],
dt dt? \gx’ 9x'
(5.34)

Use of the identity (3.5) and the definition (3.16) allows us to
express (5.34) in the form

AAL) = — _[ax ( =z Zf) —H,.,.zf] sa.
5.35)

The term in square brackets in (5.35) vanishes identically
upon substitution of Z' and 7* given by (5.23) and (5.25).
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Hence every infinitesimal velocity-dependent Noether map-
ping (2.1) and (2.2) defined by (5.31)(5.33) is a symmetry
mapping of the dynamical system (4.1). We note that this
method for proving that Noether mappings are symmetries
has bypassed any reference to the invariance of the action
integral.

It is next shown that the above Noether solution (5.31)-
(5.33) leads in a natural manner to the inverse Noether
theorem.

As is well known, from the Noether identity (3.9) and
the Noether mapping condition (5.1) it follows that corre-
sponding to every velocity-dependent or independent
Noether mapping (£,£ °,7) there exists a Noether constant of
motion I of the dynamical system (4.1), where
aL _, oL _; 0
e (ax"x L)§ A
For the case of velocity-dependent Noether mappings it is
found by use of (5.13}5.15) that Iy reduces to the form

I, = a—L VAR o
ox’
This latter form for 7, shows it is independent of the arbi-
trary function £ °. Moreover, if the Noether mapping func-
tions (5.31}5.33) (which incorporate the detailed form of Z'
and 7*) are used in (5.36), we find

Iy =2, (5.38)

i.e., the Noether constant of motion I, is exactly the con-
stant of motion Z which appears in the Noether mapping
functions. This relation (5.38) between Iy and the arbitrarily
chosen constant of motion Z, which determines the Noether
symmetry mapping functions Z',7%, essentially forms the
basis of what is generally referred to as the inverse Noether
theorem, that is, corresponding to every constant of motion
Z there will exist velocity-dependent Noether symmetry
mapping functions (Z’, 7*) whose concomitant Noether
constant of motion is Z. However, as a consequence of the
arbitrariness of the mapping function £ °, an infinite number
of velocity-dependent Noether symmetry mappings (£°,£ °,7)
[(5.31){5.33)] may be associated with each given (Noether)
constant of motion (5.38). Thus even a Noether constant of
motion originally obtained as a concomitant of a velocity-
independent Noether mapping could also be considered as a
concomitant of an infinite number of velocity-dependent
Noether mappings.

We summarize the velocity-dependent Noether map-
ping theory in the theorem that follows.

Theorem 5.1: (Noether theory): An infinitesimal veloc-
ity-dependent mapping

X=x'+6x', 6x'=&"kxt)0a, (2.1)

t=t+68t bt=§E%x,t)ba (2.2')
is said to be a velocity-dependent Noether mapping of a La-
grangian dynamical system

AfL)=0, L=L(xxt)

(5.36)

Iy=

(5.37)

(4.1

[H,=0%L /3% 3%/, det H; #0], if and only if there exist
functions &' (x,x,t), £ °(%,x,t), and m{x,x,t) which satisfy the
Noether mapping condition
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dét dr

¢SL+L—;= - it—&a. (5.1
The change in variables

§'ex,t) = Z e x,t) + 2 xx.t ), (2.12))

X, ) = 74Xt ) — L (%, ) k%t ) (5-6')

reduces the Noether mapping condition (5.1’) to the form
dr*
dt

in which £ © does not appear. The solution to (5.5) is express-
ible in the form

AL= — ba, (5.5

zf=Ha_;%, (5.39)
3L 3z
™= _H"-a;a—j +Z, (5.40)

where HY H;, = 6, and Z (x,x,t ) is an arbitrary constant of
motion of the dynamical system (4.1'). Hence the solution to
the Noether mapping condition (5.1') is expressible in the
form

£k t) =H”a—f; + #EO, (5.31)
£°x,x,t) = arbitrary, (5.32)
) =H”%3TZJ +Z—LE°, (5.33)

and the most general infinitesimal velocity-dependent
Noether mapping (2.1') and (2.2') is determined by the
Noether mapping functions £ (5.31') and £° (5.32'). All ve-
locity-dependent Noether mappings are symmetry map-
pings in that the Noether mapping functions £ (5.31°)and £ °
(5.32') will identically satisfy the symmetry condition

SAL)=0. (4.8)
Alternatively, the Noether mapping function Z' (5.39) will
identically satisfy the symmetry condition

AAL)=0. (4.16)

Associated with each infinitesimal velocity-dependent

Noether symmetry mapping there will exist a concomitant
Noether constant of motion

Iy=9Lgi_ (a—L,)'c'—~L)§°+r, (5.36)
ax' ax'
which can be expressed in the equivalent forms
Iy=9Lzitm (5.37)
ax'
or
Iy=2Z. (5.38')
|

Remark 5.2: From the form of the velocity-dependent
Noether symmetry solution Z' (5.39) we may regard the
problem of obtaining solutions of the Noether symmetry
condition (5.5) as being reducible to that of obtaining con-
stants of motion of the associated Lagrangian dynamical sys-
tem (4.1). n

Remark 5.3: Infinitesimal velocity-dependent Noether
symmetry mapping solutions Z' and 7* may be obtained as
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explicit functions of X, x', and ¢ so that their functional struc-
tures in terms of the constant of motion Z [refer to (5.39) and
(5.40)] are not immediately apparent. However, one may
readily express such known Z' (%,x,¢ ) and 7*(%,x, ) in the re-
spective forms (5.39) and (5.40) by first employing the Z’ and
7* in (5.37) to obtain I, which by (5.38) is the required con-
stant of motion Z (x,x,t ) needed to express Z' and 7* in the
desired forms. This is one of the points illustrated by Exam-
ple I given in Sec. VIIL ]
Remark 5.4: Noether mappings (refer to Theorem 5.1)
are a subclass of general symmetry mappings (refer to
Theorem 4.1). It therefore follows (refer to Remark 4.3) from
the invariance of the symmetry condition (4.16) with respect
to a Lagrangian gauge transformation (4.40) that the set of
solutions {Z'(x,x,t)} of the Noether symmetry condition
(5.5) must be Lagrangian gauge invariant. However, it re-
mains of interest to examine the effect of Lagrangian gauge
transformations on the Noether symmetry condition (5.5} in
order to determine how 7* is affected and then to use the
results to investigate the behavior of the Noether constant of
motion I (5.37) with respect to this gauge transformation.
For completeness it is of interest to not assume the
above-mentioned invariance of the Noether mapping func-
tions Z' but to investigate how such invariance arises from
the direct analysis of the effect of a Lagrangian gauge change
on the Noether mapping condition (5.5). We therefore now
assume that the Noether mapping condition (5.5) is based
upon the Lagrangian L (x,x,t ) (4.40). We thereby obtain

_ ) o
dt

(A indicates variation with respect to Z'), which is to be
solved for Z' (x,x,t ) and 7*(%,x,¢ ). By means of (4.40) and (5.5)

it follows by the use of (2.37) [with G = f (x,# )] that (5.41) may
be expressed in the form

AL (xx,t)= (5.41)

—_ ¥
AL— — 9 s (5.42)
dt
where
! Sa=Af(x,t) + 7* a. (5.43)

Equation (5.42) is identical in form to (5.5}); it therefore fol-
lows from Theorem 5.1 that the solution to (5.42) is given by

Z =gi9Z (5.44)
ax'
Ao _pgydldZ | > (5.45)
EETY

where Z {%x,x,¢ ) is an arbitrary constant of motion. The set of
arbitrary constants of motion {Z } appearing in (5.44) and
(5.45) is the same as the set of arbitrary constants of motion
{Z } which appears in (5.39) and (5.40). Hence there is no loss
in generality in assuming Z = Z.

It therefore follows that

Zi=2Z! (5.46)

which verifies the previous observation that Noether sym-
metry solutions are invariant with respect to the Lagrangian
gauge transformation (4.40).

By use of (5.43)—(5.46) we find
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Lzt
ax’
which shows how the function 7* is affected by the Lagran-
gian gauge change (4.40).

We next examine the effect of the Lagrangian gauge
change (4.40) on the functional structure of a Noether con-
stant of motion Iy (5.37). To do this we formulate the
Noether constant of motion (5.37)in terms of L, Z, and 7* to
obtain

THR=1*—

(5.47)

7N= a—‘.Lizi"'?‘.

X

Upon use of (4.40), (5.46), (5,47), and (5.37) we find that (5.48)
takes the form

Iy =1y. (5.49)

Thus the Lagrangian gauge transformation (4.40) leaves the
functional structure of a Noether constant of motion invar-
iant because the induced gauge change in 7* compensates for
the gauge change in L (with Z’ remaining invariant).

Since in the Noether solution (5.31)—(5.33) the function
& %x,x,t )is arbitrary, there is noloss in generality in consider-
ing it unchanged with respect to the Lagrangian gauge
change {4.40). We then find under this gauge change that

(5.50)

(5.48)

= _ U pi_ I ro
T=7 axig ¢?t§ . (5.51)

For a discussion of velocity-independent Noether the-
ory with respect to Lagrangian gauge transformations refer
to Katzin and Levine.? [ ]

Remark 5.5: For Lagrangian systems for which the La-
grangian hasnoexplicit¢ dependencesothatdL (x,x)/dt = 0,
it follows from (5.5) [by use of (3.2)] that if Z'(x,x,t) and
7*(%,x,t ) satisfy (5.5) then so will 32Z° /3t and dr*/Jt. Hence if
Z' defines a Noether mapping of such a dynamical system,
then 3Z' /Jt will also be a Noether mapping of the system,
that is, Z' /3t remains within the subclass of Noether map-
pings (refer to Corollary 4.1). A similar result was proved for
velocity-independent Noether mapping.® ]

Remark 5.6: For Lagrangian systems for which
dL /dt = 0 it follows from (5.39) and Remark 5.5 that for
such dynamical systems if M (x,x,¢ ) is a constant of motion so
too will be M (x,x,t )/J¢. This well-known result is generally
proved by other means.* [ |

Remark 5.7: Based upon the Noether mapping condi-
tion (5.1) we have discussed Noether mappings for the classi-
cal velocity-independent case [£' (x,t )£ °(x,t ),7(x,¢)] and for
the most general velocity dependence case [£(x,x,t),
£ %x,x,t),7(x,x,t }]. It would be of further interest to system-
atically investigate Noether mappings with regard to the as-
sumed explicit velocity dependence or independence of each
of the functions £ ,£ °,. To do so one must consider the two
choices 7{x,x,t ) and 7{x,? ) for each of the four types of £, £°
considered in Sec. IV [refer to (4.9)—(4.12)]. By analysis of the
{(n + 1) equations obtained from (5.2) (which must hold iden-
tically in the %’} it can be shown for unconstrained Lagran-
gian systems that of the eight possible situations, the two
cases [£(x,2),€ Ox,x,t ),7(x,t)] and [£'(x,2),€ Ox,¢ ), m(%,x,2 )]
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cannot exist. We have not attempted a literature search with
regard to this detailed classification system. [ ]

For a Lagrangian dynamical system (4.1) the Noether
symmetry condition (5.5) defines a subclass of symmetry so-
lutions of the general symmetry condition (4.16). These ve-
locity-dependent Noether symmetry solutions Z' were
shown to be expressible in a form that has a characteristic
functional structure which is the same for all (Lagrangian)
dynamical systems and dependent upon the constants of mo-
tion of the system. We are thus led to the problem of deter-
mining if the general velocity-dependent symmetry solu-
tions Z' of (4.16), that is, solutions which are either
non-Noether or Noether symmetries, can also be expressible
in a form which has a characteristic functional structure
which is the same for all dynamical systems and is dependent
upon the constants of motion of the dynamical system. This
problem will be considered in the next section.

VL. ACHARACTERISTIC FUNCTIONAL STRUCTURE OF
ALL VELOCITY-DEPENDENT SYMMETRY MAPPINGS

In this section it is shown that every velocity-dependent
solution Z' (x,x,t ) (Noether or non-Noether type) of the sym-
metry condition (4.16) is expressible in a characteristic form
which in principle is derivable if a set of 2# functionally inde-
pendent constants of motion of the dynamical system is
known. For generality in the derivation to follow we shall
consider dynamical equations which are more general than
Lagrange’s equation (4.1).

Consider then a system of dynamical equations of the
form

E,(%,%,%,t )=H,,(%,x,t J¢/ — F,(%,x,t) =0, (6.1)

in which det H; 0 so that the X’ terms can be expressed in
the form

¥ = Flxxt), (6-2)
where '
F'=H'F, HH, =85, (6.3)

Dynamical equations (6.1) include Lagrange equations of the
form (4.1) for the choice E, (X,x,x,t }=A, (L ) [refer to (4.2) and
(4.3)], in which case F;(x,x,t) of (6.1) reduces to R, (x,x,t) of
(4.3), and H;; of (6.1) reduces to (3.13) [which may then be
expressed in the form (3.16)].

Let C4(x,x,t), A = 1,...,2n, be a set of 2n functionally
independent constants of motion of the dynamical system
{6.1) so that on a dynamical path we may write

CA(kx,t)= ¢!, c'=const, (6.4)

where in general the constants ¢* will vary from path to
path.

Remark 6.1: The “ = ” notation: the notation * = * in-

dicates that any function [refer to (2.9)] G (xy.x\_,,...,
x{,x't) is to be expressed completely in terms of the path
parameter ¢ by means of the finite equations of the dynamical
paths. ]

The 271 equations (6.4) may be inverted to express x’ and
x' in the form
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x' = ¢c' ...t )=dc,t), (6.5)
x'=c'ch,....c2nt )=ct) = ‘_9_"%1 (6.6)

The set of equations (6.5) is a complete solution to the dy-
namical equations (6.1) [or (6.2)]. Conversely, for a complete
solution (6.5) we could solve Egs. (6.5) and (6.6) for the con-
stants ¢* and thereby obtain the 2n constants of motion
C*(x,x,t ) (6.4). This reciprocity between a complete solution
of the dynamical equations and its associated set of 2n func-
tionally independent constants of motion is essential to the
proof to follow.

As with Lagrange’s equations (4.1), an infinitesimal ve-
locity-dependent mapping (2.1) and (2.2) which maps the set
of all solution curves of (6.1) into itself will define a symmetry
mapping of this more general dynamical system. Such map-
pings are determined by the condition

SE, = 0. (6.7)

Use of (2.34) with G replaced by E; shows (in a similar man-
ner to that of Sec. IV) that such symmetry mappings are
determined by velocity-dependent mapping functions 8x’,5¢
of the form

&x'= Ax' 4 X' 6t, (6.8)
6t = arbitrary. (6.9)

In (6.8), Ax' [=Z' (x,x,t }5a] is determined by the set of partial
differential equations obtained by the formal expansion of
the symmetry conditions

5_'éH,.jZJ+J,.jZ’+K,.jZ’éO, (6.10)
a
N o aEl ) o a i
H(x,x,t) = R Jylx.x,t) = vk
JE,;
Klkxt) = —. (6.11)
dx

The expanded form of (6.10) is given by (4.24)}-{4.33),
wherein for applicability to the more general dynamical sys-
tem (6.1) currently being considered, we now employ H;;,J;;,
K, as defined by (6.11), and R’ is now replaced by F' as
defined in (6.2).

In the definitions (6.11) and in the formal expansion of
Z/ and Z’ occurring in (6.10) all ¥ and ¥ terms are to be
expressed as functions of x’,x’,¢ by means of the dynamical
equation (6.2).

It should be noted that if E; = A,(L ), [see (3.1)] then J;;,
K; given by (6.11) will reduce to the respective J,;,K; based
upon the Lagrange equaton (4.2) [refer to (3.14), (3.15), (4.20),
and (4.21)], and the functions Hj; of (6.11) will reduce to
(3.16).

It is convenient to transvect (6.10) with H * and express
the system of equations in the form

Z'yJ,Z/ 4+ K, Z,=0, (6.12)
where
Jifext)=H"T,, Kikxt)=H"K,. (6.13)

We first derive a necessary condition that every solution
Z'(x,x,t ) of the set of partial differential symmetry equations
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obtained by the expansion of (6.12) must satisfy. If (6.12) is
evaluated on the dynamical trajectories of (6.1) by means of
(6.5) and (6.6) we obtain an associated set of ordinary differ-
ential equations

Het)+ jinletEmert) + kinlct)z™et) 20,  (6.14)
where

Zikx,t) £ Z ' [Wlet Ll )t ] =Zeot), (6.15)

T Ext) LT (et hdlet )t =it (et)  (6.16)

K (kxt) LK (et )hdlet )t ] =k (ct).  (6.17)

We note that the associated system of equations (6.14) which
must be satisfied by Z/(c,t ) (6.15) is always a system of linear
equations irrespective of whether the original dynamical sys-
tem (6.1) is linear or nonlinear. Solutions of (6.14) are ex-
pressible in the form

Zc,t) =bgylc,t), (6.18)
where the b4, 4 = 1,...,2n are arbitrary constants.

We may thus state the following theorem.

Theorem 6.1. When evaluated on trajectories

x' = ¢fc,t) (6.5)
of the dynamical system

Hij(x)x’t)xj_lri(i’xst) =0, (61,)

every solution Z {(x,x,t ) of the symmetry (partial differential)

equations obtained by the formal expansion of
Z'+J,Z/+ K, Z7=0 (6.12")
must be expressible in the form
Zikx,t)=2Zct)=b"g,(ct),
b = arbitrary const, 4 =1,...,2n, (6.19)

where the Z(c,t ) are solutions of the associated ordinary dif-
ferential equations

(et )Emet) + ket )z™et) = (6.14')

Het)+j'
obtained by evaluating the symmetry equations (6.12’) on the
trajectories (6.5'). The 2n vectors g’,(c,? ) appearing in (6.19)
constitute a fundamental solution set of (6.14'). |

Since on a trajectory every solution Z (x,x,?) of (6.12)
has the form (6.19) we are led to assume (to be proved below)
that the functions Z *{x,x,t ) defined by

Z*ix,t) = B* (x.x,t )8, [C 5%, )y, C (i, ) ]
= B*g,(C/t) (6.20)

will be a solution of the (partial differential) symmetry equa-
tion (6.12). In (6.20) the B *4(x,x,t) are arbitrarily chosen
constants of motion. Hence, they can always be expressed as
functions of the 2n functionally independent constants of
motion C“#(x,x,t) (6.4) which are associated with the inver-
sion of the dynamical solution (6.5). We may thus write
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B*(kx,t) =b*[Clix,t)] = b*(c)

b*(c)=const, A=1,.,2n. (6.21)

In (6.20) the functions g’, [C (x,x,t ),t ] are obtained by re-
placing the constants ¢* appearing in the g/, (c,? ) of (6.18) by
the respective above-mentioned constants of motion C# by
means of (6.4).

It will now be verified that the assumed solution
Z *(x,x,t) (6.20) satisfies the (partial differential) symmetry
equations (6.12). To do so it is notationally convenient to first
define

QZ)y=2'+J,Z'+K', Z/, (6.22)
so that it is required to prove Q{Z*) =0
We first form from (6.20)
. . ag' Jg,
Z¥ =B B*"( 4 ‘). 6.23
g4+ ac" Py o (6.23)

Since the B *4(x,x,t ) and C“(x,x,t ) are constants of motion
we have by use of (6.2) that B *4 = 0, C4 = 0, and we thereby
obtain from (6.23) that

.

Zv=p 6.24
E (6.24)
In a similar manner we find
. g
Zi=ps >4 6.25
at ot (6.25)
Use of (6.20), (6.24), (6.25), and (6.22) leads to
a%,(Ct)
Z*)=B* [ 2 m
Q1z*) = at ot
ag'"(;c ) +K', g7(Ce )] (6.26)

It is to be noted as a consequence of the “ = in (6.26) that
Q'(Z *)is now a function of X/, x’, and ¢, so that we may write

QYZ*) = Plxxs), (6.27)
where
i __ pad 3%, (Cyt)
Pt =B* [W
L
(6.28)

We note that in the derivatives dg,(C,t)/dt and
3’g,(C,t)/ot 3t which appear in (6.28) the functions
C4(x,x,t ) are held fixed. Therefore if we evaluate the expres-
sion P {x,x,t ) (6.28) on the dynamical paths by means of (6.5),
{6.6), (6.15}6.17), and (6.21) we may write the resulting
expression in the form

Pigex,t) £ b* () gilet) +7'mlet) E2lest)

+ k'alet) ghlest)). (6.29)

The functions g, (c,t) in (6.29) are solutions of (6.14) for al/l
values of ¢*. It follows that P {(x,x,t ) = 0. Since the functions
P'(x,x,t) vanish at each point of every trajectory they vanish
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identically in the variables X, x’, and £.3¢ From (6.27) we
thereby conclude that Q{(Z *)=0. Hence the symmetry
condition (6.12) is satisfied by Z *(x,x,t) (6.20).

It is next proved that every solution Z {(x,x,t ) of the sym-
metry equation (6.12) is expressible in the form (6.20). To do
this we assume on the contrary the existence of a solution
Z **(x,x,t) which is not expressible in the form (6.20). By
Theorem 6.1, there will exist constants b = b ***(c) so that
on dynamical trajectories [refer to (6.19)]

Z**x,x,t) = z*%(c,t) = b**(c) g (c,). {6.30)

By means of {6.20) and the assumed solution Z **' we
form Wik xt) = Z **(x,x,t) — Z *{(x,x,t ) to obtain
Wikx,t) = Z **(x,x,t) — B * (x,x,t) g [C (x,x,2 )t ].
(6.31)
Evaluating W(x,x,t) on dynamical trajectories by use of
(6.4)-(6.6), (6.21), and (6.30), we obtain

Wikxt)=b**(c)g,lct) —b*(c) galest).  (6.32)

Since in (6.31) the B ** {associated with the Z * solution
(6.20)] may be arbitrarily chosen constants of motion, we
may always pick them so that B *4 (x,x,t) = b ** [C (xx,t)].
For this choice it follows [refer to (6.21)] that

b** [C(x,x,t] =b**(c) and hence by (6.32) Wixx,t)

£ 0 (for all c). Since Wi(x,x,t) vanishes at every point of
every trajectory it vanishes identically in the variables X/, x',
and ¢. Therefore, by (6.31)

Z tti(x’x’[) = B %4 (x,x,t)g’[C(x,x,t );t ]’ (633)

which contradicts our assumption that Z ** was not ex-
pressible in the form (6.20). We are thus able to state the
following theorem.

Theorem 6.2: Consider a system of dynamical equations

E,=H;%’'—F,(xxzt)=0, detH;#0, (6.1")
with a complete solution for the trajectories given by

x' = ¢lc!,....c*t) = dle,t),

c!=const, A=1,..2n, (6.5")

so that

x=9let) (6.6)

ot

Let

CAxx,t)=c? (6.4')

be the specific set of 2n functionally independent constants
of motion obtained by inversion of (6.5") and (6.6’) for the
constants c*.

A solution Z /(x,x,t ) of the (partial differential) symme-
try equations

A o, 2i40,214K,Z/ %0
B W ZIHI IR ZTE0

where

(6.10)
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ax’

e OB
l,'](x’x’t) - Ei—" ’ ,,(x,x,t) =

y

9E, , (6.11)

K (xx,t)=—
it ) ax’

is
Z(k,x,t) = BA(%,x,t) gy [C 1%, )yerenC 2,2 ot |
= B“g,(Ct); (6.20)

the B4 (x,x,t ) are arbitrary constants of motion of (6.1”) and
hence may be regarded as arbitrary functions of the 2» con-
stants of motion C4(x,x,t) (6.4'), and the functions
2, [C(x,x,t),t] are obtained by replacing the constants ¢
appearing in the functions g’,(c,?) of Theorem 6.1 by the
respective constants of motion C #(x,x,? ) by means of (6.4').
Moreover, every solution Z {(x,x,t) of the symmetry equa-
tion (6.10) is expressible in the form (6.20°) by a suitable
choice of the constants of motion B4 (x,x,? ). ]

Remark 6.2: With Z (%,x,t ) given by (6.20°), symmetry
mappings for a dynamical system (6.1) will be determined by
{6.8) and (6.9). |

Remark 6.3: Since in (6.20) we may choose the arbitrary
constants of motion B “ to be absolute constants, it follows
that the 2z vectors

Zi(xxt) =g, [Clxxt)t], A=1,..2n (6.34)
will be solutions of the symmetry condition (6.10), and hence
may be regarded as a “basis” for all symmetry solutions
ZiEx,t). n

Remark 6.4: Had we initially chosen a different set of 2n
functionally independent constants of motion (6.4), e.g.,

C4(xx,t) £ ¢, (6.35)

then the associated solution (6.5) (obtained by inversion) of
the dynamical equations would correspondingly change to

x = ¢i(che). (6.36)
This change would permeate through the whole procedure
and in general results in a different set of fundamental solu-
tion functions g’ (¢,? ) (refer to Theorem 6.1). Consequently,
we would obtain a different set of solution functions
g, [C(x,x,t),t] which would also constitute a basis for

Z(x,x,t ) solutions of the symmetry equation (6.12). It would
then follow that

Zixx,t)=BA[C(xx,2)] &, [C a2 )t ]

=B4[Clix,)] g [Clrxz)e]. (6.37)

Since Noether symmetry solutions are a subclass of the
solutions Z ‘(x,x,t) of the symmetry condition (4.16) for a
Lagrangian dynamical system (4.2), and since such Lagran-
gian dynamical systems are a subclass of dynamical systems
(6.1), we may state the following corollary to Theorem 6.2.

Corollary 6.2. 1: Every velocity-dependent Noether sym-
metry solution Z {(x,x, ) (5.39) (as described in Theorem 5.1)
of a Lagrangian dynamical system (as described in Theorem
4.1)is expressible in the form (6.20) [as described in Theorem
(6.2)]. |
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With reference to Theorem 6.2 let Z {(x,x,¢ ) be any given
solution to the symmetry equation (6.10) [or equivalently
(6.12)]. We now show how to choose the arbitrary constants
of motion B“(x,x,t ) so that Z ' is expressible in the charac-
teristic form (6.20), that is,

Zkx,t) =BA(xxt) g4 [Clax )t ). (6.38)
From (6.38) we form (recall B4 = 0,C4 = ()
Z'= B4 (Cr) = BA%)- (6.39)

The functions g’ (¢, ) (¢* = const) define a complete set
of solutions to the ordinary differential equation (6.14); it
thus follows that®’

galet)

galet)
where 4 = 1,...,2n denotes columns and i = 1,...,n denotes
rows in the partitioned determinant. Since the constants of
motion C“(x,x,t ) appearing in the functions g’, [ C (%,x, ), ]
act as constants in (6.39), it follows from (6.40) that

84(Cyt)

£4(Cyt)

Therefore the 2n linear equations (6.38) and (6.39) may be
solved algebraically for the 2n constants of motion B by
Cramer’s rule.

We are thus led to the following corollary to Theorem
6.2.

Corollary 6.2.2: For a given solution Z (x,x,t) of the
symmetry condition (6.10) to be expressed in the generic
form (6.20) with respect to the basis functions
& [C(x,x,t),t ] the arbitrary constants of motion B (x,x,t)
must be chosen to have the form

Wict)= #0, (6.40)

W(C,t)= #0. (6.41)

Y
BA(xx,t) = " (6.42)
where _ . _
A,z l_g‘_n_";gi_: r.l..-_Z...:ng.t'...‘f'%"- (6.43)
§184—1 Z' 8ai18an
and
W= g" (6.41')
84

In the partitioned determinants A, and W, the indices
i =1,....,n denote rows and the indices 4 = 1,...,2n denote
columns. In (6.41') and (6.43) the constants of motion
C“#(x,x,t) appearing in the functions g/, (C, ) behave as con-
stants in that g/, (C,t) = dg’, (C,t)/0k. [ |

It is of interest to demonstrate that the B (x,x,t ) (6.42)
actually satisfy the conditions B4 = 0, required of constants
of motion. With reference to (6.42) we form

BA=A/W—AW/W2 (6.44)

We first form W by differentiation of the 2n X 2n deter-
minant W (6.41). Since differentiation of row i ({ = 1,2,...,n)
results in a row whose elements are identical to those of row
i + n, we obtain a sum of only » determinants which arise
from differentiation of the last » rows of W. Hence
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w=y W, (6.45)
i=1
where
g 82n
& &2n
& G
W,=| . (6.46)
g - g
gl . gt
g -
Expand W, on row i + 1 to obtain
. 2n . .
W=y & cofg,. (6.47)
=1

Remark 6.5: Note that the appearance of a free index “7
on the left side of an equation implies the index i is also free
on the right side of the equation. n

Comparison of the W, determinants (6.46) with the W
determinant (6.41) shows that

(cof &, of W,) = (cof &, of W). (6.48)
Hence (6.47) may be written as
. 2n . .
W, =3 g (cofg, of W). (6.49)

A=1
With reference to Remark 6.3 and (6.34) therein we have
from (6.12) that
ga=—U58 +K)gl) (6.50)
Upon substitution of (6.50) in (6.49) the resulting equatlon
may be expressed in the form

W= — ;J"i AZI [ &4(cof g of W)]

J#*i
2n
—J AZI [ & (cof &, of W)l

- Sk S [ ghleofg, of W)]. (6.51)

From the theory of determinants®® we have for
A = |a;| and 4; = cof g;; that

z aik Ajk - 6;A.
k=1
With reference to (6.41) it follows from (6.52) that (6.51) re-
duces to

(6.52)

W,= —J.W, (6.53)
and hence (6.45) becomes*®
_ ( s in) W (6.54)
i=1
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The functions A ,, which also appear in (6.44), will now
be calculated. By the same argument preceding (6.45) it is
found that

A=Y A, (6.55)
i=1
where
g i1 Z' & &in
4 g1 Z" &+ &
8 i1 Z'  fia &in
By=| S : P
g‘l_ ! A——ll 7 i—1 A_+ll 21
gll . g;—l A §f4+1 &2n
grto o gt Zi+vt gl oo !
& - g, Zn i &
(6.56)
. 2" . . —, —,
Ay= Y gpcofgp+Z'cofZ". (6.57)
B=1

B#A4
By means of (6.12), (6.50), and relations similar to (6.48), Eq.
(6.57) can be expressed in the form

. n . 2n L. L
Ay=— 2 JY z &p(cof g of Ap)
=1 B=1
! B4
+71'(cofziofAB)]
n 2n . »
— Y K| Y gilcof g of Ag)
=N

=1
B#£A4

+Zcof Z* ofAB)] . (6.58)

With reference to {6.43) and (6.52), Eq. (6.58) reduces to

Ay = —J4%A,, (6.59)
and hence (6.54) takes the form
A, = — ( > J",) A,. (6.60)
i=1

By means of (6.44), (6.54), and (6.60) we find B4 = 0,
which verifies that B“ (6.42) is a constant of motion.

As a consequence of the form of the symmetry solution
(6.20) we obtain a third corollary to Theorem 6.2 whose
proof is immediate.

Corollary 6.2.3: If Z (% x,t ) is a solution of the symmetry
equation (6.12), then so will be

Zigxt)=A(xx1)Z (xx,n), (6.61)

where 4 (x,x,? ) is an arbitrary constant of motion of the dyna-
mical system (6.1). n
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Remark 6.6: Katzin and Levine’ had previously ob-
tained a result similar to Corollary 6.2.3 for the 2n-dimen-
sional symmetry vector of Hamilton’s equations expressed
in sympletic notation. More recently, Sarlet and Cantrijn'®
gave another proof for this using the concepts of calculus on
manifolds. n

Vil. EXAMPLES

To illustrate various aspects of the theory developed in
the preceding sections we now give two examples.

Example I: Consider the one-dimensional dynamical
system defined by the Lagrangian

L=e"*—x. (7.1)
It follows from (3.1), (6.1), and (7.1) that

E=All)=e % +1=0, (7.2)
and hence we have [refer to (6.2)]

X= —é. (7.3)

The dynamical equation (7.3) may be solved to obtain
[refer to (6.5)]

x={+cN1 —-Inft+c"]+c% (7.4)
from which it follows that
x= —Int+ ). (7.5)

By solving (7.4) and (7.5) for the constants ¢! and ¢? we
obtain two functionally independent constants of motion C'!
and C?, where

Clxx,t)=e *—t=¢, (7.6)

CHxx,t)= —e "k + 1) +x=c% (1.7)

By use of (7.2) and (7.3) we find from (3.13)—(3.15), (4.20),
and (4.21) [or alternatively from (6.11)] that

H,=e™ Jy=1 K;=0, (7.8)
from which it follows that _ '
HU'=H'=¢, (7.9)

It now follows that the symmetry condition (4.19) [or (6.10)]
takes the form

e *Z'+Z'=0. (7.10)
Formal expansion of (7.10) [including elimination of all dot
derivatives of x or order higher than x as required by the
“ = ” notation] will lead to the partial differential symmetry
equation for the symmetry vector Z '(x,x,t ) [refer to (4.24)].

We transvect (7.10) by means of H ! (7.9). The resulting
equation may be evaluated on the dynamical trajectory by
means of (7.4) to obtain the associated ordinary differential
equation [refer to (6.14)—(6.17)]

(t+ ' +2'=0. (7.11)
The solution to (7.11) is
Z'=b"In{t +c')+ b2 (7.12)

Hence corresponding to (6.18) we have by inspection of (7.12)
that

gi=I{t+c"), gl =1 (7.13)
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By the procedure described in Theorem 6.2 we may now
construct the solution Z '(x,x,t) to the partial differential
equation (4.24) obtained from the expansion of the symmetry
condition (7.10). Hence from (7.12) the solution Z ! as given
by (6.20) takes the form

ZYxx,t)=B'In[t + C'(x,x,t)] + B?, (7.14)
where B '(x,x,t) and B %(x,x,t ) are arbitrary constants of mo-
tion of the dynamical system (7.3) and hence may be regard-
ed as arbitrary functions of the constant of motion C* (7.6)
and C?2(7.7). We now make use of (7.6) in (7.14) and find the
general solution of the partial differential symmetry equa-
tion obtained by expansion of the symmetry condition (7.10)
to be

Z'xx,t)= —B'x + B> (7.15)

It is of interest to note that by appropriate choices of the
arbitrary constants of motion B ! and B 2, Noether and non-
Noether symmetry solutions may be obtained from the gen-
eral solution (7.15). For example, the choice B' = C! (7.6)
and B2 = C? (7.7) reduces (7.15) to a Noether solution as
described in Theorem 5.1 (refer also to Corollary 6.2.1) in
that the resulting symmetry vector

Z'= -C'x+C? (7.16)
may be expressed in the Noether form (5.39)
zi=e¢9 (_ccy, (1.17)
ox

where with reference to (5.37) and (5.38) the Noether con-
stant of motion Z =I, = — C'C?, and with reference to
(5.40) the Noether function 7* = —xe =% —te~* + xt.

If in the general symmetry solution (7.15} we choose
B! = C"(7.6)and B2 = Oitisreadily shown that theresulting
symmetry vector

Z'= —(e F—1tk

is a non-Noether solution.

Example II: We again use the procedure developed in
the proceding section to obtain the general velocity-depen-
dent mappng of the one-dimensional system

E,=x%—5=0. (7.19)

It is easily verified that the solution to the dynamical
equation (7.19) is

(7.18)

x=c'e”, ¢',c?const. (7.20)
From (7.20) we find
X =c'cPe . (7.21)

Equations (7.20) and (7.21) can be solved for ¢! and ¢%
This inversion procedure leads to two functionally indepen-
dent constants of motion

Clx,t)=xe ™=, (7.22)
CHxx,t) = x/x = 2. (7.23)
With reference to (6.11) and (7.19) we find

H,=x, J,=~2, K, =x*x. (7.24)

It then follows from (7.24} that the symmetry condition
{6.10) takes the form
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AE,/8a = xZ — 27 + (¥*/x)Z = 0. (7.25)

Expansion of (7.25) with use of the dynamical equation
(7.19) to eliminate ¥ and X gives the partial differential equa-
tion which determines the symmetry mapping function
Z (x,x,t) [refer to the two paragraphs immediately following
(6.11)]

9%z .32 . 3z
- = 2x3 2
x 0% O% axdx " Gxox
2 2 2 .3
e 92, 02 97 Rz
dx dt dx ot atdt x Ix
L3Z .. 0Z ..
092592 X 5., .
o a ' x (7.26)

To solve (7.26) we follow the procedures described in
Theorems 6.1 and 6.2. We evaluate (7.25) on the trajectories
(7.20) to obtain (after simplificaton) the associated ordinary
differential equation

2—2%+ (Y2 =0, (7.27)
which has as its solution
z=b"'e"" + b%e, b'b%=const. (7.28)

[From (7.28) the functions g (c,?) appearing in (6.19) have
the form

e

gilet)=e", gletr)=1e"] (7.29)

The solution Z (x,x,t ) of (7.26) is constructed from (7.28)
by replacing the constants b ',b2 by arbitrary constants of
motion B '(x,x,t), B?(x,x,t) of the dynamical system (7.19),
and by replacing the constant ¢? by the constant of motion
C?(x,x,t) (7.23). As result of this procedure we obtain

Z(x,x,t) = B (x,x,t )" /* 4+ B2(x,x,t )te*' /. (7.30)

It is easily verified that Z (x,x,¢ ) (7.30) will satisfy (7.26)
identically in x, x, and ¢ if use is made of the fact that the
constants of motion B“(x,x,t), 4 = 1,2, satisfy the condi-
tions

. A4 52 4 4

BAéaB x_+aB ).H_c?B =

ax x ax at

0. (7.31)
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2For any function F(t, x', dx'/dt, d *x'/dt?, - . \) the notation d °F /dt °=F,
For example, d °x'/dt °=x",

YFor additional discussion refer to Ref. 16,

21n the formulation of dynamical symmetries of Hamilton’s equations in
phase space one is led in a natural manner to introduce such a decomposi-
tion to simplify the system of differential equations which determine the
mapping functions £, £°. See Sec. IT of Ref. 7.

Note for the choice & = 0 in (2.22) we recover the defining relationship
(2.10).

24The Einstein summation notation is applied to both the coordinate indices
(lowercase Latin) and the derivative indices (lowercase Greek) so that

N n
_ag_.dxfls ﬁ&x{,.
ox, a0 (=1 Ix!

We shall indicate the range of Greek indices in each equation, since in
some equations they start with “0” and in others they start with “1.”

20ther procedures for formulating infintesimal symmetries exist. For ex-
ample, one could require that the condition

SA(L)=0!A(L) + ¢, dA,(L )/dt

be satisfied identically in the variables d 2x'/dt 2, d *x'/dt > for some func-
tions o{x,x,1), g} (%.x,t).
2See Eq. (3.10) of Ref. 8.
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Characteristic functional structure of infinitesimal symmetry mappings of
classical dynamical systems. Il. Mappings of first-order differential equations
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Infinitesimal velocity-dependent symmetry mappings of second-order dynamical systems (a)
Ei% %, x,t)=X'— Fix,x,t) =0, i = 1,..., n, were studied in considerable detail in a previous
paper [J. Math. Phys. 26, 3080 (1985), the first of this series]. Among the results developed in that
paper was a procedure for determining the characteristic functional structure of symmetry
mappings for such second-order systems. In this present companion paper it is shown that a
similar procedure may be used to obtain the characteristic functional structure of infinitesimal
symmetry mappings (b)7 = y' + 8y, 8y =n'(y, t)8a;(c)t = t + 6t, 5t ="y, t)ba, for systems of
first-order differential equations (d) E’(p, y, t)=p' — A !(y,t)=0,I = 1,..., N. This
characteristic structure is the same for all first-order systems (d) and is explicitly dependent upon
constants of motion of the system. For the special case in which (d) is a system of N = 2n equations
derived from a system of n second-order equations (a) it is shown how the respective symmetry
equations based upon these two equivalent dynamical descriptions are related and how their
symmetry solutions are correlated. Two examples are given.

I. INTRODUCTION

In the first paper of this series’ (denoted by I) an analysis
of infinitesimal velocity-dependent symmetry mappings of
classical (including relativistic) particle dynamical systems
described by second-order differential equations
Eix,..., %" x,..., x"x,... x", t)
i=1,.,n, (1.1)

was presented. For such dynamical equations (1.1) it was
shown that symmetry mappings

=E'(%, % x,t) =0,

X =x'486x,, Ox'=£ix,x,t)da, (1.2)
with associated change in path parameter
t=t+68t, St=E£°,x,t)ba, (1.3)

were expressible in a form with a characteristic functional
structure which was the same for all dynamical equations
(1.1), and which was manifestly dependent upon constants of
motion of the dynamical system. In this characteristic form
the {velocity-dependent) symmetry mapping functions were
given by

Eix,x, t)=Zx,x, 1)+ xE%x, x, t), (1.4)

£°x, x, t) = arbitrary; (1.5)
the functions Z {x, x, ¢) in (1.4) had the form
Z%,x,t)=B4(x, x, t )¢, [C'ix, x, £),...,C "%, x, t), £ ],

0<r<2n, A=1,.,2n, (1.6)
where the B4 were arbitrary constants of motion, and the C’s
appearing in the functions g/, were specific constants of mo-
tion. A procedure was given to determine the g, .

With slight modifications the method developed in pa-
per I for obtaining the characteristic structure of velocity-

dependent symmetry mappings of second-order differential
equations is also applicable for determining the characteris-
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tic structure of velocity-independent symmetry mappings of
systems of first-order differential equations. Such first-order
systems of differential equations may arise, for example,
from a 2n-dimensional description of an n-dimensional dyn-
amical system, as in the case of Hamilton’s equations.

Due to the similarity in the derivations of the character-
istic structures of symmetry mappings of first- and second-
order systems of differential equations we give in this paper
only a brief sketch of the derivation for first-order equations.

For the special case in which a system of 2n first-order
dynamical equations is derived from a system of n second-
order dynamical equations it is shown how the respective
symmetry equations, based upon these two equivalent de-
scriptions of a dynamical system, are related and how their
symmetry solutions are correlated. Two examples are given.

. STRUCTURE OF SYMMETRY MAPPINGS

Consider a system of first-order differential equations
which is expressible in the form

E'A vt =E(,y, t)=) — A, 1) =0,
LA=1,,N. 2.1)
A complete solution of Egs. (2.1) is denoted by
¥y =® .., ¥, £)=D(y,t), ¥ =const. (2.2)
Inversion of the solution (2.2) leads to the N functionally
independent constants of motion

Ty, =T+ y,t)= 9, i=1..,n (2.3)

Remark 2.1: The notation = indicates that the finite

solution (2.2) is used to express a function completely in
terms of the path parameters ¢. ]

The reciprocity between a complete solution and the
constants of motion obtained by its inversion will be essential
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in the determination of the characteristic functional struc-
ture of symmetry mappings of first-order systems, as was the
case for second-order systems.

In our symmetry analysis of second-order differential
equations treated in paper I we assumed the highest-order
derivatives of the coordinates appearing in the mapping
functions £/, £ © to be one less than the order of the differen-
tial equations. As a consequence the mapping functions were
taken to be velocity dependent. In our symmetry analysis of
first-order differential equations to be treated in this present
paper we make a similar assumption and thereby take the
mapping functions 77, 7° to be velocity independent. We
thus assume & variations to be based on point mappings

}_’l =yl + 6}'1’ 5.}’157710)’ t)éa, (2.4)
with associated change in path parameter
T=t+46t, 5t=n,t)da. (2.5)

Based on such velocity-independent mappings (2.4} and
(2.5) the symmetry mapping condition for first-order sys-
tems (2.1) is also formally written in the form®

SE*(p,t,t) = 0. (2.6)
Remark 2.2: The * = ” notation for first-order differ-

ential equations: Conceptually the “ = ” notation is essen-
tially the same for first-order systems of equations as it is for
second-order systems (refer to paper I, Remark 4.1). How-
ever, for first-order systems (2.1) the “ = * notation implies
that the differential equation (2.1} is to be used to eliminate
all dot derivatives of the coordinates from expressions or
equations. L]

With reference to [I-(2.26)] and [I-(2.30)] (this notation
used to refer to equations of paper I), we now find for the
differential equation (2.1) that the symmetry condition (2.6)
leads to

;.0 OAT

7 =5 5 a

For first-order systems a modified version of the decom-
position [I-(2.12)] is found to be useful.®> We therefore write

70 t)=U,t)+ 40, t 0. t). (2.8)
By use of (2.1) and (2.8) the symmetry condition (2.7) may be
expressed in the form

I
" 02

(2.7)

U'+ KLU =0, (2.9)
where
YRS
K'p, t)=— Fea (2.10)

The function 7°(y, t) does not appear in (2.9) and there-
fore may be taken to be arbitrary, as was the case for
£°%x, x, t) in the analysis of velocity-dependent symmetry
mappings of second-order differential equations. However,
the arbitrariness of 7%y, ¢ ) for velocity-independent symme-
try mappings of first-order systems is in contrast to the non-
arbitrariness of £ %x, t) for velocity-independent symmetry
mappings of second-order systems.

From this point on the procedure for obtaining the char-
acteristic functional structure of the U(y, t) solutions of
(2.9) is essentially the same as that for determining the char-
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acteristic structure of the Z {x, x, ¢} symmetry functions of
second-order systems. We therefore omit the details of the
analysis which leads to the following theorem about symme-
try mappings of first-order differential equations.

Theorem 2.1: Consider a system of first-order differen-
tial equations expressible in the form

El=j Ay, t)=0, I=1,.,N, 2.1
with a complete solution given by

Y =0, ¥, t)=P (1, t), ¥ =const. (2.2))
Let

Ty, t)= 9 (2.3

be the specific set of N functionally independent constants of
motion obtained by inversion of (2.2') for the constants 3’ .
An infinitesimal mapping

7=y1+ 6}’1’ 5)’157710’, t)5a,
t=t+6t 6t=n,1)ba,

(2.4')

(2.5)

will define a symmetry mapping of the system (2.1°) if the
mapping functions are solutions of the symmetry condition

SET = 0. (2.6')

The mapping functions %’(y, t), °(y, t) which are deter-
mined by (2.6") are expressible in the form

771(}” t) = UI(V! t) +A4 I(y’ t)ﬂo(y’ t)’
7%, t) = arbitrary,

(2.8')
(2.11)

where the functions U (y, ¢) are solutions of the partial dif-
ferential equations
8U’IJ~,+ au’ ar’!
ay’ ot oy’
obtained by the formal expansion of the auxiliary symmetry
condition

U’ =0, (2.12)

U'+ KL, 1)U =0, (2.9')
where
I
KoL t)= 2401 (2.10')

o’
Evaluation of (2.9’) on the solution curves (2.2°) of (2.1')
gives the associated ordinary differential equations (refer to
paper I, Theorem 6.1)

Wy, t)+ kN, )y, 1) = 0, (2.13)
where

Uly, t) = u'(y,t), K5, t)= ki (y, 1) (2.14)
A complete solution to (2.13) is

uw'(y,t)=B’Giy,t), B’ = const. {2.15)

Every solution U’(y, t) of the partial differential equations
(2.12) is expressible in the form (refer to paper I, Theorem
6.2)

Ully,t) =By, t)GL [T, ), ], (2.16)
where the B’ (y, t ) are arbitrary constants of motion of (2.1')
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and therefore are expressible as functions of the constants of
motion I (y, t) (2.3'), and the functions GZ[T'(y, ), ¢ ] are
obtained by replacing the constants ¢’ appearing in the func-
tions G (y, t) of (2.15) by the respective constants of motion
Iy, t) of (2.3'). |

Corollary 2.1.1: Since in (2.16) the B (y, t) are arbitrary
constants of motion it follows that each of the N vectors
U{;,=G, where I denotes component andJ denotes vec-
tor, are symmetry vectors. m

Corollary 2.1.2: If U’ (y, t) is a solution of the partial
differential symmetry equation (2.12), then so is

Ully, t)=Ay, 1)Uy, 1), (2.17)

where A (y, t ) is a constant of motion of the differential equa-
tion (2.1) ]
Remark 2.3: Results similar to Corollary 2.1.2 were ob-
tained for second-order systems of differential equations (re-
fer to paper I, Corollary 6.2.3), and also for first-order differ-
ential equations of Hamilton form (refer to Theorem 5.1 of
Ref. 3). |
Corollary 2.1.3: If U’ (y, t) is a solution of the partial
differential symmetry equations (2.12) associated with an au-
tonomous first-order system of differential equations (2.1)
[inthatA = A?(y)], then dU*(y, t )/3¢ will also be a solution
of (2.12). n
Remark 2.4: A similar result was found for velocity-
dependent symmetry solutions Z' (x, x, t) in the analysis of
autonomous second-order differential equations (refer to pa-
per I, Corollary 4.2). A similar result also holds for velocity-
independent symmetries of second-order systems.* |
Corollary 2.1.4: For autonomous differential equations
(2-1) the functions dG §[T'(y, t), t 1/3¢ can be expressed in
the form

9G; [Ty, 1) ¢]
E)

: =BT, t)IGL[T, 1), 2],

(2.18)
for appropriately chosen constants of motion B ¥[T'(y, ¢)].
In (2.18) the indicated partial differentiation with respect to ¢
is to also include the ¢ appearing in the argument I'(y, ¢)
(keeping y fixed). u

lil. AN ILLUSTRATION OF THEOREM 2.1

The procedure described in Theorem 2.1 will be illus-
trated by determining the symmetry mappings of the one-
dimensional first-order differential equation®

E{p,y,t)=y— (2y/t)lny=0. (3.1)
It is readily verified that the solution to (3.1) is
y=e"’, y=const, (3.2)

and that inversion of (3.2) for ¥ gives the constant of motion

Ty, t)=(1/t)ny = y. (3.3)

Comparison of (3.1) with (2.1) shows that

AW, t)=(2y/t)ny. (3.4)
With reference to (2.10), it follows from (3.4) that

Ky t)= —(2/t)1 + Iny). (3.5)
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Hence (2.9) takes the form
U—(2/t)1 + ny)U = 0. (3.6)

The expanded form of (3.6) obtained by use of (3.4) in (2.17)
gives

2y ]BU au 2 o
| — F+——=(14+Iny)U =0, 3.7
[t ny t( n y) (3.7)

ot
which is the partial differential equation to be solved for the
auxiliary symmetry mapping function U (y, ¢).
To obtain the solution of (3.7) by the method summar-
ized in Theorem 2.1 the finite solution curves (3.2) are used in
(3.5) to obtain [refer to (2.14)]

k(y,t)= — 2yt + 1/t). (3.8)

With the use of (3.8) the associated ordinary differential
equation (2.13) is found to be

i—2yt+ 1/thu= 0. (3.9)
The solution of (3.9) is
uly,t)=pBt%"’, B = arbitrary const. (3.10)

The solution of the partial differential equation (3.7) is
constructed from (3.10) by replacing the constant y with the
constant of motion I'(y, ¢) by means of (3.3) and by replacing
the integration constant 8 with an arbitrary constant of mo-
tion B (p, t ) [any function of T'(p, ¢ )]. We thereby obtain [refer
to (2.16)]

Uly,t)=B, t)t%. (3.11)

It can be readily verified that the auxiliary symmetry func-
tion U (y, t) given by (3.11) is a solution of (3.7), if use is made
of the condition

2p ]6B dB .
Zhy|l—+—= 0, 3.12
[ A P a2
which is a consequence of B (y, t) being a constant of motion

of (3.1).

It therefore follows from (2.4), (2.5), (2.8), (2.11), (3.4),
and (3.11) that the differential equation (3.1) admits the infin-
itesimal symmetry mapping

y=y+ By, t)t’y + [(20/t)ln y]n°p, t)}da,
t=1t+ 7%, t)6a, 7°,t) arbitrary. (3.14)

Each choice of the constant of motion B and the mapping
function 7° will determine a symmetry mapping.

(3.13)

IV. CORRELATIONS BETWEEN SYMMETRY MAPPINGS
OF RELATED SYSTEMS OF FIRST- AND SECOND-
ORDER DIFFERENTIAL EQUATIONS

Consider a system of n second-order differential equa-
tions expressible in the form

E'%, %, %, t)=¥' — Flg, x,£) =0, i=1..,n (4.1)
In terms of N = 2n variables y’, I = 1,..., 2n, defined by

y'=x/, (4.2)

Y=, (4.3)

the n second-order equations (4.1) may be expressed as 2n
first-order equations

G. H. Katzin and J. Levine 3102



F—Alp,t)=0, I=1,.,N, (4.4)
where

Alp,t)=y*r i=1.,n, (4.5)

A i+n(y, l‘)EFi(yj+", yj’ t) — Fi(J'cj, xj, t). (4_6)

Theorem 2.1 describes the characteristic functional
structure of the symmetry mapping of first-order systems of
the type (4.4). In paper I the characteristic functional struc-
ture of symmetry mappings of second-order systems of the
type (4.1) was discussed. Since (4.1) and (4.4) are two descrip-
tions of the same dynamical system it is of interest to show
how the respective symmetry conditions based upon these
two descriptions are related and to correlate their solutions.

With use of (2.10) the expansion of the symmetry condi-
tions (2.9) for a general system of N = 2n first-order equa-
tions (2.1) with the range I, J = 1,...,2n leads to the equations

U,_a/l'(]?,t) U,-_ali'(l’,t) Uj+n = 0,

‘ (4.7)
ay’ ay’*+"
UH_,,_ ai”"(y,t) Uj_ a}*i+ntyrt) Uj+n = Q.
ayj ayf+n
(4.8)

When the N = 2n first-order equations (2.1) are derived from
the system of n second-order equations (4.1), the A (y) of (2.1)
take the form (4.5) and (4.6) and the symmetry conditions
(4.7) and (4.8) for U’ (, t) reduce, respectively, to

Ui__ Ui+n = O,

U,-+,,__8F'(y, t) U,-_&F‘(y,t) Ui+tn = 0.
Ay ayi+n

With reference to {I-(6.11)] and [1-(6.12)] the symmetry
conditions which determine the velocity-dependent symme-
try mapping functions Z (x, x, t ) for the second-order dyna-
mical equations (4.1) take the form

Zi_ aF'(xr .'x, t) y A aF'(x’ -.xa

ax >4

We now verify that the 2n first-order symmetry equa-
tions (4.9) and (4.10) for U’ (y, t) are equivalent to the n sec-
ond-order symmetry equations (4.11) for Z(x, x, t). From
(4.2), (4.3), and the basic definitions [I-(2.11)], and [I-(2.16]]
we have

Uly, t)=Z"x,x,t), (4.12)

Uity t) = Zix,x,t), (4.13)
where the equality indicated in (4.13) requires the use of
“ =< *inorder to eliminate the ¥’ which occurs in the expan-
sion of Z . By means of (4.2), (4.3), (4.6), (4.12), and (4.13), it is
found that (4.9) transforms into an equation which is identi-
cally zero and (4.10) transforms into (4.11). In a similar man-
ner by use of (4.12) and (4.13) the second-order system (4.11)
may be transformed into the first-order system (4.9) and
(4.10).

We show finally the correlation between the character-
istic functional structure of the n functions Z {(x, x, ¢) which
are solutions of the second-order symmetry equations (4.11)
and the characteristic functional structure of the 2n func-
tions U” (y, ¢ ) which are solutions of the equivalent first-order

(4.9)

(4.10)

) zi = o

(4.11)
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symmetry equations (4.9) and {4.10). With reference to [I-
(6.5)), [I-(6.6)], and (2.2} we obtain from (4.2) and (4.3) the
following relations based upon the finite solutions of the n
second-order dynamical equations [I-(6.2)] and the finite so-
lutions of the equivalent 2» first-order dynamical equations
(4.4)-(4.6):

#lc, t) =Dy, 1), (4.14)
i’% — Dy, 1), (4.15)
prp— (4.16)

It then follows from (4.2), (4.3), and (4.14)4.16) that the
constants of motion C* (x, x, ¢) [I-(6.4)] (obtained from the
finite solution of the n second-order dynamical equation [I-
(6.2)} by inversion of [I-(6.5)] and [I-(6.6)]) and the constants
of motion I' (y, ¢) (2.3) [obtained from the finite solutions of
the 2n equivalent first-order dynamical equations (4.4)—(4.6)
by inversion of (2.2)] are equal, that is,

CAE, X, t) =T/ "y ). (4.17)
From (4.2), (4.3), (4.12), (4.13), and (4.17), along with [I-

(6.20')] contained in Theorem 6.2 of paper I, and (2.16) con-
tained in Theorem 2.1 of the present paper, it follows that

G4ITY, 1)1 =, [Cli % 1)], (.18)
G [T, t)t] = aj: [Cx,x,t),t]. 4.19)

[The functions C* are considered constant with respect to
the partial differentiation indicated in (4.19).] Hence the fun-
damental solution functions G % and g/, which determine the
respective characteristic functional structure of the symme-
try solutions associated with the equivalent first- and sec-
ond-order dynamical equations are correlated by (4.18) and
(4.19).

V. ILLUSTRATION OF DISCUSSION IN SEC. IV

To illustrate the correlation between symmetries of
equivalent first- and second-order systems of differential
equations we continue with the study of a dynamical system
which in Sec. VII of paper I was used to illustrate symmetry
theory of second-order differential equations.

Consider then the dynamical equation [I-(7.19)]
E =xx—x*=0. (5.1)

The associated symmetry condition for the dynamical equa-
tion (5.1) is given by [I-(7.25)]

Z — (2%/X)Z + (x/xPZ = 0,
with symmetry solution
Z(x,x,t)=B'x,x,t)81(C,t)+ B?x,x,t)g:(C, t),
(5.3)

where the B ’s are arbitrary functions of the constants of mo-
tion [I-(7.22)] and [I-(7.23)]

Clx,x,t)=xe " CHx,x,t)=x/x,
and where the functions [1-(7.29)]
glC, t)=eS", gh =t (5.5)

define a fundamental solution set.

(5.2)

(5.4)
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In terms of the variables ', 3 defined by
yl=x y=x, (5.6)

the one-dimensional second-order differential equation (5.1)
is converted to the equivalent two-dimensional first-order
differential equations [refer to (4.4)—(4.6)]

y=y'=0, (5.7)
V=t =0. (5.8)
For the dynamical equations (5.7) and (5.8) we find that

the symmetry conditions (4.9) and (4.10) expand to the par-
tial differential symmetry equations

y’aUl + b7y oU + LU JER (5.9)
ayl yl ayz ot ’
2 2 2 2 212 2
(5.10)

Based upon the fundamental solution functions g% (5.5)
of the second-order partial differential symmetry equation
resulting from the expansion of (5.2) we construct the asso-
ciated fundamental solution functions G, for the equivalent
first-order partial differential symmetry equations (5.9) and
(5.10) by means of the correlation (4.17)—4.19) [with use of
(5.4) and (5.6)—{5.8)] to obtain
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G, t)=e""=e"7, (5.11)
G2(T, t) =TI " = (p2/p")e ), (5.12)
G, t)=te"" =17, (5.13)
G, t)=(1 +yt /y')e" 7. (5.14)

The fundamental solution functions (5.11}~(5.14) may
be used in (2.16) to obtain the general solution to the first-
order partial differential symmetry equations (5.9) and
(5.10). Since the B* in (2.16) are arbitrary constants of mo-
tion it follows that

UmE(U(lw U(lz))E(G}’ G?)
and

U(Z)E(U(lz): U(zz))‘E(G;, G%)’ (5.16)

where the G/ are given by (5.11)—5.14), will each be solu-
tions of (5.9) and (5.10), as may be readily verified.

(5.15)

!G. H. Katzin and J. Levine, J. Math. Phys. 26, 3080 (1985).

2Refer to Sec. IT in Ref. 1 for basic variational definitions.

3G. H. Katzin and J. Levine, J. Math. Phys. 16, 548 (1975).

“G. H. Katzin, J. Levine, and R. N. Sane, J. Math. Phys. 18, 424 (1977).
3Since N = 1, we suppress all indices.
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Exact reduced density matrices for a model problem
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The reduced density matrices of arbitrary order for the boson problem of NV particles, each
attracted harmonically to a central point and interacting with each other harmonically, are

analytically calculated.

I. INTRODUCTION

Although the applications of reduced density matrices
have been quite extensive there are very few examples for
which they have been calculated exactly. The advantage of
having exact results is that they can be used to study and test
different ideas relating to their properties and applications.
We consider here an N-body boson problem for which we
have been able to calculate exactly the reduced density ma-
trices of arbitrary order.

The system we consider consists of N bosons of unit
mass, each one harmonically attracted to a “nucleus” with
spring constant »” and interacting with each other with a
harmonic force whose spring constant is %>, Various aspects
regarding this model problem have been previously devel-
oped.!~ * The Hamiltonian is

H= 52(—v2+w2r2)i—-y22r,,, (1.1)

i=1 i<j
where the minus sign signifies mutual repulsion and the plus
sign attraction. Schrédinger’s equation

Hi(r,,rp...,ky) = EY(r,,r;...,Ty) (1.2)

can be decoupled by making the following coordinate trans-
formation®®:

I<k<N -1,

" A

=—zr‘,

i=1

(1.3)

in whlch case the Hamiltonian becomes
l N-1

=7 ZPi+80D+o P+ 00k, (L4

with
P, =(1/ilVy, , : (1.5)
5% =w* + Ny~ (1.6)

This is the Hamiltonian for N independent harmonic oscilla-
tors in the coordinates Q;, the first N — 1 having spring con-
stant 5, and the last one > The ground state wave function
is therefore

/70 3 S g

Sn N 4N =11 o\ 128y 3Ezi0l - Lao}
=(7 (2)" W)

* Permanent address: Hunter College of the City University, New York,
New York, 10021.
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and the corresponding energy is
E=3}N—-1)by +iw. (1.8)

We now express the wave function in terms of the spatial
coordinates. Using Eq. (1.3) one may show that

2 2 1 k+1k+1

Qk=’k+1_k+li=ljz 'r,+ errj'
(1.9)

N-1 7 N

ZQk_(l__)zrk-—z °T;, (1.10)

k=1 k=1 N i<j

z 1 er

Qv==Yr+= Zr,-rj (1.11)

Nl—l l<_]

Substituting Egs. (1.9)~(1.11) into Eq. (1.17) the ground state

wave function is expressed in terms of the space coordinates
as

6N (374N —-1) w\34
qb(l‘l,l‘z,...,l'N)= -_— _—
T

s

X exp [ — WV = 15 +0)

X Zr - —(co SN)Zr,-r ]
i=1 i<j
(1.12)
il. EXACT REDUCED DENSITY MATRICES
We now derive the exact reduced density matrices for
the following class of wave functions:

N N
=Kyexp(—24 Y r} —4BYr1)), (2.1)

i=1 i<j

Yriry,...ory)

where 4 and B are constants and Ky is a normalizing factor.
The wave function given by Eq. (1.12) is a special case. The
full N-body density matrix is

J/ N1 T SRR V5 (N AN ,r,’v)

=K3vexp[ 2A2(r +r?)

i=1
N
— 4B Z(r,--rj + 1) j')] . (2.2)
i<j
For convenience we define the following function:

gN(rl’rZ""!rN;r{ ,l‘é ""’rIIV; A»BaCN)

—24 i(r%+r:2)

i=1

=exp[

N
—4BY (r;r; + rior)) — CyR %

i<j

] , (2.3)
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where Cy, is a constant and

N
Ry = z (e +17). (2.4)
i=1
The factor — CyR has been inserted for reasons which will
become clear below. Eventually we will take Cy, to be zero.
Now, consider integration with respect to the N th parti-
cle. Using the fact that

372
J'e—m’—br-.l dr = (l) eb212/4a (2.5)
a
and
R4 =4r% +4ry'Ry_, +R%_,, (2.6)
we have
N-—-1
Jevary=exp| ~24S w14
i=1
N—-1
—4B Y (rpr; +rjr)) —CyR % _, ]
i<j
X [ exp(— 44 +Cop
— 4B+ Cyry-Ry_ )dry
=1m"%/(4 + Cy)*?
XEN 1Pyl _ 138 seeesTy _ 134,8,Cy)
Xexp {[(B+ Cy)/4 + Cy)]R%_1}
={m"*/(4 + Cy)*?
XgN_ 1 (l‘l,...,l'N_ l;r; ,...,l','v_ 13
A, BCy_,), (2.7)
where we have taken
Cy_1 =Cy—(B+Cyf/4+Cy). (2.8)

Hence, integrating the N — (s + 1} coordinates out of
Eq. (2.3) yields

ng dr, dry
,”,N—s 372
-| I, U +C)
X G (T1 5eeesTs 3T 5o Fg34,B,C ), 2.9)
where in general
C.=C.,—B+C ) /A4+C; ). (2.10)

To complete the solution we must find C; explicitly and
evaluate the product that appears in the denominator of Eq.
(2.9). Equation (2.10) is a nonlinear difference equation
which can be transformed into a linear difference equation
by making the transformation

Ci=—A+B-A)Z./Z,,,). (2.11)
Substituting this into Eq. (2.10) results in
Z,,,+22,,,+2,=0, (2.12)

which is linear and can be solved by standard methods. Tak-
ing

Z=m, (2.13)
where m is to be determined, results in the requirement that
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m*242m' T+ m=0 (2.14)
or

(m+12=0. (2.15)

As both roots are equal to — 1 the general solution is
Z, =(—=1)(m, +iny), (2.16)

where 7, and 7, are arbitrary constants. Substituting this
solution into Eq. (2.11) results in

Ci=—A+A—B)1+i/[1+(i+1p], (217)
where
N="1/71- (2-18)

We see therefore that there is only one arbitrary constant, 7,
to be solved for. We express it in terms of Cy,:

Cy=—A+A—-B)1+9N)/[1+9N+1)]. (2.19)
For our case Cy, = 0, which results in
n= —B/{A+ NB). (2.20)

We now evaluate the product that appears in the numerator
in Eq. (2.9):

N

Il 4+C)= ﬂ [A—B—M

i=s+1 i=s+1 1+(l+1)17

N .
=4-BM ] jL
ics1 14+ 1)y
Y, (1+7)
MY, (L4 + 1))

_(A_B)N—s 1+(S+1)77

=(A_B)N—s

1+ N+ 1)y
—(—By-—4 +(Z:2_ B oy

By taking s = O for the first factor in Eq. (2.9) and using
Eq. (2.21) we obtain the normalizing factor
K% ={44—B)/7}>"*{[4A+ N—1)B]/[4 —B1}32.
(2.22)

We now specialize to the wave function given by Eq.
(1.12). Comparing Eq. (2.1) with Eq. (1.12) we take

A=(1/4N){(N — 1)6y + @}, (2.23)

B=(1/4N)w — 6y), (2.24)
from which

A—B=1by, (2.25)

A+BN—-1)=lw, (2.26)

A+BN—s5s—1)=(1/AN){(N — s)w + s65} . (2.27)
Also, the factor in Eq. (2.9) is

(On/m > {No/[(N — sho + 5651} (2.28)

The reduced density matrix of order s is defined by

prtevrorioe) = (V) [weterrsn, o or)

R | ST S SO ...rN)drs+ Ldry
(2.29)
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Using Eqs. (2.24)-2.29) we finally have the reduced density
matrices

o =() =]

Xgs (r,,rz,...,r,;r; B CARI o

1 1
- )6y + w],m(w - 6~),Cs) ,

where for convenience we rewrite some of the previous ex-
pressions in terms of the physical parameters:

(2.30)

g, =exp [ o+ (V= 16y) zl(r’ +rp)
__Z(r, X+ r,)—CRZ} (2.31)
i<j
where
R, = Z (r; +17), (2.32)

c = _ LW—so—b (2.33)
4N (N—sjw + sdy

We write out the casess = 1 ands =2

372 , ,
pilroe) =N [-—SNN“’/ 7 ] em el (2 34)
(N—1lw+8y
o NWN—1) [ Neby/m ¥
paAryrsri ) =
2 (N — 2o + 28,
Xexp{—byr} +ri>+ri+r)
— by(ryr, + 11 13)
+ bslryr; +rier; + 11 1130},
(2.35)
where
1 (N—1)@* +83) + 2N — N+ by
'T AN (N — 1) + 8y ’
(2.36)
-1 5y )
1 (N — 1)@ —5y) , (2.37)
TN N—1llo+6y
1 (N—=2)w* + (3N —2)6% + 2(N> — 2N + 2Jwdy
T 4N (N —2)w + 28, ’
(2.38)
1 (N—=2)? — (N+2)8 + 4wby
= —— , (2.39)
2N (N — 2w + 28,
2w — 8y )
b= L =2 =6y 2.40)

2N (N—2)w + 26,

The reduced density matrix can be expressed in different
forms:

Y1 ST PR ) S8 AN o)

= exp [ - %(a) ) 1)6”)(121 L ; r;)
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S -1 T — rj’]
+ 26 [ A
",g,- 2 2
r+r r+r; l's+r,’)
s PR , 2.41
Xps( 5 3 5 (2.41)

where the p appearing on the right-hand side is the s particle
density, that is
R | T SO Y | 8 SR I TR SSN 28N (2.42)

Also the reduced density matrix of order s can be expressed
in terms of the one particle density:

ps(rl’ ’rs;rl’ ,l' )
_ -1y ( )"”"’- ”((N— o + 5y )
TN =) (N — s)o + 56

r,—r}

XeXp[ —(w+(N—1)¢5N)(‘§,l 5 ')2

8 S+ r:-r;)}

i<j

SN+
Xp‘(z 2 )

i=1

(2.43)

The parts of the total energy can be readily expressed as

( _ “,§1V2> - ——[w +(N= 16y}, (2.44)
( 2;%) =%5ﬁ-( — 1o +8y), (2.45)
( ,,2'% ,j> 72N(N— 1). (2.46)

Also, the kinetic energy can be expressed as an integral
involving the one body density,

(-187)

Nwéb _ Noby
—f[ 2 (N=1)o+ 6y lnpl(r,r)]pldr, (2.47)

where C is a constant given by

_ 3 (N—1)"+(N— 1)} + (2N — 2N + 208y
" 4N (N — o + 8y
1 Nwb
2 (N—l)w+6N
n|v(X) {—22 2.4
xin (2 [(N—l)w+a~} ] e

ill. CONCLUSION

Equation (2.30) gives the reduced density matrices of
arbitrary order. In conclusion we show that the Hartree so-
lution for this problem can also be obtained exactly. Taking

N
1//”(r1,r2,...,rN) = H "4 (l‘,-) ’ (31)
i=1
the Hartree equation is
1
= ——V>4 —0*?

wwii={-2 1137
x [@*(eulies — 17 (rk)drk]cp ®. (32
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Each of the terms in the summation is identical and evalu-
ates to

f¢’ *ry )T — l')2¢ (re )Ty
=7+ o ldr,
+ 2j¢ ¥ Jrer @ (re)dry

=7+ [o*rrie (3)
where the last term in the middle step is zero due to symme-
try. Equation (3.2) then becomes

ep(t)={ —}V2 + 485 P £ N — DI )e(r), (3.4)
or
(— V2 + 165 Pl ) = (€ FAN - 1 Dp(r),  (3.5)
where we have set

I= f:p *r)Pg (r)dr . (3.6)
Equation (3.5) is identical to the standard one particle har-
monic oscillator equation. The ground state solution is

@)= By, /mPlte™ PN, (3.7)
with energy

ELIN—1PI=3y_, . (3.8)
To complete the solution we must evaluate /. Substituting

Eq. (3.7) into Eq. (3.6),

5 3/2 w PR
I=( N—l) 4vrf rle” """ dr=3/2 6y_,. (3.9)
T 0

Using Eq. {3.8) the orbital energies are therefore
€=36y_ FIN—-1)p/65x_, .
The total energy of the system is

Ey= ie— i f‘,ff{ by *r — )’}

i=1 i=1i<j

(3.10)

X I?’(ri)lz |‘p(rj)|2dri dr;
=Ne+ IN(N—1)y?
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Xf (r, — rj)2|¢(ri)|2 |¢7(rj)|2dri drj
=3N6y_, .

The Hartree N-body wave function is

Sy_ 1 \Pr4N 1 N
'ﬁﬂ(rl’rz’--,rzv) = ( - ) €xXp ( — 751\7-1 zr.z) s

i=1

(3.11)

(3.12)

from which the reduced density matrices may be calculated
straightforwardly as

H
F20) STRI J2 ORI o4 |

P _ (372)s 1 s ,
=(’sv) (—”F ) exp(—;sN_l i;(rfwf)).

(3.13)

Note added in proof: After the acceptance of this paper,
the referee noticed and brought to our attention the work of
S. Pruski, J. Mackowiak, and O. Missuno dealing with this
model [Rep. Math. Phys. 1, 309 (1971); 3, 227, 241 (1972)).
Sage has also considered this model [Theoret. Chim. Acta
19, 179 (1970)]. These authors have obtained many interest-
ing results and have given expressions for the reduced den-
sity matrices. We thank the referee for bringing this to our
attention.
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On the spectra of SO(3) scalars in the enveloping algebra of SU(3)
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Formulas are given that make it possible to calculate the eigenvalues of the two independent SO(3)

scalars O and Q7 in the SU(3) enveloping algebra.

I. INTRODUCTION

It is well known that the degeneracy problem for SO(3)
states in SU(3) representations can be solved by the construc-
tion of the orthonormal eigenfunctions of the SU(3) Casimirs
I, and I, the SO(3) Casimir L 2, the SO(3) generator /,, and
one additional Hermitian operator X in the enveloping alge-
bra of SU(3) (see Refs. 1 and 2). The choice for X can be
restricted in the sense that only two algebraically indepen-
dent SO(3) scalars exist, one of third order and one of fourth
order. All other SO(3) scalars are polynomials in these two
independent ones, I,, I;, and L *. Many alternative defini-
tions and notations have been proposed for the two scalars
mentioned and these are summarized by Partensky and
Quesne.” In the present paper we treat the so-called scalar
shift operators O? and Q9, which were introduced by
Hughes.* On account of relations that we previously estab-
lished between products of shift operators associated to both
scalars, we have been able to derive expressions for certain
0! and QY eigenvalues in closed form.>®

It is the aim of the present paper to establish new simple
formulas by which O and Q ? eigenvalue expressions can be
easily deduced. We thereby overcome the calculational re-
strictions induced by the application of the shift operator
formalism. The essential point in the present approach to the
problem is the introduction of matrix elements in a particu-
lar nonorthogonal SO(3) basis, namely the Elliott basis,’
which nuclear physicists are very familiar with. In fact, the
results that we obtain in the present paper are very important
in the context of a new extension of the nuclear interacting
boson model® in the rotational SU(3) limit, which we have
developed very recently.’

Il. SPECTRUM OF THE O? SHIFT OPERATOR

The SO(3) scalar operator O} is a polynomial in the
SU(3) generators that is homogeneous and quadratic in the
principal SO(3) subalgebra generators /,, / , and that is lin-
ear with respect to the remaining generators ¢,
(= —2,—1,0,1,2), the components of a five-dimensional
SO(3) tensor representation. This polynomial form of O ¢ to-
gether with the equivalent polynomial expressions of the as-
sociated shift operators O § (k = — 2, — 1,1,2), which have
previously been derived,** allow us to obtain the following
relationship between certain O 9- and g,,-matrix elements, re-
spectively, in a SO(3) basis:

# Senior research associate of the National Fund for Scientific Research
(N.F.W.0.) (Belgium).
Y Research assistant of the N.F.W.O. (Belgium).
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(Lm'=0,a'|0%,m=0, a)

=V6(2/ + 3)21 — 1{I, m' =0, &’'|qo|l, m = 0,).
(2.1)

Herein o and a’ denote appropriate values of an additional
label that distinguishes between states with the same / value,
which usually occur in the SO(3) decomposition of a SU(3)
(A, p) representation. Furthermore, it should be clear that
the relation (2.1) only holds for the elements that are diag-
onal in the SO(3) representation label /.

In order to calculate the O spectrum it is extremely
useful to select as a particular SO(3) basis the so-called Elliott
basis’ consisting of states |/, m, K ), where K is the additional
label. The decomposition of a SU(3) representation (4, i) in
Elliott states |/, m, K ) is dictated by the following formulas
prescribing the values which the state labels can take:

K = min(4, g), min(4, g) - 2,..., 0 or 1,

=K, K+ 1., K+ max(4, u), if K>0,

* (2.2)
! = max(4, u), max(4, u) — 2,....,0 or 1, ifK=0,

m=—1, —I+1,..,1—1,1L

It is well known that the Elliott basis is not an orthogonal
basis,” but this fact is definitely not prohibitive to the calcula-
tion of O { eigenvalues. Moreover, such a calculation is facili-
tated by a formula, which has been derived by Elliott” and
which gives an expression for the action of the g, generator
upon basis states, namely,

goll, m, K )
“\2'+1/) oK,
XK, ' +24 +3+1'(I' + 1)/2
— I+ )2, mK)

+Z(12K +2/I'K +2)
+

X3 FK ) + K +2)/2)'?
XcK+2,)l',m K+£2)] (A>p). (2.3)
The coefficients ¢(K, /) can be regarded as normalization co-
efficients. Hence, they can be absorbed by a redefinition of
states as follows:
Lm,K))=cK,1)|,mK). (2.4)

If K <2 then the second term of (2.3) involves a state with
negative K. In Elliott’s scheme |, m, — K ) is defined to be
identical with |/, m, K ), which is consistent with the choice

o —K,1)=(— 1)**+He(K, ). (2.5)
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It follows that
lI:m’ —K)):(—I)I+A+”'I,M,K>). (2'6)

By combining all the foregoing results it is clear that we can
express the action of 07 as

OULm=0,K))= T Deglm=0K").

K'=K,K+2
(2.7)

Next we substitute into (2.3) the algebraic closed expressions
of the Clebsch-Gordan coefficients. Then the matrix ele-
ments 25 5 are brought into the following simple form:

Dyx =624 +p + 310 +1) - 3K?],

Dy, =—3BpFKu+tK+2(l£K+2)
x(l £ K+ ) FKN FK—-1)/2]"%

The calculation of the O ¢ eigenvalues therefore necessitates

the diagonalization of a tridiagonal matrix of which the di-

mension coincides with the degree of / degeneracy.

As an example, let us consider the case of even 42 and
p=2.From (2.2) we learn that K =0 for / =0, that K =2
for [=3,5.,A-1,A+1,442, whereas for
1=2,3,..,A4 either K=0 or K=2. Hence, for
1=13,5,.., 4+ 1,4 + 2the OY eigenvalue is determined by
V624 +5)(I—=3)(I+4). Also 03/0,00,))=0. For
=2, 4, ..., A we need to diagonalize the matrix

(goo 2,0+ 02 —20)
02 2,

(2.8)

J

The corresponding OF9 eigenvalues are 6{(21
+5{=Q+3) L6+ )I=-2)(+3)+ (21
+ 5772},
These and other results are in complete agreement with
the eigenvalues obtained previously by different methods.'-

lil. SPECTRUM OF THE Q7 SHIFT OPERATOR

The SO(3) scalar shift operator Q¢ is quadratic in the ¢’s
and also quadratic in the / generators. Its /-diagonal matrix
elements can be related to the matrix elements of coupled ¢
generators. Indeed, on account of the explicit form of Q¢ and
of the associated higher-order shift operators Q¥
(k= —2,—1,1,2), one can prove that®
(I,m=0,a(|Q0|l,m=0, a)

= — 1421 + 3)(21 — 1)
X{,m =0,a'|[gxql3|l,m =0, a)

— 81 +1),
whereby

(gxq]: = 3220 —0/20)g,9_,.

o

(3.1)

(3.2)

In (2.3) we have presented Elliott’s formula expressing the
action of g, on Elliott basis states. It is straightforward to
deduce from it analogous formulas for the action of the other
g generators on the same states. Applying such a formula
twice one then arrives at

[qulélz,o,K>>=z§r;;( 211 )(220 — 020y (120 —all' —0)

20" + 1

x{'2 —co|l" 0){[(12K0|1’K)(u Fu 43I+ )2 =1+ 1)72)]

x[(z’zxou"m(u FuA3HIT )2 =1+ 1)/2)07,0,K))

F S 2K L2007 K+ DERF KN £K 427217017, 0.K £2) |
+

+2K2QU K+ )3 —K)u+K +2)/2)”2[(I’2K+20|1"K+2)

XA +p+3+1"0" + 121" + 1)/2)]1",0,K +2))

+ (2K +2 2" K+2+ 23 FK :}:2)(,u+2;1;K;|;2)/2)”2|I",0,K+212))]
+

+U2K =2 K- +K)u—K+ 2)/2)”2[(1'2K——20|1"K—2)
XA +p+3+1"(1" +1)/2=1(" +1/2)]1",0, L —2))

YW 2K—2 2" K—22DBuTFK £ D+ 24K ?2)/2)”2|1",0,K-—21:2))”‘
+

If one further defines matrix elements A .x by

Q?|Iym=0’K)>= AK’K|l9m=09K’))’

K'=K,K+2,K+4
(3.4)

then these can be explicitly calculated by substituting into
(3.3) the closed expressions for the Clebsch~Gordan coeffi-
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(3.3)

-
cients, which we obtain by standard techniques.'® By doing

s0 it turns out that Ay, 4 x is zero except for K= J-2, in
which case we can, on account of the phase convention (2.6),
reabsorb the contribution into the A . element. In fact, this
property is not that remarkable if one realizes that the ¢
dependence of QY is contained into a SO(3) tensor of rank 2.

The final simplified forms of the Ax., elements, ob-
tained after lengthy calculations, are

De Meyer, Vanden Berghe, and Van der Jeugt 3110



Agx =224 +p + 3211 +1)—3K?)
—18K* 4+ 6K2[5I(I + 1) — 3]
A+ 1P =720+ 1)
—3u—K)u+K+2U(I+1)—3K?] 53
— 3+ K)u—K+2)[(+1)—3K?],

Ag ok =6l FK)u K+ 2K+ 2/ K+ 1)

X({ FKW FK—1)]"%24 4+ p F3K),
Agyex =0.

Considering again the case of even A»2 and u =2 we
readily obtain that the QJ eigenvalue is zero, that for
1=3,5.,A+1,A+42 it is given by the formula
2( — 3)(I + 4)(44 2 4 204 — 12) — (121* + 241> — 86]*

— 98] 4 960), whereas for = 2, 4, ..., A thediagonalization
of the two-dimensional A matrix leads to Q¢ eigenvalues
expressed as

[0 = 2+ 3)RA + 5P —6(12 + 1+ 112 + 1+ 3)]
+ 12[(24 + 5)* + 2(/* + 21> — 917 — 10! + 3)24 + 5)
+ 9(21 + 1)2]V2.
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These results, which to our knowledge have never been ob-
tained so far by any other method, are of particular interest
to the extension of the interacting boson model for nuclei in
the rotational limit, which we actually propose.®
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On Komar integrals in asymptotically anti-de Sitter space-times
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Recently, boundary conditions governing the asymptotic behavior of the gravitational field in the
presence of a negative cosmological constant have been introduced using Penrose’s conformal
techniques. The subsequent analysis has led to expressions of conserved quantities (associated
with asymptotic symmetries) involving asymptotic Weyl curvature. On the other hand, if the
underlying space-time is equipped with isometries, a generalization of the Komar integral which
incorporates the cosmological constant is also available. Thus, in the presence of an isometry, one
is faced with two apparently unrelated definitions. It is shown that these definitions agree. This
coherence supports the choice of boundary conditions for asymptotically anti-de Sitter space-
times and reinforces the definitions of conserved quantities.

1. INTRODUCTION

The current observed value of the cosmological con-
stant A is very small ( < 0.003 eV). On the theoretical side,
however, no “explanation” is available for this experimental
result. In fact, many models—particularly in supergravity—
naturally predict a very large value for A. This dichotomy
between theory and observation has prompted several de-
tailed investigations of Einstein’s equation with cosmologi-
cal constants. It was hoped, for example, that an analysis of
stability of the ground state might show that theories with a
nonzero value of A have intrinsic instabilities and are there-
fore not realized in nature.

The central idea in these investigations is that, in the
presence of a cosmological constant, de Sitter space {(if A > 0)
or anti-de Sitter space (if A <0) replace Minkowski space as
the ground state of the theory and that physically interesting
states are represented by space-times which are asymptoti-
cally de Sitter or anti-de Sitter. As in the asymptotically
Minkowskian context, one expects that the asymptotic sym-
metry groups for such space-times would be the isometry
group of the de Sitter space [O(4,1)] or of anti-de Sitter space
[O(2,3)]. One is therefore led to the problem of introducing
precise definitions of the boundary conditions which capture
these ideas and of investigating the structure that results
from these conditions. Now, since the space-like sections in
the de Sitter space are compact, the asymptotically de Sitter
space-times admit only timelike infinity. The analysis of con-
served quantities in these space-times is therefore physically
uninteresting. In the anti-de Sitter case, on the other hand,
the spacelike sections are noncompact and, as in the asymp-
totically Minkowskian case, there is a rich asymptotic struc-
ture. Therefore, much of the literature is focused on asymp-
totically anti-de Sitter spaces. In this paper, we shall restrict
ourselves to this case. Our purpose here is to show that, in
the presence of isometries, the conserved quantities defined
at infinity using the asymptotic Weyl curvature reduce to
{certain multiples of) the appropriately generalized Komar
integrals. This reduction strengthens one’s faith in the choice

* Détachée du Ministére des Relations Extérieures, Paris, France.
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of boundary conditions as well as in the definitions of con-
served quantities thereby putting many of the previous anal-
yses on a sounder footing.

Section II is devoted to preliminaries. We recall’-? the
definitions of asymptotically anti-de Sitter spaces, first in
terms of a conformal completion (Sec. II A), then in terms of
the behavior of metric components in suitable charts, and list
some of the consequences of these boundary conditions (Sec.
I1 B). Recently, the two sets of conditions have been shown
to be equivalent.? In Sec. III we display the generalization of
the Komar integral which incorporates the presence of a
nonzero cosmological constant. Section IV is devoted to axi-
symmetric space-times, Sec. V to static space-times, and Sec.
VI to stationary space-times. In all cases, we show that the
conserved quantity associated with the asymptotic symme-
try corresponding to the isometry, defined in terms of the
asymptotic Weyl curvature, is a multiple of the generalized
Komar integral. More precisely, we show that the general-
ized Komar integral yields the correct value for the “angular
momentum” but § the correct value of “energy.” 4 priori,
one would not have expected such a simple relationship to
hold. For, whereas the conserved quantity at infinity de-
pends sensitively on the choice of the boundary conditions,
the generalized Komar integral can be evaluated anywhere
in the interior (outside sources). In five-dimensional Kaluza—
Klein theories, for example, the boundary conditions are
such that the Komar integral for “energy” can vanish identi-
cally even when the asymptotic “‘energy” is nonzero. The
fact that we can obtain the same relation as in the asymptoti-
cally Minkowskian case reinforces the belief that the bound-
ary conditions used here are natural generalizations of the
standard asymptotically flat ones.

.. BOUNDARY CONDITIONS FOR ASYMPTOTICALLY
ANTI-DE SITTER SPACE-TIMES

A. Covariant formulation

An analysis of the structure of asymptotically anti-de
Sitter space-times based on Penrose’s conformal treatment'
has been proposed.”? We shall summarize it briefly. (We as-
sume that all manifolds and fields are C =.)
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Definition 1: A space-time (M, g,,) will be said to be
weakly asymptotically anti-de Sitter if there exists a mani-
fold M with boundary 6M equipped with a metric g, and a
diffeomorphism from M onto M — M such that (i) there
exists a function {2 on M such that § 8. = 0 g, on M, (ii)
I=3M s topologically S2X R, and on I, = 0, and (iii) g,,,
satisfiesR,, — 1R g,, =87 T,, — Ag,,, with A <0, where
Q 3T, % admits a smooth limit to 1.

Remarks: (i) Schwarszchild anti-de Sitter and Kerr anti-
de Sitter space-times satisfy Definition 1 if one sets ) = 1/7.
(i) Let A, = V, . It is easy to check? that 74, reduces to

— A/3 on I. Hence I is a time-like cylinder.! When A = 0,
the above definition reduces to that of asymptotic flatness at
null infinity. (iii) Given a conformal completion (M, g,,)
which satisfies Definition 1, (M g,,) also satisfies it if and
onlyifg,, =Aw2§,,,, , where » is a smooth nowhere vanishing
function on M. Using this conformal freedom, it is easy to set
V. A, =0, where from now on, = will denote “equals at
points of I to.” It follows that the conformal freedom is re-
stricted by Q—wQ, where £,» = 0. Note that, unlike in the
asymptotically Minkowskian context, and since 7° is a
spacelike normal to Z, this last condition does not restrict @
to be a function of @ and ¢ only, on I. It has been proven in
Ref. 2 that

DE*2 T,ongh,,

—4lim 0~ (2.1)

sman

where E,,,, =(—-3/ A).Q“ Aam,,,,n is the electric part of
the asymptotic Weyl curvature and D is the intrinsic deriva-
tive operator on (1,4,, ) induced by g, . (iv) In the asymptoti-
cally Minkowskian context, the space of generators of 7, be-
ing topologically S, admits a unique conformal class of
metrics. Since I is ruled by null generators (the integral
curves of 7,) the pullback of these metrics yield, on I, a
unique class of degenerate conformal metrics. In the present
case, since #° is not tangential to Z, I does not have a fiber
bundle structure and S 2 X R admits many conformal struc-
tures; hence the asymptotic symmetry group is the diffeo-
morphism group of I. The reduction of this group can be
obtained by strengthening the asymptotic conditions. It is
natural to require that the three-manifold I admits, as its
conformal group, the anti-de Sitter group. This is achieved
by imposing that the Bach tensor

Babc ;D(a(Rb]c - %Rlec) (22)

of §,, vanishes, i.e., that 7 be conformally flat. This leads to
the following definition.

Definition 2: A space-time (M.,g,,) will be said to be as-
ymptotically anti-de Sitter if, in addition to Definition 1, one
has the condition that I be conformally flat [or equivalently
that the conformal group of (1,§,,) is O(2,3) or the anti-de
Sitter group (or covering group)]. For this class of space-
times, there are” ten “conserved quantities”

0,(C)= —m~ (52) Bt ase,

where £° is a conformal Killing field on {1,§,,) and C is a
cross section of 7. The fluxes F, of these quantities are com-
pletely determined by matter terms:

(2.3)
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Fi8) = (1677 [ im0 9.0, 4 (24)
A

where A is a three-dimensional region of 7, and n° is the unit
normal to I with respect to 2, .

B. A reformulation using asymptotic charts

The above boundary conditions can be reformulated us-
ing admissible charts in the neighborhood of infinity. In Sec.
IT A, a conformal rescaling of the physical metric was intro-
duced,

ds? = 0% ds?, (2.5)
which brings I, the surface at infinity defined by 2 =0, to a

finite distance. The available conformal freedom enables the
choice of a chart in which the induced metric on 7 is given by

dsh = —dt> +d6* +sin*0dp =g, dy*dy®.  (2.6)
This chart is then extended off I in such a way that in the
coordinates (2,7,0,p, the metric is given by

d$? = dO® + §,,(Q, y)dy” dy”. (2.7)
Analytic solutions of Einstein’s equation in the neighbor-

hood of 7 have been investigated in Ref. 3. The result is the
following. Let

N l . n
8.(Q,p) = }‘, & "y (2.8)
n>0
It is shown that
§0=—1, 29 =1, 8o, =sin” 6,
b =0, (2.9)
=1 =1 §=—sn6

The other three components being 0. Furthermore, there are
as many analytic solutlons to the Einstein’s equation as there
are coefficients g% (y) = ap\, which are traceless
E “*g% = 0)and transverse (D,E®, = 0)fields on I. In other
words, E,,, the electric component of the asymptotic Weyl
curvature, governs the existence of solutions to the field
equation. A further transformation of the radial coordinate,

r=0-1-30, (2.10

gives the physical metric ds® as a deviation from the anti-de
Sitter background (with metric ds2) compatible with the
charton I:

ds® = ds + h,, dx* dx*, (2.11)

These results will be useful for the next sections. In these
admissible charts it has been checked that (i) The Kerr anti-
de Sitter metric is a prototype of these asymptotically anti-de
Sitter space-times, (ii) The boundary conditions are invariant
under the anti-de Sitter group O(2,3), and (iii) The charge
integrals, generators of O(2,3), are finite. If the admissible
chart is that in which the anti-de Sitter metric reads

dsi = — [14+7/R?]dt? + [1 + P/R?]7 ' dP + P do?,
(2.12)

where R, the radius of curvature, is related to the cosmologi-
cal constant A by R = (3/ — A)"/2, and dw? is the usual
spherical element in coordinates 6,, it can be shown that if
one considers deviations 4, ,, more precisely metrics ds”
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=ds; + h,, dx* dx* which behave asymptotically as 7',
the invariance under the O(2,3) group is not fulfilled. The
appropriate falloff requires that 4,,, should be of the order
r~*and A,, of the order r—>, the other components behaving
asr— .

Ill. GENERALIZATION OF KOMAR'S INTEGRALS TO
SPACE-TIMES WITH A NONZERO COSMOLOGICAL
CONSTANT

Recall that in the case A = 0, if the space-time (M,g,,)
describing the gravitational field admits a Killing field £°¢,
the Komar integral‘

Q:(6)= 16

represents a conserved quantity: This integral does not de-
pend on the particular choice of the two-sphere S, surround-
ing the matter sources if these sources have compact sup-
port. [Here €,,.; and V, are, respectively, the alternating
tensor and the derivative operator on (M.,g,, ). ] If the matter
sources are allowed to go to infinity, J, with the falloff de-
scribed in Sec. II, Q, (£') will be evaluated on a particular S,
now a cross section of 1. However, for simplicity we can
restrict ourselves to an isolated system and consider matter
with compact spatial support. If £ is a stationary Killing
field, Q represents the total energy of the system, while if £ ¢
is an axial Killing field, it has the interpretation of the com-
ponent of the total angular momentum along the responding
axis.

We now show how the Komar integral can be extended
to space-times with a nonvanishing cosmological constant.
In this case Einstein’s equation is given by

Roy — i Rg,, = 87Ty, — Ay, (3.2)
Let the space-time (M.,g,, ) furthermore admit a Killing vec-
tor field £°. It follows from the affine colineation equation

€ared VELAS® (3.1)

‘V,V,6. =R"™,.£,, and the field equation
R, =8rT,, —4nTg,, + Ag,, (3.3)
that VV. &, =87f ™[ — T, +48mT ] — A§,. Hence

the current J, = V°V_£, is conserved: V2J, = 0. A straight-
forward calculation making use of Stokes’ theorem implies
the following equality:

1 J b cd
—_ V., )e% .0 dS
: az( 8§50

1 A b
e _ 1 zb___f dast,
—Lg [ T, + 2gm,,T]d (&

(3.4)

where 2 is a spacelike three-surface which intersects the
matter tube, d% being outside the matter. In this equality,
each integral is independent of a particular choice of = which
spans a given 9= lying outside sources. The quantity

0, 6)= —— [ e as+ 2 [ g ax

(3.5)

is to be considered as a generalization of the Komar integral.
One can imagine using the Kerr—anti-de Sitter space-time®
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to evaluate the integral in (3.5) explicitly. Results of such an
evaluation were reported in an independent analysis® of the
generalized Komar integrals. However, in this case, the pres-
ence of a horizon requires some care since formula (3.5) has
been derived for solutions with matter contents, and since
theintegral on the right now involves a volume term which is
absent in the more familiar A = O case.

Hence, when an isometry £ “is available on a space-time
with nonvanishing A, one is faced with two apparently unre-
lated definitions of the corresponding conserved quantity.
The first is provided by the charge integral involving the
asymptotic Weyl curvature,? the second is @y, (€)- Since in
the generalized Komar integral, the two-sphere S, surround-
ing the matter sources can be located anywhere inside the
space-time, one might have expected that it would be local
and insensitive to the asymptotic behavior of the gravita-
tional field, i.e., unrelated to the integral at I. If this were the
case, the notion of energy would have been ambiguous and
the stability arguments’ based on the behavior of conserved
quantities would have inherited these problems. Fortunate-
ly, as we shall see in the next sections, the two definitions do
agree.

IV. AXISYMMETRIC SPACE-TIMES

In this section, we shall assume that the space-time
(M.g,,) is asymptotically anti-de Sitter and admits a rota-
tional Killing vector field £ “. The orbits of & ¢ are topologi-
cally S! lying on a family of nested two-spheres .S,. Since
these two spheres generate a surface 2, which is the Cauchy
surface for some diamond-shaped region of the compactified
space-time,'® f; £, d3° =0, and the Komar integral re-
duces to the surface integral-

0, 6)= 1:_n} o5 ettt ds

(va 5 b )ds *nb

We want to relate QkA(§ ) to the corresponding conserved
quantity at I

0:(C)= — (bm~' (=2) "$ B eds,

where C'is the crgss section of 7 corresponding to the bound-
aryd2 of 3, and E 4 is the electric component of the rescaled
Weyl tensor, as described in Sec. II. Let (M,g,,,, =%, )bea
conformal completion of (M,g,,) satisfying Definition 2,
such that £,0Q =0. Since §, = 02, and &, dS** =0,
one has

167Q,, €)= hm

(4.1)

(4.2)

Q- z(vagb)ea cd dscd

S5(4)

1
= lim —
a-0 02 Jsq)

(V.. )6t s
= lim 4 (Q)/Q3,
Q-0

say, where S,(£2) = Zn{ = const}. On the other hand, this
last integral is equal to
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167 g'"[ -7, +—;—gmbT]d2", 4.3)
p

which is finite provided 0‘3/1\"‘, ® admits a smooth limit to I.
As a result, 4 must vanish when Q2 — 0, and one can make
use of 'Hopital’s rule. Let ™ denote the vector ﬁeld induc-
ing the unit normal at J, and such that V(,, 1,) = 0. Thus

#™V,,7° 2 0. Let furthermore 711 ) be the two-flat orthog-
onal to the two-spheres .S,((2) (t can be chosen such that
£, t& = 0). We shall consider a neighborhood of I sufficiently
small so that 4 = A4 () converges uniformly to zero as )
goes to zero. We thus have

lim 4 /0% = Lim (7"V,,4 204"V, Q)"
N0 Q-0
= (— A/3)~lim (1/20) 7V A,
)
where

lim 7V, A= lim$ (#V,V,E,)d5*.

Q-0 N0, S,(51)
We have used the equality 7™V, (r!°7*1)20. Hence

lim 4 /Q?is equal to
Q-0

I RP. & [m( A)m Tlaste (44
im ' - — °, .
a0 S,(ﬂ)ﬂ bSp 3 ] ( )
where we have used the fact that £, Q = 0implies that 2 “isa

Killing vector field for & r 8, and thus satisfies the affine colin-

eation equation v V,, £ = c,,ap§ »- On the other hand, one
has

A

A ~ o a A
Ribca = Covea + &areSaro — Es1Sa1as

where S, = (ﬁa,, —1 ﬁg,,,,). Hence (4.4) splits into three in-
tegrals:

. b N A 1727 -1
A, = lim 7 c,,,m,ga[m( - —) ] dS*  (4.5)
Q-0 S,(€2) 3
. TS N A 1727 -1
Az = llm 7’ ga[csd]bga[z,ﬂ( - —) dS *CJ,
Q-0 Js,n) 3
(4.6)
~ a A 1727 —1
A;= lim — 18, [chlaga[ZQ( - —) ds*.
10 5:(Q2) 3
(4.7)

The definition of /L\'a,,, the electric part of the asymptotic
Weyl curvature, implies that 4,= —(—3/ A)/?
X $.E,,&° dS° Theintegral 4, vanishes due to the fact that
£t =0 and &%) = 0. Finally 4, can be expressed using

S, =S, —20°V,9,0 + 2,09V, Q.
Note first that since, by field equations, S,, is a multiple of
&.» and since the vectors § 17,t are orthogonal, the only terms
which contribute to the integral in 4, are terms in V V Q
and V,V_Q, respectively. A straightforward calculation re-
duces 45 to
Q~2(Ga§b )eabmn ds mn’

-0 2 Jsi)
i.e., to 87 Q. (£ ). The result follows immediately
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Oi,(6) = C(C).
Hence we have the following theorem.

Theorem: If an asymptotically anti-de Sitter space-time
(in which matter sources are spatially compact) admits a ro-
tational Killing vector field £ %, the Komar integral @, (£)
and the charge integral Q,(C) at I are related via @, (£)
= Q,(C), where C is any cross section of I.

V. STATIC SPACE-TIMES

We shall now assume that the space-time (M.,g,, ) is stat-
ic, i.e., is equipped with an everywhere timelike hypersurface
orthogonal Killing vector field £ and ig asymptotically
anti-de Sitter, with conformal completion (M,g,, ). The static
foliation will be denoted by ., . On the same manifold M, an
anti-de Sitter metric §,, can be introduced with the same
static hypersurfaces %, and hypersurface orthogonal Kill-
ing vector field £°=£° In addition we shall require that
(M.g.,) and (M,g,,) belong to the same O(2,3) invariant-
equivalence class.® According to Sec. I1, this is equivalent to
requiring that, in the usual anti-de Sitter chart (z,7,0,p ) asso-
ciated with &, , the components of g, — &,, are of order 7!
with the exception of g, —&,,, 80 — &0, and g,, — &,
which are of order r—*, and g,, — &,,, which is of order 7 —°.

The generalized Komar integrals associated with £
=£7in (M,g,,) and (M,g,,) are, respectively,

e A
0.,6)=tim L[ (g as+ 2 [ g ax
(5.1a)
and
0., &)= tim L[ @i, a5+ B (¢ az,
A =1 167 Joz T Jz
(5.1b)

where 3(2 C ., for some value of ¢ ) is a compact volume
spanning d=, a two-sphere surrounding the matter sources.
Note that, in the expression of @, , the volume integral as
well as the surface integral, are both infinite in the limit. The
first step of our analysis will consist in the elimination of the
volume integral in O, (£). In these volume 1ntegrals, the
integrands are, respectively, & %, =F, and g e,,,,k_F

which, being nondegenerate three-forms on 2, are propor-
tional to one another. Thus, F,,. = a(r,0,p )Fa,,c for some
nowhere vanishing, smooth function a. Now, we can per-
form a diffeomorphism ¥ on (M,§,, ) such that (a) the bound-
ary conditions [i.e., the O(2,3) equivalence class of asymp-
totically anti-de Slttel‘ space-times] are preserved, (b) the
vector field & “—é' ¢ is mapped to itself, and (c) QM YE.s)
= g,,,,) is an anti-de Sitter space-time with F,, = F,,_. (Re-
call that under any diffeomorphism ¢ an anti-de Sitter space-
time is transformed into another anti-de Sitter space-time
since 0=19y[R,, —iRgw + A8as ] = ¥R.) — JWUR)
X 'p(gab) + A¢(gab )ERab - iRgab j' Agab)' Thus we have a
new anti-de Sitter background (M,g,, ) for which the volume
integgral in @, (§) coincides with that in Q,,A(g‘ ). Subtracting

QkA@‘ ) from Q,, (£) and using the fact that all generalized
Komar integrals vanish identically in any anti-de Sitter
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space, we have

0,.€)=0. ) — 0., &)

=F;£3JUE§VM

— (V&) ]as<. (5.2)
From now on, we shall drop the tilde on quantities associat-
ed with g,,,.

Let gab§a§b -4 (reSP gab§a§ = —Ao) and &,
=%, (resp. g,,‘, =0 2¢.), where, for further con-
vemence, € (resp. (1) will be chosen equal to 4 —1/2 (resp.

—1y), Then, § °=§ ° (resp. § “—5 ?) is a Killing field also of
g,,,, (resp. £.)- Jfurthermore, it has unit norm: A = §,, & “§ b
=,— 1 (and A= — 1). Therefore, using the fact that § a
—§ ¢ is hypersurface orthogonal we have vag,, =i-

><§ V,, ]/1 0 and similarly V §,, = 0. Now, since V,£, ,
= V[aﬂ, 2, ;» the expression @, (£) in (5.2) reduces to

O, €)= — L fim 0
A 87 o

-0 IT(N)

[(V. 2,8,

— A3V, )¢, 7., 1dS, (5.3)
where JZ(2) = S,n{2 = const}. Since we have assumed
that the matter has compact support, Q, (£) is finite. This
implies that, although the integrand of the integral in (5.3)
might not go to zero when () — 0, the integral itself does so,
and the limit can be evaluated using ’'Hépital’s rule. Let #¢
denote the vector field inducing the unit normal to Z, and let
hoy =8u + A ~'€,£,. From now on (since the conformal
freedom allows it) we shall assume that V,, 1, = 0. The ac-
tion of ’Hdopital’s rule on the expression (5.3) yields

Q)= — L tim {[mz(_ %)vz]-n

87 00 Jasin

man S S . INYG R
xn’"n"(VmVaﬂ)—[mz(— ?) ] 777

22, A2
x(v,,,vaﬂ)](— ?) d’s. (5.4)

Let us evaluate the integrand in (5.4). A straightforward cal-
culation gives us the Ricci curvature of (S,,4,,) in terms of
the norm A =0 ~2 and the twist , of the Killing field £ *:
Ry = Ahyy + (1/24) B, PR, 7V, V A
— (1/44 3D, AD,A + (1/24 w05 — hgp"@,,),
(5.5)
where D is the derivative operator compatible with 4. (The
twist terms, of course, vanish in the static case now under
consideration. They will be important in the stationary case,
to be discussed in Sec. V1.) Hence, we have
ﬁaﬁbva vb QEﬁaﬁbva vb'1
=1 ~Y?[(1/2A*)D,AD,A + Ah,, — R o | 9°7°.
{5.6)
The idea now is to relate the right side of (5.6) to the electric

part of the Weyl tensor. Recall, first, the identity which
holds on any time symmetric slice 7, :
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gabEC‘amlmgmg’l = '@ab - i{ha mhb"Lmn + haprthq}9

(5.7)
where {™ is unit normal to ¥, and where L, =R,
— 3 Rg,,. (€, is the electric part of the Weyl tensor of the

physical metricg,, , relative to ., .) Using the field equations
outside sources, we have

&b =R —(2A/3)hy,, (5.8)
hence
R R s = U C o) ™8 "0 + 9°H° (2035 )
(5.9)
here (Q~'C,,,,, #*H* ) "E" = E, £ ™E", where E',,,,, is the

electric component of the Weyl tensor with _respect to the
unit normal 4 to J, as introduced in (Ref. 2) [§‘ denotes the
unit normal to (S, h,,,,)] One immediately deduces from
(5.6) and (5.9) that #""V,V, A -2 o _O%F L
+ QY A/, 77 + 20° ‘“"'?/”V 9, 0. A straightfor-
ward calculation using 4 ok, =Vok, + Cp,"k,,, where
Ca,, = — Q7[5 (‘,V,,)Q 2.,V 1], finally gives us

¥, 9,4 -1

A Ao a A il
— _QZEm" mgn (_)( “b)'\a'\b
§mE" + SN )1
+ = B0y, 0) (5.10)

A A
where D is the derivative operator compatible with 4, . This
last equality enables us to transform the expression (5.4) into

O, (£)
(- 2)"] ([~ 5.27
= — —|— =] —Ilim —E,,£7C"
87 A 3 a—o0 Joxn £
+A ~3h o R +Q3D”QDQ]

+fl‘3b"ﬂb,,ﬂ]}dV2. (5.11)
(Actually ji',,,,, = 0 since anti-de Sitter space is conformally
flat.) We shall now be concerned with the 1ntegrand in (5 ).
Let us first evaluate the quantity Q, = (A/3)[Q~* - Q7).
Recall that we have chosen Q=4 ""2= (g, )~ '/?
= (800 + (A /70 ) + O (1/77) /2. A straightforward ex-
pansion of @ = (A/3)[(§eo + Au/r + O (1/P))'* — (§00)*"”]
with respect to r~! provides us with the following result:
Q,=3(— A/3P*h,/ —2)+ O(1/). (5.12)
Let us next evaluate the quantity 9, — R — R,
=0" 3(D 5D, Q@ — ()~3D°Q)D, Q). Recall first that
grr gr +r—lhrr+ 0(,.—2), g99_ °88+r—1h96+0(r—-2)
g%? =£°° + r~'h®® 4 O(r—?). A somewhat long but direct
calculation provides us with the leading terms in the expres-
sion

R=pi 0t ) o+ 57) +0(3),
(5.13)

Anne Magnon 3116



where it must be noticed that terms in 4 ®° and 4 ¥¥ and cross
terms will not contribute to the surface integral due to their
falloff on the domain of integration. The result is the follow-
ing:
Q=R — Ry, = (~— A/3)*h,/ —2) + O(1/7). (5.14)
Remark: note that in the case of the Schwarschild anti-
de Sitter metric goo =1 —2M /r — (A/3)r?, and therefore
h, = —2M.
Finally, the radius of the cross section at I being — 3/A,

Qu, (€)= — 1/8( — 3/A)"2

x L fim {—Em,,ém "
3 a0 Jozim

A)1/2 h,, }
4f — —) —dVs.
+ ( 3/ —2177F
If we return to the notations introduced in (Ref. 3, Appendix
D),

- ihn =§00(3) =E00 = mng—mg- "
the result follows immediately:

Q. 6)=10Qc&),

where Cis the cross section induced on I by the static slice 3.
We thus have the following theorem.

Theorem: If an asymptotically anti-de Sitter space-time
(in which matter sources are spatially compact) is equipped
with a static Killing vector field £ 2, the corresponding gener-
alized Komar integral @, (£)is related to the charge integral

Qcl§)atl, via @ (£) =1 0c(§).

(5.15)

VI. STATIONARY SPACE-TIMES

Let us now suppose that the space-time (M,g,,) is sta-
tionary. The situation is then analogous to that in the static
case; the only difference is that the Killing vector & © is not
hypersurface orthogonal.

Recall that the generalized Komar integral associated
with £ ¢ in (M,g,,) is given by

0.,6)=Jim |- [ Fgutes as

a1 16w

+ 2 f £ € opes dE"""], (6.1)
87 Js
where V,&, =4 7'€, V, A + I 7! €4 ‘@° A and o” be-
ing, respectively, the norm and the twist of £ © in (Mg, ).
Let us focus on the integrands in (6.1). The integrand in
the volume term, £ ¢, satisfies £;(£ “€,p.; = 0 and is or-
thogonal to £ °. It can be therefore naturally identified witha
three-form on the three-manifold Z, the manifold of orbits
of £. In the surface integral, A ~'£,(V,A Je*®,, is also a two-
form on &. We shall now show that the term involving the
twist of £ does not contribute to the surface integral in
Qx, (£), so that the calculation can be performed entirely on
¢ . In the anti-de Sitter chart (¢,7,6,¢ ) available in the neigh-
borhood of I, [s&,w, dS® = fs3t.0,0 @) dOdp,
where 6 and @ ¢ are dual to the one-forms d6 and dgp, re-
spectively. Using the asymptotic behavior near 1, displayed
in Sec. II, we have
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£ (=8op)~r""; £B(=8oo)~r";
0,0 =&p0%(9,80r — 3,805)~/110p );
and

W, p°= g‘poer(aagm — 3,800) ~f2{0,0).
[1t is straightforward to check that &,,* ~7f(6,@).] As a
result, the twist term does not contribute to the surface inte-
gral in Q, (£); the only nonzero contribution to @, (£)
comes from integrals on forms on the manifold of orbits.

We can therefore proceed as in the case of static space-
times, replacing the static slice by the manifold & of orbits of
£ ¢in the calculation. The availability of diffeomorphisms on
this manifold enables us to choose “data”—a three-metric
§., and scalar field A—on & which, when evolved give rise
to an anti-de Sitter solution (M.,g,, ,§°‘ %) such that
S1€p€y A= equals f3£,&,, d3%. The evaluation of
Q. (£) is then obtained as in the static case with the follow-
ing modifications: (i) It is straightforward to show that the
twist terms in (5.5} do not contribute to the surface integral;
and the terms involving the extrinsic curvature in (5.8) and
(5.9) do not contribute because, due to the falloff of 7, (stud-
ied in Ref. 3), all these terms are at least of order 72, except
7 which cancels in (5.9). Hence the resulting expression
falls off like 7—%. We thus have the following theorem.

Theorem: If an asymptotically anti-de Sitter space-time
(in which matter sources are spatially compact) is equipped
with a stationary Killing vector field £ ¢, the corresponding
generalized Komar integral @, (£) is related to the charge
integral Qc(£)at I'via @, (£') = 4Qc(£ ), where Cis any cross
section of I lifting the boundary 3 of the manifold of orbits
of &
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The solution of Einstein’s field equations is studied for a metric written in the form

(6#y)ds® = — aP(t,r,0,@)dt* + ¥ dr* 4 271 d0? + 25" M (6 )dg 2. A perfect fluid, which
flows orthogonally to the hypersurfaces ¢ = const, is considered as matter content. These
hypersurfaces admit a translational Killing vector, which will not be, in general, a Killing vector
of the whole space-time. All the possible solutions are obtained when & depends on the variable .
These solutions represent either a perfect fluid without expansion or vacuum with a cosmological
constant As0. Some particular inhomogeneous solutions are obtained for « independently of ¢.
These solutions are physical, the fluid obeys an equation of state p = p (stiff matter), and the space-
time admits, apparently, only a group G, of isometries. A vacuum family is also obtained in this

case.

I. INTRODUCTION

Collins® has proposed the idea of “intrinsic symmetries”
as an alternative approach in order to obtain inhomogeneous
cosmologies. He and other authors®™ have used this tech-
nique, applying it to different space-times. In the present
paper, we start from a metric with one translational symme-
try on the hypersurfaces ¢ = const. This metric can be writ-
ten as (6 #¥)

ds* = — a*(t,r,0,p)dt? + 1 dr* + &1 d§?
+ XM (6 )dp . (1)

The form of this metric is very similar to one previously
analyzed by Martinez and Sanz.* The difference is that we
assume 8 #y, whereas they only studied the case § =y,
which included the spherical, planar, and hyperbolic intrin-
sic symmetries.

The only Killing vector admitted by the spatial part of
the metric (1) is d,,. This Killing vector constitutes the only
“intrinsic symmetry” of the metric; in the case d,a = 0, this
vector will be a Killing vector of the whole space-time.

We shall assume that the source of the gravitational field
is a perfect fluid whose flowlines are orthogonal to the hyper-
surfaces ¢ = const—we shall analyze the vacuum case, too.
This fluid will not be, in general, geodesic and its shear will
be different from zero, whereas its vorticity will be always
equal to zero. This can be easily computed from the metric
(1), taking into account the definitions of the kinematical
quantities.’

In order to solve Einstein’s field equations we use the
ADM equations® as they have been written by York.” This
enables us to separate the equations into constraint equa-
tions on the hypersurfaces and evolution equations.

In this formalism, a general metric reads’

ds*= — (&> — B'B,)dt? + 2B, dtdx' + v, dx'dx’'
(i, ...=12,3), (2)

where ¥;; is the metric of the hypersurfaces ¢ = const, ; is
called the shift vector and moves the spatial coordinates as
the data are evolved from one slice to the next, and « is called
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the lapse function and measures the orthogonal proper time
between neighboring slices aét.

Following the notation established in the reference men-
tioned above’ we write the corresponding equations for our
metric in Sec. II. First, we impose the condition d,a #0 and
obtain the general solution for this case. We calculate the
density, pressure, and expansion scalar, finding that for all
the solutions the density is constant and the expansion van-
ishes. In several cases the fluid obeys a nonphysical equation
of state p = — p. However, these solutions can be interpret-
ed as vacuum solutions with a cosmological constant
A=p= —p. In Sec. IIl we study the equations when
d,a =0, dga#0. Now, the space-time will admit at least
one Killing vector d,,. We obtain some particular solutions
with a group G, of isometries acting on two-dimensional
orbits. The two Killing vectors are orthogonal and the corre-
sponding space-time belongs to the class Bii in the classifica-
tion scheme developed by Wainwright® for inhomogeneous
cosmologies. Moreover, the equation of state satisfied by the
fluid is p = p (stiff matter) and one of the solutions is a sub-
case of one found by Wainwright ef a/.° Some vacuum solu-
tions are also obtained in this case.

Il. BASIC EQUATIONS. CASE J,,a#0

In this section, we will write and solve Einstein’s field
equations for a metric written in the form (1), using for it the
ADM formalism. The general equations of this formalism
can be written in the following way:

2r=R+(rKP—K'K,, (3)
F=DJK'— Yt K), )
8,v; = —2aK, + DB, + DB, (5)

a,K,.,. = — D,-Dja + (fBK )i
+a[R; —2K,K",
+K, trK—S, +{,ltr S — )] (6)

We use the corresponding definitions of the quantities ap-
pearing in these equations as given in Ref. 7. Equations (3)
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and (4) are the constraint equations and (5) and {6) are the
evolution equations. Besides, we can use the following two
equations, which emerge from the conservation law of the
energy-momentum tensor:

4,7 +aDj=a(SK; +7trK)~2fD,a+B'D,r,  (7)
3 +aD,S¥=a2K Y%, +jtrK)
—S'Da — 1D'a + Lpj. (8)

For the metric (1), if we calculate the quantities that appear
in these equations, we can write the equivalent set

p= —MpM e~ ye~#(—y" _ 5 +yB + 88

- =8V =7 =8+ KK, + KK, + KK, &)
(K, + Ky) + VK, ~ K)) + 6'(K; — K ) =0, (10)
(Ky + K3)o + MM ~1(K; — K3) =0, (11)
(Ky + Ko)p =0, (12)
B= —ak, (13)
y= —ak,, (14)
5= —ak,, (15)
—vYa, —aM,M ~'(y — &) =0, (16)

a, —8a, =0, (17)
asp, — MM “'a, =0, (18)
Ki=e %(—a"+B'd +aR,) +aK, tr K + Jalp — p),
(19)

Ky=e " —ay — &'~ PYa’ +aRy)

+ akK, tr K + jalp — p), (20)
K, =M —a,, —e? " *M¥a

—e? " "MMya, + aR;,)

+aK,tr K + Jalp — p), 21)

where ('=0,, =0, ,=0,,, =9,),pisthepressureandpis
the density of the fluid, K;=K" are the mixed components
of the extrinsic curvature—which is diagonal, R g is the
three-Ricci tensor of the hypersurfaces, and R is the curva-
ture (R = 7Y R;). A direct calculation leads to the values

—Ru=v"+y?+8" +8%-B'(y +8), (22a)
— Ry =e""#" + Y2+ Y8 —VB') + MeeM ',
(22b)
— Ry, =" BMY 5" + 8%+ 6y — 8B
+ e~ MM, (22¢)
Ryp=(y —8M;M ', R;;=R,;=0. (22d)

Finally, the conservation equations can be written as
follows:

p=alp+pirK, (23)
adp= —p+pJa. (24)
If we calculate the kinematical quantities, we obtain, taking
into account that the fluid is orthogonal to the slices

t = const, that the vorticity is identically zero and the expan-
sion scalar (@ ), shear (0,5 ), and acceleration (£*) are given by

f= —trk, (25)
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0%=0%=0, o= —(K,+68/3), (26)

£°=0, {'=a Y g 27)
So, the fluid is irrotational; it will be geodesic, according to
(27), if and only if the lapse function only depends on time,
and it will be  shearfree provided that
K, =K,=K,= —}0 as we can easily see from Egs. (25)
and (26). This implies, taking into account the expression of
the extrinsic curvature in terms of the metric, that
B=y=34.

These results are general for a diagonal metric, with the
only assumption of a matter content, which is a perfect fluid
flowing orthogonally to the slices £ = const. Therefore, a so-
Iution of this type will be a Friedmann-Robertson~Walker
model if and only if ¢(t)and B =y = 8.

Now, we will begin to solve Eqgs. (9)-(24). First, we only
consider the case a, #0, if we take into account Egs. (12)-
(14): K, = —-K, and B= —v. So, B= —y+F(r) and,
with a suitable change of frame, redefining the coordinate r,
wefindf= —y.

If we turn our attention to Egs. (17) and (18) and inte-
grate them, we obtain the general expression for the lapse
function

a=¢(t.p)Me® +H(tr6). (28)

Substituting this value into Eq. (16) and taking the derivative
with respect to ¢, we find

(6" — 7)Mo =0. (29)
Therefore, two possibilities arise from this equation, either
8= — B'or M, =0. In the second case, the hypersurfaces

will admit two “intrinsic” Killing vectors d, and d,. We
shall consider separately the two cases
A My#0, 8= —B')and B (M, =0).

Case A (M,740, 8= —p'): If we develop Eq. (16), we
obtain the following expression for H (¢,7,0 ):

H=L(t0)e % + A (30)

If we take into account Eq. (11), this leads to two different
subcases: A (6 = — = 7)and Ayja~'a; =M ~'M,). The
subcase A, has been treated exhaustively by other authors,*
so we will only consider A,. The general solution for @ corre-
sponding to 4, will be

a=¢tp)Me . (31)
We know that ' = — B’, s0 8 can be expressed as
5= —-B +Glt) (32)

and the general metric can be written as
ds’= — ¢ (t,pM%e~#dt? + ¥ dr

+e " Pd6% + e°M?*dp?). (33)
It is very easy to conclude that Eq. (10) is equivalent to
B'=p8" (34)

On the other hand, introducing the expression (33) for the
metric into Eqs. (9) and (19)-(21) and substituting the values
of the extrinsic curvature given by (13}15), and the value of
the three-Ricci tensor, we obtain a set of four equations (two
of them can be considered as definitions of the density and
pressure). If we subtract Eqgs. (19) and (20) we find
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(—Ba~') =je~%(—a" —aB” +aB”)

+4e¥ (g +aM ~'Mg) +a"'B(G - B),
(35)

and substituting Eq. (31) into the previous equation and tak-
ing the derivatives with respect to 6, r, and ¢, we obtain

(M ¢ ~'¢B o =0, ' (36)
which implies necessarily one of the two possibilities ' = 0
or (¢ ~'¢), = O. The first one leads—see Eq. (34}—to f =0
orB' =0, butif B’ = 0, we can easily prove, interchanging
the coordinates r and 8, that M, = 0 (this corresponds to
case B, to be studied later) so S =0 and then Eq. (35) is
equivalent to

Mg =kM, e~*B" —B'*)= —k, k= const.

(37)

The other possibility (¢ ~'¢ )o = 0leads to 3 = 0, after a te-
dious calculation taking into account Eqs. (34) and (35).
Therefore, it is a particular case of the previous one.

Integrating Eqs. (37), we obtain the following values for
M and B (after rescaling the variables @ and #):

sinf, k= —1,
M=106, k=0, (38a)
sinh8, k= +1,
k=0, e #*=4%, {38b)
A#0, e P=ArP+ kA", k= +1,
k #0, [A=O, e~ ¥ =2y, k= —1,
(38¢c)

where A is a constant which appears in the integration. Now,
we subtract Eqs. (19) and (21). A straightforward calculation
leads to the following relation between ¢ and G:

$7'9G — G — G?= — (¢ + dpgpe ). (39)
Our next step is to calculate the density and pressure to es-

tablish if the solutions are physical. The final result for the
density, see Eq. (9), is

k=0, p= —342 (40)
k=0, A#0, p= —34, (41)
k#0, 4=0, p=0. (42)

Taking into account Eq. (23), since p = 0, we find that either
p= —p or 6 =0. This last possibility leads to & = y (the
case studied in Ref. 4). Therefore, we deduce that the only
possible equation of state satisfied by the fluid will be
p= —p

However, we can reinterpret it as a vacuum solution
with a cosmological constant A =p = — p. From Eq. (38),
we see that when 4 <O and k = 1, e~ % <0, which is impos-
sible. Then, in the case A > 0, the only solution will read after
an appropriate change of coordinates,

ds* =3A "' —¢%sin?0(1 —A)dt?+ (1 -~ 1dr
+ (1 — P)d6? + €*° sin* 6dp ?)}. (43)
When A <0, we have three possible solutions:
k=0, ds= —¢20*Pdt>+3(A|A) " dP
+rAdO? + 2602 dp?), (44)
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k= +1, d?=3|A|""Y —¢*M2(P + k)dt?
+ (P4 k) ar
+ (P + k)dO? + M2 dp?). (45)

For A = 0, we obtain a vacuum solution without a cos-
mological constant. By calculating the Riemann tensor,” we
prove that this solution is the Minkowski space-time. In all
the cases ¢ and G are related by Eq. (39).

In conclusion, we have surveyed exhaustively case A,
obtaining the general solution, which is a new—as far as we
know—vacuum solution with cosmological constant, de-
pending on two arbitrary functions ¢ and G related by Eq.
(39).

Case B(M, =0): Now, we are going to consider the case
M, = 0. Taking into account Eqs. (16)—(18), we can write the
lapse function as

a=f(tr)+g(t,0)e” + h(tp)e®, (46)
where 8 = — y. If we regard Eq. (11) and develop it, taking
into account Egs. (13) and (15), we find

(¥ —8)ao =0. (47)
Therefore, either a; = 0 or ¥ = 4. If we now use Eq. (10),

substituting into it the value of @ given by (46) and taking the
derivative with respect to @, this equation leads to

6 +9 =21y (48)
Reintroducing this expression into Eq. (10), we obtain
(6 + e —8'a)=0. (49)

Therefore, we have to deal with four different subcases [see
Egs. (47) and (49)]:

B;: ag#0, 6 +y=0

(=), 8lr), Ky =K, =K;=0), (50)
By @y #0, & +y#0
(=a'=8'a, y=46, ¥ =6, f' =8, (51)
By ap =0, & +y#0 (=g=0, a'=8a, [ =8Y),
(52)
Bg: @y =0, 6 +y=0 (=g=0) (53)

Subcase B,(ay20, 6 + y=0): By writing Eqgs. (19}
(21) and combining them in an appropriate way, we find

alp—p)+ 2" (—a” —ya' +aR,,)=0, (54)
Qgg —aRy + ¥ (@R, —a”) =0, (55)
e~ (age + €7 a'y — aRy,)

=a,, +e**7a'8 — aRy;,, (56)

and we have another equation as definition of the density
[Eq. (9)],

p= —e Y +2/2+ 8" + 8%+ 278 (57)
Now, if we calculate the third derivative of Eq. (56) with
respect to the variable g, it is deduced that

hnp_lhm =e26+27(27/2+ 7’” __611 _ 2612) =a,
h,, =ah + B(t), (58)
where g is a constant and B (¢ ) is an arbitrary function of its
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argument. Doing the same with respect to 6, we find a simi-
lar relation for g,

85 'Booo = —€[(8' — V') +ae" "] =),

8o0 =bg + D (1), (59)
where b is a constant and D () is an arbitrary function of its
argument. If we substitute Egs. (58) and (59) into (56), this
equation can be written as

(y/ _ 5')(f’ _ 67') +fae—26—2y =Be—-6—2-y_ De—3~y'

(60)
Equation (55) can be reduced to the following set:
8" +87%=0, be "=y"+y?% f'=De (61)
From Egs. (58), (59), and (61), we obtain

b=y 7). (62)
Now, we will consider different subcases depending on the
value of the constant b: b #0.

Integrating Eqgs. (61) for § and 7, we find
& =kr* + bk~ k0,
e =2r(b|"?, b<0,
where ¢, d, and k are arbitrary constants.

Let us consider the case k 0. Substituting ¥ and § given
by the previous formulas into Eq. (62), one obtains that
d=0.

For b <0, an appropriate change of coordinates leads to
the following expression for the metric:

e =cr+d, (63)

ds*= — (f+ge’ + he®)dt® + k ~Y (¥ — 1)~ 1dP

+ k(P —1)d0?+ Pdp? (64)
Moreover, we obtain from Egs. (58) and (59) that a =k,
b= — k2, so h and g must satisfy the differential equations

hoy =kh +B(t), g4 = —k’g+DIt). (65)

Integrating these equations and the corresponding ones for f
[Egs. (60) and (61)]:

k<0: a=[Rcos(|k|"?p)+ Ssin(jk |/?p)]e®

+ (Tcos k@ + Qsin kB )e? + W,  (66a)
k>0: a=(Rel*I'"*® 4 Se~1kI"¢)b
+ (T cos k@ + Qsin kB )e¥ + W.  (66b)

Allthe arbitrary functions appearing in these expressions are
only time dependent. For, b > 0, the metric can be written as

ds*= —a?dt> + kP + 1)1 dr
+ k(P + 102 + Pdp?. (67)

But in this case, X must be always positive, and the only
possible value for a will be

a =[N cos(k ?p) + O sin(k V%p))e®
+ (Pe*® + Ue~*0)e" + W, (68)

taking into account thata = — k and b = k 2 from Egs. (58)
and (59). Calculating the density and pressure according to
Egs. (57) and (54) for the two cases 520, we find

p= —3k p= —(p+2Wka™) (69)
So, the solution will be physical when k& < 0. Therefore, the
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only physical solution will be given by [see Egs. (64) and (66a)
and writek = — 42, 4>0]

ds? =AY —atdt?* + (1 — )~ dr?

+(1 =748 + P dp?}, (70a)

a = rBsin g + C cos @)
+ (1 —r)"*Dsin 6 + Ecos 8) + F, (70b)
p=34% p= —p+24%Fa . (70¢c)

The density is always constant and the only kinematical
quantity different from zero is the acceleration [see Egs.
(251H27)].

We could obtain a vacuum solution with a cosmological
constant provided that F=0. All the solutions with F =0,
could be interpreted in this way since the fluid will obey an
equation of state p= —p in this case and defining
A =p= —p, we introduce the cosmological constant in
Einstein’s field equations.

Other results can be obtained assuming that k = 0. In
this case, the solution for y is e = 2|b |!/%r. We can find the
value of a, integrating the relations for f, g, and & and the
final result is (k =|& |*/?)

a=4Bp? + Ly + [R cos(k@) + T'sin(k@)]e”

+Bk~'r+ W, (71)

and the values of the density and pressure are
p=0, (72)
p=2Ba. (73)

For B #0, we have an unphysical solution sincep = 0, p5£0.
Therefore, B must be equal to zero and then the solution is
Minkowski space-time as can be easily proven by a direct
calculation of the Riemann tensor.

For b = 0, we obtain a solution with the same character-
istics that appear in the solution studied before. In particular
the density and the pressure have the structure {72), (73). In
the same way, the vacuum solution can be proven to be Min-
kowski space-time.

Subcase B, (ay540, 6 + y#0): In this subcase § ' = '
and § = y, s0 8 = ¥ and we do not consider it since it only
gives solutions that can be found in Ref. 4.

Subcase B, (ag=0, 6 +y+#0): In this subcase
(@g =0, & +¥+£0) we can write the lapse function as
a = he®, because g = 0 and ' = f¥', subtracting Eqgs. (19)
and (20), and combining Eqgs. (19)—21) algebraically, we ob-
tain a couple of equations which read [we shall consider Eq.
(19) as the definition of the pressure]

7‘,}'1}1 -1 _ 7 = ¥ +2rp 2(5» + 6’2), (74)

8 —bhh ~1 =P+ URYF? — " — 2% 4 h b (75)
A tedious manipulation of Egs. (48), (74), and (75) leads to the
simple relations

w =0, 6'=0. (76)
Therefore ¥ =0 or ¥ =0. The second possibility with
y #const leads to an unphysical solution (p < 0) and the first

one allows us to integrate easily the function §, through Egs.
(74)-(76),

& =A(t)r+B(t) (77)
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where A and B are arbitrary functions.

For A4 (t)#0, the variable r can be redefined and without
loss of generality we can take B =0 (we use the property
BA = AB deduced fromé' = 0).

By using Eq. (75), taking the derivative with respect to
the variable r, we find the following expression for y:

e =ar ' +bP +oc, (78)
where a, b, c are constants. Then 4 and A4 will be related by
Eq. (75):

A4~ — A4 —AA'h h=A%h*+ hh,,.  (19)
The density will be given by

p=—€&7(y+2y*+2/8). (80)
Developing this expression, we easily prove that the density
is constant, p = — 3b, and using Eq. (19) we obtain an equa-
tion of state for the fluid of the form p = — p. This equation

is unphysical and can be again interpreted as a vacuum solu-
tion with A #0. The metric can be written as

ds’ = —h?A* dt> +{ar '+ bP + )71 dP
+(@ar '+ b +c)d0* + AP dp?. (81)

If p = 0, the constant b vanishes and we obtain a vacuum
solution with A = 0. If we compute the Riemann tensor, we
find that it is different from zero if a£0, i.e., we have found a
family of nonflat vacuum solutions. It admits, at least, one
Killing vector d, as can be seen by simple inspection.

Summing up, two new families (as far as we know) of
vacuum solutions emerge: the metric given by Eq. (81), being
A (t),anarbitrary function, and (¢, ), satisfying the differen-
tial equation expressed by Eq. (79). For b #0 the cosmologi-
cal A term needs to be incorporated.

Next, we shall briefly discuss the case where 4 (# )=0.
The integration of Eq. (75) leads to

e’=ar +br+c, hh,, —h “1hé =8 +ae®, (82)
where a, b, and c are constants. Now, a direct calculation of p
and p through Eqs. (9) and (19) givesp = —aandp = —p.
The particular case a=0 is flat space-time and for g %0, we
can reinterpret the solution as corresponding to Einstein’s
equations witha A term.

Subcase B, (ay =0, 5 + ¥ = 0): Now, we can write the
lapse function as

a=f{tr+h(tpld. (83)
According to Eq. (48) two possibilities emerge: ¥ =0 or
¥ =0.If ¥’ = 0, it is easily proven that this generates a solu-
tion with § =%, so we will only consider the subcase
y=0 (25=0).

Developing Eqgs. (19)—(21) and combining them in an ap-
propriate way, we find
he'(8” + 87 = —4Uf" +£16" + 87), (84)
—_— e2'r+6h (5” + ,},n + 27/2) + e—ahw

+E "+ @ =V = 2=V =0
(85)

integrating the first equation we obtain

S=In{dr+e), f=Ar+B, ' (86)
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where d and e are constants and 4 (¢ ) and B (¢ ) are arbitrary
functions of their argument.
For d #0, the variable r can be redefined and without
loss of generality we can takee =0 andd = 1,i.e.,e® =r.
Taking the derivative with respect to ¢ and » in Eq. (85),
we can solve for y as

& =ar '+ b+, (87)

where a, b, and ¢ are arbitrary constants. We realize that
when B = 0 this solution will be a particular case of solution
(81) with 4 = 1, because we can reexpress a as / (t, Je® with
h=A+h.

If we analyze the case B #0, we find that it has the same
structure as the metrics found before in the subcase B, with
p=const,p= —(p+2Wka"'),and g, = 0.

For d =0 the only vacuum solution is obtained if we
have flat space-time and for nonvacuum we obtain nonphy-
sical solutions with p = 0 and p #0.

In conclusion, we have obtained all the possible solu-
tions for a metric written in the form (1) provided that &, #0
and 6 #y. Wehave found a family of solutions representing a
perfect fluid without expansion, irrotational and shear-free,
satisfying a nonbarotropic equation of state. This solution
cannot be considered as a cosmological model, since the nat-
ural physical interpretation of perfect-fluid solutions with
zero expansion is as models of perfect fluids in equilibrium.

We have also found several families of vacuum solutions
with a cosmological constant A 70 and a non-Minkowskian
vacuum solution with A = 0.

Ifa, =0, @y #0, and M, =0, interchanging 6 and ¢,
we easily see that this case is equivalent to the one (case B)
considered before. So, we have found the general solution for
the metric (1) with My, =0, a,, or a, #0 and § #7. This
type of metric admits two “intrinsic Killing vectors” on the
hypersurfaces ¢ = const, but these vectors will not be Killing
on the whole space-time, due to the 8 or ¢ dependence of a.

{li. PARTICULAR SOLUTIONS WITH o, =0

In this section, we will study the case a, = 0, a5 #0,
and M, #0. In the general case, the equations are too com-
plicated and no general solution is obtained. We will only
obtain some particular solutions, assuming that y and & are
only time dependent. This assumption simplifies the equa-
tions, allowing us to integrate them.

Equation (16) is written now as ag = 0. On the other
hand, Eq. (10)is equivalenttoa’(y + &) = 0. Itis very easy to
prove, taking into account Eq. (11), that the possibility
¥ + 6 = 0 leads, after a redefinition of the coordinates, to a
particular case of the metrics studied in Sec. I1. Therefore,
we shall consider that &' = 0 and the integration of Eq. (11)
leads to

a=GM@)f", Fit)=0©6-no+B8)"", Bit)
(88)
after a redefinition of the coordinate r.
The only remaining equations to be solved are Egs. (9)
and (19)21). The difference between Egs. (19) and (20) and
(19) and (21) can be written as
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y—B+@—B)B +y+6—FlnM~GG™))
=G% " M¥2[(1+ F)\MM,y, + F(F— 1)M}],
(89)
5—B+B6-BB +y+5—FinM—-GG™Y
=G "M* - MM,, + FM?), (90)
and if we subtract Eq. (89) minus (1 4+ F) times Eq. (90) and

take two derivatives with respect to the variable & and one
derivative with respect to ¢, we obtain

¢ '=F=const#0, M=6", 91

after a redefinition of the variable §. Moreover, Eq. {88) can
be rewritten as

a=G(t)8, cb—y=56+8 (92)

The particular case ¢ = 1 leads either to an unphysical
solution (p <0) or to a flat space-time.

For c# 1 it is more convenient to combine algebraically
Eqgs. (89) and (90), taking into account Eq. (92), in the follow-
ing way:

B+BB +r+6-GGY)=0, (93)

Y+rB +v+8—-GG)=e"7G%lc—1). (94)
We will consider two different cases. The first one appears
for # = 0 and we can always take, without loss of generality,
¥ = t, because ¥7#£0 [see Eq. (92)]. This last equation can be
integrated in the form § = c(c — 1)~ '¢ and from Eq. (94) we
obtain the general solution for G,

G=[(c—1Pe ¥4 ke®?—4U=D7"1]=12  k — const.

(95)

For k #0, calculating the density and pressure [from

Eqgs. (9) and (19)}, interchanging the variables r«+8, and do-
ing a time translation, we find

e ) %6)

so, the fluid satisfies a stiff equation of state and the metric
reads

ds2 — [(C _ 1)2e——2r+ (l _C—l)e(2—4c){c— 1)“:]—1’,2 dtz
+e¥dr +df* + & ) P dg?, (97)

For k = 0, we obtain a vacuum solution that is Min-
kowski space-time. The metric (97) admits two orthogonal
Killing vectors d, and d,. The new solution (as far as we
know) is inhomogeneous as regards the definition given by
Wainwright® and it belongs to the class Bii apparently in his
classification scheme.

Now, let us consider the case £ #0. We can always
choose B = ¢t and integrating Eqs. (92)—(94) the following is
obtained:

G=ae[(2c—l)y+ct}(c—])*‘, (98)

S=(ey+tie—1)71 (99)

y: —4a*c*e’ =k, y=2cly+t)c—1)""}, (100)
where g and k are arbitrary constants.

The case k = O will not be considered because it leads to
an unphysical solution (p <0).

On the one hand, for k #0, Eq. (19) implies a stiff equa-
tion of state, i.e.,
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p=p. (101)
On the other hand, for &£ > 0 the integration of Eq. (100)
leads to the metric—after redefining the variables (£,0,¢ }—

ds’ = —c72t(t—1)72)>~ t°~20%dt*
+ [te—1)"2 "t dh*?
+t70dP + [t —1)"2)t°0* do?, (102)
where s is an arbitrary constant. A direct calculation of p,
through Eq. (9), gives

p=ldc—1—cs®t~*[tt—1)7 " 2072  (103)

It is interesting to remark that a single change 7@ and a
redefinition of the variables (r—e”, t—[coth(ict ))*) allows us
to write the solution (102) in a form which is a particular case
of a family found by Wainwright et al® (n= 11,
m= F25,=0,c= —2and jm* +ja*=1—c7").

For k <O the integration of Eq. (100} leads to (after a
redefinition of the variables)

ds? = —c 2% (cos t ) ~40%dt* e~ > dr

+e*(cos ) ~2dB? 4 e*(cos t) "0 dp?,
(104)

where s is an arbitrary constant. A direct calculation of p [see
Eq. (9)] gives
p=0"cost)* * ‘e (1l —c —cs?). (105)

The particular relation s> =c¢~! — 1 corresponds to a
nonflat vacuum solution with the metric given by [see Eq.
(104)]

ds? = — (1 + s*%e* (cos t)* ~20%dt> + e~ > dPr

+ ez'ﬂ(COS t)Zs2 d02 4 ezs’(cos t)—20 2(1 +:2)—ld¢ 2,
(106)

where s is an arbitrary constant.

Fors* <c¢™! — 1 the metric (104) represents a new (as far
as we know) physical solution of Einstein’s equations, appar-
ently inhomogeneous, corresponding to stiff matter.

Taking into account Egs. (25)—(27), we can easily calcu-
late the kinematical quantities corresponding to the new me-
trics (97) and (104). These quantities read, respectively,

0=(2c—l)c—1)"ta™},

(107)

o=3""clc— 1)+ 1]"2c — 1) 'a~!, £=('N)Y,
=[s+2c—lc 'tant]a™?,
E=e""(cos?t)' ~< 'r, (108)
o=[4+@4—2c"Sstant+(c—1+c V) tan? ]2,
We comment that the relative distortion ¢/81is a constant for
the metric (97) according to (107).

IV. CONCLUSIONS

We have surveyed the solutions of Einstein’s field equa-
tions for a metric written in the form (1), which admits one
translational Killing vector on the hypersurfaces ¢ = const
and we have assumed a perfect fluid as matter content.

The general solution is obtained for the case @, #0 and
several different families emerge. These families can repre-
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sent either a perfect fluid without expansion and shear-free
[Eq. (70}] or a vacuum with a cosmological constant A [Eqgs.
(43)45), (81), and (82)]. In the former case the fluid obeys a
nonbarotropic equation of state and satisfies the standard
energy condition p > 0. All the solutions are apparently in-
homogeneous.

We have found some particular solutions in the case
a, =0, a,#0 [Egs. (97), (102), (105), and (106)]. All the
solutions are apparently inhomogeneous (i.e., admit a group
G, of isometries) and the fluid satisfies in this case a stiff
matter equation of state with expansion and shear different
from zero. Equation (106) represents a vacuum solution. We
comment that the metric given by Eq. (102) is, in fact, a
particular case of a family of inhomogeneous solutions given
by Wainwright ez al.,° but all the other metrics found in this
paper are new physical solutions as far as we know.

Finally, we would like to mention the “intrinsic symme-
tries” technique, which allows us to obtain inhomogeneous
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solutions by imposing certain structures on the spatial part
of the metric.
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Anisotropic cosmological models are considered in the light of the scalar—tensor theory of
gravitation proposed by Nordtvedt. Special attention is paid to Bianchi type I models. The models
consist of perfect fluid with the equation of state p = ep. The solutions are obtained in Dicke’s
conformally transformed units for empty space, as well as for € = 1 and }, assuming two separate
functional relationships between w and ¢. Their properties are also compared with those of the

models given in Brans—Dicke theory.

I. INTRODUCTION

In view of the recently verified large magnitude of the
constant parameter  in Brans-Dicke' (BD) theory it is ar-
gued that the experimental results in this theory should not
differ much from those in Einstein’s theory. In this back-
ground, the generalization of BD theory with the parameter
o as a variable quantity has of late drawn much attention. It
has been claimed by Nordtvedt? that an accurate light de-
flection experiment and also the data on the rate of advance
of perihelion of mercury could require »'50. Static solu-
tions in this theory have been considered by Banerjee and
Duttachoudhury,’ Vanden Bergh,* and Rao and Reddy.’
Barker® argued that there was no a priori reason to exclude
the introduction of a long-range scalar field in the evolution
of the universe with the possibility of @ being small at some
stages of the evolution, making the results differ appreciably
from those in Einstein’s theory. Cosmological solutions in
this theory for isotropic and anisotropic models were studied
later by Vanden Bergh,” Bishop,® and Banerjee and San-
tos.>10

In the present paper a homogeneous anisotropic model
such as a Bianchi type I model is being reviewed in the back-
ground of the generalized scalar-tensor theory of Nordt-
vedt. The calculations are comparatively simple in Dicke’s
revised units,'’ which is the conformally transformed ver-
sion of the original scalar-tensor theory of gravitation,’
where the so-called gravitational constant is variable. In
these units the standard Einstein’s equations are satisfied.
The scalar field plays the role of an additional material
source, which, however, may formally be said to constitute a
stiff fluid with density equal to the pressure. In this theory
the equation of motion of a test particle is nongeodesic with
varying rest mass. The scalar field is to be found from a
separate equation and the knowledge of the exact solution
for the scalar field ¢ is necessary to obtain solution in the
original version with varying gravitational constant. It is
also shown that for a homogeneous universe in the absence
of rotation and for (2w + 3) > 0, the Raychaudhury equation
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leads to the appearence of the singularity in the model. This
is because Hawking’s energy condition is satisfied for
(2w + 3)> O irrespective of whether @ is a constant as in
Brans-Dicke theory (Raychaudhuri'?) or w is a function of
the scalar field as in Nordtvedt’s theory. The contribution of
the scalar field to the energy density in some cases becomes
even more dominant than the matter part near the singular-
ity.

In the following sections we have made some general
observation on the properties of homogeneous universes in
Nordtvedt’s scalar—tensor theory and then obtained exact
solutons for Bianchi type I models in matter-free space, stiff
fluid, and radiation. All these cases are discussed for two
different choices of ®—one being Schwinger’s relation (see
Vanden Bergh*) and the other that of Barker. The results are
analyzed in the background of those existing in Brans—Dicke
theory. Particularly in the stiff fluid case (p =p) it is ob-
served that in Nordtvedt’s theory, with the special choice of
w either due to Schwinger or to Barker, the matter density
under no circumstances remains finite as the singularity of
zero volume approaches. This result is unlike the solution in
Brans—Dicke theory with @ = const.

In Sec. IT we write the field equations in Dicke’s revised
units and discuss the behavior of the homogeneous aniso-
tropic models in general. In Sec. III we integrate the field
equations for a Bianchi type I model and analyze the solu-
tions.

Il. FIELD EQUATIONS

The field equations for Nordtvedt’s scalar-tensor the-

ory in the revised units of Dicke are
Gop=R.5 —} R8s
20+3) 1
= KTy B .05 — 1800874

(2.1)

The corresponding wave equation for the scalar field ¢ can
be written as
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O(ln ¢ )=(In g *,

__1 kT__1_¢,u¢,ﬂd_“’ .

(20 + 3) ¢ d¢

In the above, the constant k stands for the usual 87G, with,
however, the choice ¢ = 1. It is interesting to note that the
field equations look like those in Einstein’s theory with G,
being a universal constant. Here T4, representing the ener-
gy momentum tensor of a perfect fluid, is given by [with
signature (— + + +)]

Taﬁ = (p +p)va vﬁ +pgaﬂ ] (2'3)
with the four-velocity satisfying, in comoving coordinates,
the following conditions:

vy, = —1 and =65. (2.4)
The p and p in (2.3) represent the fluid density and the pres-
sure, respectively.

In view of the Bianchi identity, the divergence of the
field equation (2.1) yields

(2.2)

¢ 1 dow
kTE il [___ B
a8 + ¢ 2 ¢.B¢ d

1
+L2w—2ﬂ(ﬂ¢—?¢,g¢ﬂ)] =0, (2.5)
which, with the use of the wave equation, yields
k [(p +p)stPva +(p +Plia + o+ D)0V,
+Po+30./6)T] =0, (2.6)

where 6 stands for the usual expansion scalar ¥ and
Do = Uge!” is the acceleration vector. For a rotation-free
spatially homogeneous space-time, the vorticity scalar
® = 0 and also

pu=av, p,=by, ¢,=cv,,

where a, b, and ¢ are scalar functions and v, is the velocity
vector, which is hypersurface orthogonal (see Raychaud-
huri'?). From (2.6) it immediately follows that i, « v, and
since v, = 0 and v, = — 1 along with v* = & for a co-
moving system, we have the acceleration vector v, vanish-
ing. The Raychaudhuri equation,'? therefore, reduces for a
homogeneous nonrotating universe to

O = —20>~}160%+R, v, 2.7

where o is the shear scalar. Now since we have written

¢, = cv, it follows that ¢ “¢, = — ¢? and in view of (2.1)
one can write
R,uv - % ngv

= — k[l +pp,v, +p8,,
+ [(2 + 3)/2k¢ *)(Pv, 0, + 1 8,.¢7)]

= —k[lp+ps +pP+pPsv.0, +8..0p+Pg)], (2.8)
where

o+3) ._ _(Qo+3) $.0"

4k ? 4k &2

From (2.8) it is not difficult to get the following relation:
R, V= —(k/2)p+ps +3p+3p,). {2.10)

For (2w + 3)> 0, p, and p, are both greater than zero and

Py =Py = (2.9)
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thus, along with the conditions that the fluid density and
pressure are both positive, we have

R, 0" <0,

that is, Hawking’s energy condition' is satisfied. It follows
from (2.7) that

6,<0,

vyhich, in comoving coordinates, reduces to the condition
6 <0. It means that there is no minimum volume and one
cannot avoid the singularity. These results will be apparent
in specific models discussed in the following sections.

Before going onto the exact solutions in some special
cases we make a few general observations about the nature of
the solutions. The splitting of the energy momentum tensor
into two different parts—one due to the perfect fluid and the
other due to the scalar field in the field equations (2.8)—
enables us to write the effective density g and the effective
pressure p as (see Ruban and Finkelstein'®)

p=p+p, and p=p+p,.
Now, p, and p, being equal in magnitude, the solutions for
the metric in otherwise empty space will be formally identi-
cal with the stiff fluid solutions up to a solution for the scalar
field itself from the wave equation for the scalar field. The
p = p solutions in the scalar-tensor theory, being considered
here in this paper, may also formally be identical with the
stiff fluid solutions in general relativity. The scalar field con-
stituting p, and p, does, however, satisfy a separate field
equation. It is shown later in special cases that near the sin-
gularity the fluid density p and the energy density p, due to
the scalar field exhibit different time behavior. Moreover,
the simple solutions, which are obtained in Dicke’s revised
units in Einstein’s framework, pass over to the original
Nordtvedt or Brans—Dicke solutions in atomic units by con-
formal transformations involving the scalar field, that is,
8., = (1/¢)g,,, . These are more natural with the principle of
geodesic motion being fulfilled (m, = const). When p and
p—the effective density and pressure—are treated as un-
known along with the metric components and if there is a
sufficient number of field equations to determine them, solu-
tions can be obtained independently of any particular choice
of  as a function of the scalar field ¢. But this specific rela-
tionship is required to be known explicitly before finding the
solution for ¢ and thus in consequence to obtain solutions in
original atomic units where G, the so-called gravitational
constant, is no longer a constant. Solutions are more compli-
cated in the original theory but can be generated from the
solution obtained in the following sections when the explicit
solutions of ¢ for different functional forms of w are known.

We will now show that in general for all spatially homo-
geneous nonrotating universes where the trace of the energy
momentum tensor for matter vanishes, the expressions for
Py and p, are independent of any particular choice of the
parameter o as a function of ¢ in Nordtvedt’s theory. When
rotation vanishes, the homogeneous varieties are orthogonal
to “r” lines in a suitable system and the metric can be written
as

ds*= —dt®+g,dx'dx, (2.11)
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where i, j = 1, 2, 3. Thus from (2.2) one gets, in view of the
spatial homogeneity, the relation

- [113] ——[ * do (2.12)
¢ lo (o+3) ¢ dg

where /3 stands for y — g . Now, in general, for homogen-

eous universes with p, p both constants on the homogeneous

varieties, one can express /as/ = R (t) W (x'), where the x'’s

stand for space coordinates only (Banerji'®) and so (2.12) re-

duces to

(i)m: I .7 S Y
) (20 + 3)
(2.13)

When the energy momentum tensor is traceless we get the
relation

©/8) do g3y
2w + 3) dt

. 2
S ro _ (RG/8)
¢ (2w + 3)

which also can be written in the form

2

i(iR3)= —;(ﬂp). (2.14)
do \ ¢ 20 +3)\ ¢
Integration of (2.14) yields
((# /¢) R 32w + 3)"/? = const ,
and, using this, one finally arrives at the result
Ps —P¢—(2m4: 3)(2) —7;4—6-, (2.15)

where A4 is an arbitrary constant. The expression (2.15) is
therefore valid for matter-free space (p = p = 0) and also for
radiation (p = 3p). Equation (2.13) cannot, in general (T #0),
be integrated without any knowledge about the integrand as
a function of time. We will see that the same relation (2.15)
appears in the special case of the Bianchi I model discussed
in what follows in appropriate situations.

Ili. INTEGRATION OF THE FIELD EQUATIONS AND
BEHAVIOR OF THE MODELS IN A BIANCHI TYPE |
UNIVERSE

The metric for the Bianchi type I homogeneous cosmo-
logical model is
ds’ = —dt? + e dx* + 9 dy* + ¥ d7?, (3.1)

where 7, 8, and ¢ are functions of “t > alone. The nontrivial
field equations, according to (2.1) and (2.2), will be

GY=3(R/RP—}(*+ 6>+

=kp+ [0+ 3)/41 (8 /), (3.22)
Gl=0+9%+iR/RNP+0—Y+i+0>+ ¢}

= —kp— [20 + 3)/41(¢ /8, (3.2b)
Gi=y+¥+3iR/RYy+¢y—0)+1(P+ 8>+ ¢

= —kp—[(20 +3)/41(8 /8 ), (3.2¢)
Gi=y+0+3R/AR\y+0—-D+31(P+0>+ 4

= —kp— [(20 + 3)/41(8 /8 ), (3.2d)
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Ofng)= —(Ing) —(R/R)Ing)
¢ do
(MH)[ Gp—p+ L %0 (33)

with R? =exp(y + 6 + ¥).
The divergence relation (2.5) will yield for & = O the re-
lation

©R?) +3pR?R+}(¢/¢)R*p —3p)=0. (3.4)

It is interesting to note that relation (3.4) in Nordtvedt’s the-
ory is identical with the relation obtained in the Brans—
Dicke theory where @ = const {see Raychaudhuri'?).

We have five independent equations {3.2) and (3.3) and
seven unknowns ¥, 6, ¥, p, p, ¢, and ». In what follows, we
assume two relations, an equation of state relating p with p
and another equation connecting  and ¢.

From (3.2b) and (3.2d), subtracting one from the other
and integrating, we obtain
@—y=C,/R? ¢¥—0=Cy/R?>, y—t¢=Cy/R3,

(3.5)
where C,, C,, C; are constants satisfying the condition
C,+C,+C,=0.

Now we proceed to study the following different cases.

A.Casel:ip=p=0
This is a case of empty space, for which Eq. (3.3) reduces

to
3 ¢ ( 20 )
R (22 =o,
é ¢ 2 +3
integration of whlch yields immediately

(¢ /)20 + 3)*=D,/R?, (3.6)
where D, is a constant of integration. The same relation was
obtained in Sec. II. Equation (3.6) is valid independent of the
nature of o, including the Brans-Dicke case where
@ = const.

Adding (3.2a), (3.2c), and (3.2d) and subtracting (3.2b)
from the result we get

2y +3(R/R)3R/R+3y—0—¢)=
ie.,

Y+3R/R)y=0,
which integrates to yield

y=a,/R>. (3.7a)

From different combination of the field equations, one ob-
tains

6=a,/R?, (3.7b)
Y=a,/R>. (3.7¢)

In the above, a,, a,, a, are constants of integration. Adding
(3.2a) and (3.2b) and integrating, it is possible to obtain

y=3R/R +D,/R?, (3.8)

where D, is another constant of integration. Substituting @,/
R for y in Eq. (3.8) we obtain

3R /R =(a,—D,)/R?,

which in turn on integration leads us, after a suitable choice
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for the time origin, to the solution
3 =D,
where D, =a, — D,.

The solutions for the scalar field ¢ can be obtained from
(3.6) once w{¢) is known as an explicit function of ¢. The
solution in the BD case, that is, for constant magnitude of w,
is simple and straightforward. In the following we examine
the situation for two different functional forms for @, men-
tioned previously.

(a) Schwinger’s relation: (See Vanden Bergh.%) Here
(2w + 3) = 1/a¢d, a being a constant quantity. The general
solution is, in view of (3.6),

¢ "= —(D/D)a"*/2)[3InR +a],

where q is a constant of integration.
(b) Barker’s relation: In this case (2w + 3) = 1/(¢ — 1),
so that integration of (3.6) yields

(¢ — 1) =tan[(D,/2D,)3In R + b)], (3.11)

b being another constant of integration. One should note
that in Dicke’s revised version the solutions for the metric
tensor and the scalar field as given in {3.8)—(3.11) are quite
simple. It is not difficult to go back to the original version of
Brans-Dicke atomic units, where masses remain constant
and G varies, and find the metric using the transformation
relations

8ap =(1/9)80s »

where g, and g5 are metrics in revised units and the origi-
nal atomic units, respectively. The solutions given above for
¢invariable G theory can be shown to be identical with those
given earlier by Banerjee and Santos.'° When the spatial
volume vanishes (that is, R is vanishingly small), the shear
scalar ¢ is infinitely large. The geometric shear is defined in
the usual way (see Banerjee and Santos®) and gives the mea-
sure of anisotropy. The effective energy density of the scalar
field for the p = p = 0 case is found to be

ps =20 + 3)/4k ) /9 ), (3.12)

which in view of (3.6) shows that p, <R ~®. The energy
density due to the scalar field is infinitely large when R—0 or
at theinitial epoch # = 0. Further from (3.9) we see that R #0
for any finite value of R and also R <0 indicating that the
singularity of zero proper volume cannot be eliminated in
such models.

(3.9)

(3.10)

B.Casell:p=p

This particular case in BD theory was studied by Nar-
iai!” in atomic units and later by Raychaudhuri'® in Dicke’s
revised units. It is interesting to investigate if in Nordtvedt’s
theory there is any distinct change in the behavior of the
model.

Proceeding exactly in the same way as had been done for
the case of empty space, we obtain

y=b/R>, (3.13a)
6=b,/R?, (3.13b)
¥ =05/R?, (3.13¢)

where b,, b,, and b, are constants of integration. Adding
(3.2a) and (3.2b) we obtain after integration
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y=3R/R+ F,/R?, (3.14)

F, being a constant of integration. Using (3.13a) and (3.14)
we obtain after integration, with a suitable choice of the ori-
gin of the time coordinate,

R3*=F,, (3.15)
where F, = b, — F,. Using the relations (3.5) and (3.15) in
(3.2a),

kp + [(2w + 3)/4)(¢/8)> = F /3R ®, (3.16)
where F=F% — C? — C} — C,C; . Another relation con-
necting p, R, and ¢ is obtained by putting p = p in (3.4) and
integrating in the form

PR ¢/¢ = const. (3.17)
Now using (3.16)in (3.3) and putting p = p one gets a relation

— 20 +3)[(Ing) + (F/R*(ng) ]
= _M d_w 12 2F
_[ 2 +¢d¢]“"¢)} t3Re

When o = const, that is, in the Brans-Dicke theory, Eq.
(3.18) yields on integration, using {3.15),

(@ /) =m(1—17/B)/(1+1"/B), (3.19)
where £ is an arbitrary constant appearing on integration,
and from (3.16) one gets for the matter density

kp = F ~(2a>+3)12(1 -—t"'/ﬂ)2

3RS 4 2 \14em/B/°
where m*> = (4/3 F2)(F /(2w + 3)) . Taking m > 0 and allow-
ing t—0 one gets a relation

F (2w + 3) m? 4 ]
k = — —_— l—-—tm el
P 3F%¢? 4 t? B +

(3.18)

and it is clear from above that p remains finite even when the
spatial volume at this state (¢—0} vanishes if m = 2. The
shear and the expansion scalar, however, attain infinitely
large magnitudes. This feature of the solution was previously
noted by Nariai and Raychaudhuri.

For positive values of m other than 2 we have both p and
P, increasing infinitely (as #~—0) as 1/¢* or 1/R 6.

Now considering our problem in Nordtvedt’s scalar—
tensor theory, we make two choices for w as functions of the
scalar field—Schwinger’s relation and Barker’s relation—
exactly in the previous manner and proceed to find solutions
for the scalar field.

(a) For Schwinger’s choice (20 + 3) = 1/(a¢ ), the rela-
tion (3.18) reduces to

.. . .
S o2 B()o 28
) ¢ R3\¢ 3 RS
Now defining 7 = R * = Fytand u = 1/¢ we can write (3.20)
in the form

du 1du_a

dr*  rdr 7’
with @ = 2F,/3 F%. Now writing y for (du/dr) Eq. (3.21)
reduces to a linear first-order differential equation

(3.20)

(3.21)

de 1 a
dr+7'y_7'2’
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the solution of which is given by

y=_5, 9,
dr v T
which in turn on further integration yields

¢ '=F,In71+(a/2)(ln 1) + F,, (3.22)

where F, is a constant of integration. Using (3.22)in (3.16) we
have

kp = kp =F /37 — (F}/4ar*)\F; + aln 1)
X [(F, + (a/2n in 7+ F,] . (3.23)

In the limit as #—0 we have 7—0 (that is, R—0) and it follows
from (3.22) that the scalar field ¢ vanishes. The singularity
exists at this limit because (3.23) shows that p ~ 1/(r In7)?
which increases to an infinitely large magnitude as 7—0. The
situation is similar to that in the Brans-Dicke case
(0 = const) except for the situation that by a suitable choice
of some constant parameters we can keep the mass density
finite in the latter case even when the spatial volume vanishes
(see Raychaudhuri'®). In (3.23), for the special case
F? = 2qF,, the mass density is always zero and we get empty
space. Again as for the energy density due to the scalar field
we note that it is, in view of (3.16), equal to (F/3k7* — p),
which, following the previous analysis, goes to infinity (as
7—0) as 1/72. Thus near the singularity the scalar field ener-
gy dominates in comparison with the matter density.

(b) Barker’s relation for w and ¢ is 2w + 3) = 1/(¢ — 1),
so that the relation (3.13) is now
S _(2V L E(2
5= (5) + ()
( ) [2 2(¢ — 1)]+ 3R6(¢—1) (3-24)

The differential equation (3.24) can be solved proceeding in
the following manner. We write 7=R?>=F,; and
b=2F/3 F? and define a new variable z = (1/¢ — 1) so
that Eq. (3.24) can be written, omitting a few intermediate

steps, as
A (fﬁ)’ i(_‘i&)_ b e
de dr t T \dr 1'2'u '
+ pur reduces (3.25)to a

Further transformations like y* =
very simple form
_),, 0,

d’y

2L (+
dr’

which is a simplified version of the Euler differential equa-

tion. The solutions are the following:

(3.25)

(3.26)

A cos{(b/2)"/?In 7} + Bsin{(b/2)"*In 7},

b>0,
y/J;= AT“bl/zll/z +BT_“b|/2)llz’ b<0, (3.27)
A+Bmlnr, b=0.

The constants 4, B in three different solutions are complete-
ly independent and arbitrary. One can obtain the value for ¢
from (3.27) using the transformation relation y*/7 = + p.
The positive or negative sign is to be taken according as ¢ is
less than or greater than unity. In order that the total energy
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density (0 + p4)>0, we must have, from (3.16), F>0 and cor-
respondingly 5>0. For 5>0 [that is, for (p + p,)> 0,4 re-
mains always finite because the sine and cosine functions in
(3.27) are bounded in magnitude and for the same reason it is
not difficult to show that both p and p, explode to infinity as
1/R ® as R—0. For b =0, we have (p + p,) = 0 and both
have infinities of the same order as the spatial volume ap-
proaches zero except for their signs. For (2» + 3)> 0in Bar-
kar’s theory, ¢ > 1 and p, > 0, so that the fluid density p <0,
whereas for (20 + 3) <0 we have the reverse situation.

Lastly, in the stiff fluid case also, since from (3.15) we
have R <0 and R 50 for any finite magnitude of R, there is
no lower bound and there exists a point of singularity.

From the above results it is clear that one can find the
solution for the metric in the case of an empty space and also
in the case of a stiff fluid without knowing the functional
dependence of ® on ¢. But the functional form of @ is neces-
sary for obtaining the solutions for ¢. Moreover, in the stiff
fluid case, we observe that the behavior of the energy densi-
ties due to the scalar field and matter are different for differ-
ent choices of w. From the results obtained in this section we
find that for Schwinger’s choice of w, p~1/(rIn 7)%, and
pg ~1/7% for R—0, that is, the scalar field dominates over
matter near the singularity, whereas for Barker’s choice,
both p and p, explode to infinity as 1/7* as R—0. These
results are in accordance with the general discussions in the
previous section.

C.Caselil.p=31p

This is a radiation case. It is possible to integrate Eq.
(3.3) directly and obtain a relation like

(/420 +3)"/2=G\/R?, (3.28)

G, being a constant of integration. This relation had already
been obtained in Sec. I1I for a rotation-free homogeneous uni-
verse with T'=0. The trace of the field equations (3.2a)-
{3.2d) give

Ay+0+9)+ P+ 062+ ¢)
+3(R/RP+3(R/R)y+ 6+ )
= — [(20 + 3)/2](¢ /). (3.29)

Using (3.5) and the fact that R > = exp(y + 6 + ¢), Eq. (3.29)
takes the form

6R (R)2
—4+3
R + R
G,+C?4C3
%—.1 R; . 31,2+2?, (Cl 3) 0,

and consequently ¥ can be written as

1 2 (€, =G
R3

[ 4 (C, - 6C3)2

_85_4( ) ] ] (3.30)
R R 3RS
Again from (3.5) we have
y=R/R—(C,—C,)/3R>. (3.31)
Equating (3.30) and (3.31) one gets
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R R)’ G—C,—Cf

R_(RY, G738 —%) 3.32

R+(R + 6R ¢ ( )
where G=3G} + C? + C% and

G—i(Cl—C3)2=%G% +§(C? +C3 +C,Gy)>0,

since it can be shown that C} + C3 4 C,C;> 0. Now writ-
ing u for R and using derivatives with respect to R in place of
time, the derivative (3.32) can be written as
d (u?)
dR
The general solution of this equation is
w=(RP=G/R*+ 3G—4(C— C1R*, (3.34)
G, being an integration constant. Writing the symbol G, for
3G—1(C—- C3)2] and integrating (3.34) in the next step,
(1
2G,

2 1
+ 2@+ [6—4(C—CF] 25=0. (3.33)

{R (GzR 2 + G3)1/2} _

5 m[rGY?
26,
+(R?G,+Gy)?], G,>0,

G 1
{R GR2 G /2y _ 3
26, RGR + G = o o
. xarcsin[R ( — G,/G,)"?], G,<O0,
(3.35)

t+G4=

G, being a constant of integration.
The solutions (3.35) give us R (¢ ) as an explicit function of
time. Integration of Eq. (3.23) yields

Jparyr_c[

Replacing the time variable by the variable R and utilizing
(3.34) in the above relation we can write

f(Z“’H)m %= fR(GzR 24 Gy)?

The integral on the nght-hand side of (3.36) is different in
two different cases G, > 0 and G, < 0. After integration (3.36)
yields

e db
f(2w+3) ;

G1 n (GZR + G )1/2 1/2

(3.36)

2(G, )1/2 (GzR +G )1/2 + Gl/2 , forG;>0,
= Gl 1/2 (G2R2+G3)1/2 forG <0.
267 ;/2 +(GR*+Gy)' 2’ :

(3.37)

The integral on the left-hand side of (3.37) can, however, be
found provided one knows o as an explicit function of the
scalar field ¢. The Brans-Dicke case is simple and one inte-
grates the left-hand side for w=const to get
(2w + 3)"2 In ¢. Two different cases in Nordtvedt’s theory

are (a) Schwinger’s relation is (20 + 3) = 1/(a¢ ) and the left-
hand side of (3.37) is
d¢ 2
2w+ P = -
e e

and (b) Barker’s relation is (2o + 3) = 1/(¢ — 1)and we have
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J.(2w + 3)”2‘% = 2 arctan{g — 1)/2.

The above results along with (3.37) express ¢ as functions of
the variable R and in turn as functions of the time 7 in view of
(3.35). In the present case, where the matter content is in the
form of radiation with the equation of state p = { p, one can
easily conclude from the general relation (3.4) thatp o 1/R 4,
whereas the energy density due to the scalar field is, from
(3.28),

_o+3) (1)2_ G}
*T a4k \¢/  4kRS’
so thatp, o< 1/R °.

Above analysis indicates that at R—0 both the matter
density and the energy density due to the scalar field increase
to indefinitely large magnitude—the latter increasing at a
much faster rate than the former, and as the singularity is
approached, p, dominates over p. One can remark that the
situation here is exactly analogous to that in BD theory and
this is fundamentally due to the fact that Eq. (3.4) and {3.28)
are valid independently of the choice of w. From (3.32) we
observe that, as G — }(C, — C,)? is positive, R /R <0 and
hence (In R %) <0 indicating that there is no lower bound of
R ? and one cannot avoid the singularity. This observation is
in keeping with the discussions in Sec. I, where we observed
that the singularity is unavoidable from the consideration of
Hawking’s energy condition.

The case G, < 0 provides an interesting situation. From
(3.34), one can have R = 0 at some finite value of R = R,
where

Gy/R} = —G,/R?.

As (In R 3" <0, we have a miximum at this point and the
model recollapses into the singularity after this maximum.
This happens only if G, <0. On the other hand, if G,>0,
there is no such maximum at any stage of evolution and
R—0 is the point of singularity.
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A treatment of a non-Riemannian geometry including internal complex, quaternionic, and
octonionic space is made. Then, an interpretation of this geometry for the nonsymmetric theory of
Einstein—Schrodinger, and for the unified theory of Borchsenius is showed. Finally, field
equations in the extended octonionic geometry of space-time are obtained through a minimal

action principle.

I. INTRODUCTION

The manifold where general relativity is defined is con-
stituted by the space-time with a locally flat symmetric met-
ric on which, through parallel transport of vectors, a sym-
metrical connection, {5, } = {2,} is defined, and, as a
function of that, the space-time curvature. In nonsymmetric
theories' we define, on the space-time manifold, parallel
transport of vectors through nonsymmetric connections.
The metric contains a real symmetric part as in general rela-
tivity and a skew-symmetric part, taken by Einstein'? as
proportional to the electromagnetic field tensor. Actually,
the interpretation for the skew-symmetric part for the metric
as an electromagnetic field tensor have been proved to be
physically incorrect,’ the objections being overcome in the
new interpretation developed by Moffat,* where the non-
symmetric metric is taken as a nonsymmetric gravitational
field. In spite of this, we use here the interpretation of Ein-
stein, as well as that the skew-symmetric part of the metric
follows the interpretation given in the Borchsenius theory.’

The symmetry group acting on the space-time manifold
is the “manifold mapping group” (MMG). In addition to the
MMG we can associate to each point objects that, besides
transforming through space-time mappings, can transform
by the effect of internal mappings. The symmetry groups
formed with these internal mappings, called “internal
groups,” are, in many important applications, local Lie
groups. In the extended geometrical treatment, which per-
mits the inclusion of Yang—Mills fields in unified theory {the
Borchsenius theory®), the SU (2) group will be of special im-
portance. The SU (2) algebra can be reinterpreted through a
quaternionic algebra.

The main goal of this work is to establish geometrical
properties of the full space to which we refer above. Next, we
reinterpret it through a quaternionic algebra. As an obvious
generalization of the quaternionic geometry we then suggest
a (split) octonionic geometry.®” Each one of these four inter-
nal spaces is allowed through a mathematical theorem, by
Hurwitz.® This will be done in Secs. II-V. As a matter of
completion, we will obtain in Sec. VI, field equations
through a minimal action principle.

® Present address: Physical Department, Universidade de Brasilia, CEP
70.910, Brasilia, Brazil.
Y Deceased (1931-1985).
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The departure point of the geometrical theory presented
in this work is, besides general relativity, the nonsymmetri-
cal theory of Einstein—Schédinger in its complex formula-
tion. However, there is another possible formulation for the
latter, realized over the algebra of real numbers (see Hla-
vaty®). Indeed, Einstein used the complex formulation only
in his initial works.!? In the real formulation of nonsymme-
tric theory, the algebraic structure imposed on the space-
time manifold is realized through the real tensor g, , which
can be written as

gpv = h;‘v + kpv' (1‘1)
We define
def

gyv =hpv —kpv =hvy +kvy =gvp' (1'2)

For the real connection I'” ;,, a function of g,,, , it is assumed
that the following equation is true:

amgM - rahugap - Fampglla =0. (13)
Then, it is easily proved that
r,=I", (1.4)

(Einstein assumes this relation), where | v 18 a function of
8., This is the same as saying that Eq. (1.3) above is true
even though we substitute g5, I'* ., for g.5, T* ., .

The only remarkable difference between the real and
complex formulation of nonsymmetric theory is that the
choice of complex quantities will allow us to obtain the non-
symmetric theories in terms of (complex) vierbeins, which is
not possible in closed form if the metric tensor is real.!’

Il. A METRICAL GEOMETRY

Consider the non-Riemannian space-time of the Ein-
stein nonsymmetric theory associated with an n-dimension-
al internal space. Let

ds* =(1/n) Tr (G, dx* dx"), (2.1)
where

G.. =(G,.%x) ab=1,.n, (2.2)
is a matrix of internal space such that

(I/n)TtG,, =g,,. (2.3)

Hereg,, is the metric of the Einstein—Schrédinger asymme-
tric theory (or Moffat-Boal theory'?). Therefore, (2.1) is the
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line element on the curved space-time. We further impose

that
G;,, =G, (2.4)

where the “1”” operation is the Hermitian conjugation in in-
ternal space, and the inverse G, is defined by

G,.G"=85,1 2.5)
in this order. Using (2.4) and (2.5) we also obtain
G™G,, =6,1. (2.6)

Since G,,, is an object with two matrix indexes in inter-
nal space, we will restrict ourselves from now on to the inter-
nal space of 2 X 2 matrices, whose symmetry group is SU (2).
Every object in this space can be written as a linear combina-
tion of four linearly independent matrices (r;,i =0, 1, 2, 3),
where 7= 1, and ;¥ = 7,,i = 1, 2, 3. With this, the “met-

ric” (2.2) can be written as
G, 2.7)

The symmetry conditions (2.4) and the restrictions (2.3) im-
ply that

v = uvg(x)Tp i=091’2:3-

Gy =8uTo+ QuuTis - i =1,2,3, (2.8)
where
8uv =8y + IF,,,
\%
Qi = Wi/ R) fo (2.9)
A
In these formulask = — 2#i/e(c = G = 1)is a universal con-

stant such that, in the limit x—0, the Einstein-Maxwell-
Yang-Mills theory is obtained (see Brochsenius®), e is the
elementary electric charge, € is the elementary isotopic
charge, and F,,, is the Maxwell tensor and f,,,, represents
the Yang-Mills field strength in the Moffat-Boal theory and
Borchsenius theory.

lil. AN AFFINE GEOMETRY
Let
A¥x)=ax)r, i=0,123, (3.1)

where the @* (x) are the components of A* (x) in the internal
matrix space. The parallel transport in space-time of an ob-
ject with space-time and internal indices will affect both
aspects. Since we are working with a non-Riemannian mani-
fold, the resultant space-time connection can be taken as that
of the Einstein nonsymmetric theory, and the space-time co-
variant derivative is given by

A “;V = A F,v + anvA a’ (32)
where
n“av = ‘Q"“va’
n”av = Qﬂav + iKpav ’ (33)
A\
such that
A gn Ox* OxP oxv ., ax* 9% x°
0 ,‘v( = 7 v By 5 7 ]
ax* ax* ox¥ ax° Ix* 9x”
, , x? a. «
K )= 2O O ga, (3.4)
v ox* dx* dx v
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In the Einstein—Schrodinger nonsymmetric theory,’ the
connection used in the calculation of the field equations is
the “Schrodinger connection”

0r,, =, —(2/iK%A,, (3.5)
where the 4, are the electromagneticlike potentials, which
are given in terms of ° ,, as

A, = —|ix)¥,, .

\"

The Q) ,, is a nonsymmetric connection, and therefore,
there exist two types of covariant derivatives: a ““ 4+ ” deriva-
tive

(3.6)

AF, =A*, 4O A (3.7)
+
and a “ — ” derivative
A* =A% + O A° (3.8)

The same definition can be used for any type of tensor.
The space-time curvature can be obtained through the
difference
A+ @B T A4* Ba s
+ + + +
where A* is given by (3.1). Performing this difference we
obtain

R, =(3,9°, —0°,0°, ) 6,0°, — 07, Q%)
(3.9)

Again we must perform the transition R ,,,—R?,,, 7, for
calculations in the matrix notation. We observe that this cur-
vature was obtained using *“ + + * derivatives, which were
used by Einstein in his nonsymmetric theory.? It is possible
to find other curvatures with vector covariant derivatives
using “ + * and “ — ” types of derivatives; however, these
curvatures are interrelated by algebraic relations to the
above expression (3.9).

Defining the internal vector ¢* = ¢*(x), a =1, 2, the
“internal’” covariant derivatives are given by

¥ =0, + T, % (3.10)
The affinity ', = (I, ?, (x) ) is the object which makes ¢*
transform like a vector under transformations in the internal
space. In the case of an isotopic gauge,® the physically rel-
evant part of the field I',, is of the form

T, =iC, t= —i(e/#b, -, (3.11)

where € is the elementary isotopic charge. From now on, we
use this form for I',, . The (internal) transformation law of T',,
is

, - au(x) ., _
I, = U, U~'(x) - ?X(T)—U I(x), (3.12)
where the U (x) are the internal transformation matrices be-
longing to the local SU (2) group. In the curved space-time,
I, transforms like a vector.
The internal curvature is defined in the usual form, i.e.,
from the difference

W"yv - '/'a“vp = yvab'pb' (313)
Here P,,°, is the curvature in the internal space,
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P,=T, —-T,, —[l.L] (3.14)
We have
P,=-P,. (3.15)

After (3.7) and (3.10), the total covariant derivative of
the space-time vector 4* (x), defined in (3.1) is
A"Ia(x)=A“,,, + 0,47+ [T,,4%]. (3.16)
+
With the definition (3.16), we can also obtain a “total curva-
ture” through the difference
A* g —A* g =RF A —APP, — 2470,
+ + + + v

(3.17)

The R” ;5 is a “mixing” of space-time and internal curva-
tures:

]R#mﬂ = (%Mm,a + %”pﬂip,la) — (znw,a + gupagpw)

=R”Aaﬂ7'o+6“,1paﬂ, (3.18)

with

W, =0, +i6? C, . (3.19)
The dot under the index indicates the covariant derivative
index. Therefore, R ;.5 is called the “total curvature” and it
is this “curvature” that Borchsenius makes use of in his cal-
culations for obtaining field equations in a unified theory of
gravitation, electromagnetism, and Yang-Mills fields.’

IV. QUATERNION INTERPRETATION OF THE
GEOMETRY

Let X be a set of numbers. Consider a set X ? of pairs of
numbers X, in which the addition is defined in the usual form
and the multiplication is defined by the equation

(er) « (aaba) = (%1 - X2 — o P10y - X2 + 320 %),
with

( xJ’) = (X, -J)
Then the set X ?is called the “double” of the set X. The “dou-
ble” of real numbers (dim 7 = 1) gives the complex numbers
(dim n =2). The “double” of complex numbers gives the
quaternions (dim n = 4), and the “double” of quaternions
gives the octonions (dim n = 8). These four sets of numbers
are distinguished from all other possible ones by the Hurwitz
theorem.®

We can observe the following facts: general relativity
theory is carried out over the set of real numbers and the
Einstein—-Schrodinger nonsymmetric theory, and so the
Moffat-Boal theory, can be carried out on the set of complex
numbers. We will see now that the Borchsenius theory can
be reinterpreted via quaternions, when these are realized by
means of the Pauli matrices. This is carried out easily by
performing the transition

o—iw;, =123,
where o, =7, are the Pauli matrices and
w; = (l/io;,, i=1.2,3,

Wo=0y="7Ty=1,. 4.1)
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The “numbers” w,, i = 1, 2, 3, @, = 1,, with a product de-
fined by

w;0; = €0, — 8,0,

(4.2)
are the generators of a quaternionic algebra Q.

Therefore, the collection of tensors that are matrices in
the internal space with the local symmetry group SU (2) can
be written as quaternions when we consider the space-time
derivatives continuing unchanged. Thus the internal covar-
iant derivatives will now be what we call quaternionic covar-
iant derivatives or Q derivatives. Then, if X is a quaternion,
the Q derivative acting on X is defined by

K”“ =K’# + [F#’K ], (4.3)
where
r,=iC,»r=iC,r0= —-C, 0. (4.4)

As a consequence, the Q-covariant derivative is always rep-
resented by the commutator [T,,, K'].

In this way, the metric and the curvature will be rewrit-
ten as

G., =800 +(1/i)g,, »;, =123, (4.5)
P’uv = [(Cvk,;l —_ Cyk,v —_ Zechmcvj )wk ] . (4.6)

The space-time curvature obviously retains the same form.

Therefore, we can see that an interpretation of the geo-
metrical objects of the Borchsenius theory via quaternions is
a direct one. With the above interpretation we can suppose
that there exists a more general theory that will be carried
out on an algebra of dim n = 8, an octonionic algebra (O). It
is this generalization that we intend to study in the next sec-
tion. (The definition and properties of octonionic algebra are
introduced in Appendix A.) The present analysis suggests
that the use of complex quantities in the Einstein—Schré-
dinger theory is not merely a mathematical artifice.

V. THE GEOMETRY IN THE OCTONIONIC SPACE

We consider now a mathematical manifold in which we
have the non-Riemannian space-time of the Einstein non-
symmetric theory, but with an associated internal space de-
scribed by octonions. We will call this space an “octonionic
space.” We will consider here only the “split octonions.”

Any octonion 4*(x) with a space-time index, can be
written in terms of the (split) generators as

AHx) = a*x)uf + bH(xJuo + ki (xjul + I{x)u;,
i=123,

(5.1)

where the coefficients of A* (x) transform like vectors under
space-time transformations.

Through arguments similar to those used in the treat-
ment of objects that are matrices in the internal space, we can
conclude that a space-time covariant derivative of 4* (x)
must be of the form

A ltl- a =A 'u,a + QypaA p’

A" =A", + QA% (5.2)
where now

Q=01 (5.3)
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The *,, is the affinity of the nonsymmetric theory and
1 = u¥ + u, is the unity element of the split octonion alge-
bra. The space-time curvature is again given by R?,,,, - 1,
where R? ,,,, is the curvature of nonsymmetric theory.

Let K be an octonion. The octonionic covariant deriva-
tive, or O-derivative, of K is defined by

K”“ == ]K':/-‘ + Ii“,Kl, (5-4)

where T, is the “octonionic affinity.” This means that T, is
the object which makes K, transform like an octonion un-
der O transformations [see Appendix B, where the reason for

the nonappearance of parenthesis in (5.5) is explained]
K' =UKU™,

KI"# = UK"#U—I, (5.5)

and
QEU— i

P (5.6)

¥, =U0g,U"" -
where the U(x) are octonions which define local {octonionic)
transformations, isomorphic to the rotation group O,, which
means that they are SU (2)-like octonionic transformations.
The octonion U~ is defined as being identical to U, the
conjugate of U. See Appendix B for a more detailed treat-
ment on the properties of O transformations.

We are taking the “doubling” of the quaternionic alge-
bra, which forms the split octonions with realization via
Pauli matrices. Therefore, it is logical to impose that T, be a
trace-free Zorn matrix, which we suppose to be of the Yang-
Mills type:

X,=—L,u*—K,u,

(7 (Z

(0] L,o
E( g m ) i=12,3.
—Ku‘w 02

In the limit K, —L,, we reobtain the Yang-Mills affinity, as
should be expected.

The total derivative of an octonion 4,7, with two space-
time indices, is defined then as

(5.7)

P
A +

m
+

=4+ VA, — 0% A, [R.4,°].
(5.8)

The octonionic curvature is obtained by a similar pro-
cess, by performing the difference

K”yv - Knv,u == P#VK — KPVF’ + {SE# ,z‘,,K}, (5.9)
where {¥,,, ¥,, K] is the associator of fields ¥, ¥,, K, and
P,=%,,—-%,—[%.%,] (5.10)

is called an octonionic curvature, or “O curvature.” In terms
of components it is given by

P.‘W = (L#.‘KV.' - LViK/‘i)u*O + (Kf"lLvi - KVrL#i)uO
(5.11)

|l

+ (ka,;t - Luk,v - 2€iij,quj)u:
+ (K‘Vk,[-t - ka.v - 2€ijkLpl'Lw')uk’
i, j,k = 1,2,3.
In the limit K, —»L, we reobtain the quaternionic expres-
sion. .
If A4# is an arbitrary octonionion with a space-time in-
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dex, the total octonionic curvature is obtained through the
difference

A% op —A¥ g =RFipA% 4 [Pop ]
+ + + +
+6{z,,,sz,9,,4#}_2,4ﬂlpnp ,
+ Vv
where (¥ .5 =} (¥ ,5 — ¥ g, ). The curvatures R ;5 and

(5.12)

\
P,z can be put together in a same expression as we will see
below.
Defining

¥,=0, +&,T, (5.13)

(the dot under the index v recalls the covariant derivative
index that was used), we can rewrite (5.12) in the form

© —yr
+ + + +

= (R¥3op)d* + A"Pg + [‘I“ R 7 ,A‘]
pa A
- lzﬂpﬁ,zpm,A 4 ] +4{%,.%;,4"}

— 4
24% 0 .
+ v
Here, R* , .5 is the “octonionic total curvature tensor”

R = (8 10p + T 6T00) — (150 + TP 1g).
(5.15)

(5.14)

Expanding (5.15), we obtain
Rty =R¥ 105 - 1+ 84P 4. (5.16)
We define the “line element” on the octonionic space as
ds’> = iTr(G,,, dx* dx"), (5.17)

where G,,, is the “octonionic metric tensor” on the octon-
ionic space. This can be written in a more general form as

Guv = spvo(xju*o + spv,-(x)u‘i + ",wo(x)uo + rpv,-(x)ui
' (5.18)

or

Suve —8,, 'O
( “ . (5.19)

r, o 7 @0

) =G, (s7)

in the Zorn matrix notation. With the above definition for

G,.., the line element may be written, from (5.17), as

ds? = §(s,,, + Ty, JAX* dx”, (5.20)

which gives the line element of the nonsymmetric theory
when r,, s, .

The octonionic conjugation is defined in Appendix A.
We will define now the ‘“Hermitian conjugate’ of any octon-

ion A4 as

AT =a*uy + b *u*, — x* u*, — j*.u,

( b*o, x* ,.w,-)
S\ —yNe, a*o,)
where we take the complex conjugate of the coefficients of A.

The octonionic Hermitian conjugate of the “metric”
is

(5.21)

G

nv
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r vo Do Sh0;
G*yv 5.7 = u v,
— r;‘v’_mi s*

HVotro
= G, (s*,r*%). (5.22)

Considering, as in the case of nonsymmetric and quater-
nionic theory, that the fields s and r are such that

5% e = Sy =T s
s-,‘,, =8,,= —S8,,, r*w =TI, = —TI,, (5.23)
\% \v v v v v
we find a symmetry relation for G, :
r,, O
Vio™ 0 VI‘I
Gl = (S) 5.24
I‘v( ) (r,,,,lw, S ) Vl‘ ( )

[Here the notation () remembers simply the column places
of fields »and s in the Zorn matrix G,,, .] In our case, we want
to haver,, =s,,, , because we are studymg the octonionic
space, which consists of a non-Riemannian space-time of
nonsymmetric theory associated to internal octonionic
space. We have then

Tuvy = Suvy =8puv +IkF,,, (5.25)
- v
and we can say that the fields s,, and r,, are of the Yang-

Mills form, but are different from each other. In the limit
r—8 we reobtain the quaternionic case. If we take (5.25), the
symmetry condition (5.24) can be written as

Gl isr) =G ,(s,r). (5.26)
There exists an inverse G*” of G, such that
GG = G, (5,)G*(rs) =6 1, (5.27)

in this order, as in quaternionic case. The expression (5.27)
also can be written, because of the property (5.24) [or (5.26)],
in the form

GV#(,:)G““ C) =5, {5.28)
or, if we take (5.25),
G (s,1)G,, (s,r) = 5, (5.29)

Herewith we complete the principal geometrical consid-
erations for an octonionic space. Table I summarizes the
principal geometrical objects of Riemannian space-time,
non-Riemannian space-time of the nonsymmetric theory,
quaternionic space-time of the Borchsenius theory, and oc-
tonionic space-time defined above.

VIi. FREE FIELD EQUATIONS IN AN OCTONIONIC
UNIFIED THEORY

Bonnor and Moffat-Boal'? suggested a modification in
the Einstein Lagrangian of the nonsymmetric theory by in-
troducing a new term

uv

Lwp = Lps + 4G /k*c) I Vg,,, (6.1)
where . g is the Einstein-Schrédinger Lagrangian.? The
obtained field equations reduce themselves to the Einstein—
Maxwell equations in the limit k—O0. Borchsenius has
worked an extension to a theory that includes the Yang—
Mills field."® The Lagrangian in this case is
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uv
ZLxs =Tr(I*R,, + [1/ix?]1¥9 "8,.)
v
where the objects in (6.2) are now 2 X 2 matrices. The density
G is

(6.2)

G = wgt,
w= [ —4Tr(detg,,)] 172, (6.3)
Again he uses here a universal constant ix = — 2ifi/e as a

result of which, in the limit #—0, he obtains, besides the
Einstein-Maxwell equations, the Yang-Mills field equa-
tions.

We saw in previous sections the interpretation of the
geometry of the Borchsenius theory via a quaternion alge-
bra, as well as its extension to an octonionic-split geometry.
We will obtain now the free-field equations for this octon-
ionic-split geometry.

The “metric tensor” G, was defined as
G, =8, +iKF,,) (uo+ u*)+s,, u*+r,, u,

- v \ v
wherer,,, and s, are fields of the Yang-Mills type. There-

v A

(6.4)

fore,

Suy = — Kk, T, = —xul,,, (6.5)
v \ A\ \'

where ix is the universal constant used by Borchsenius,

1 = — €/e, e and € being the elementary quantum of electri-

cal and isotopic charge, respectively. The “density” @** is
& = wG, (6.6)
w=[ —4Tr(det G,,)]"7? (6.7)

where the trace operation (Tr) is carried out on the Zorn
matrix of G,w, and the determinant of the matrix in the
world index is taken, u, v.
The free-field octonionic Lagrangian is taken as
v
. + [1/(x)18VG,,,), (6.8)
v

where R,,, is given by (5.15). This Lagrangian is invariant
under an Einstein 4 transformation (see Borchsenius®). Be-
sides, there is also invariance under octonionic local trans-
formations. By the use of the Palatini variational method
over an action constructed with the above Lagrangian,

£ =Tr(®'R,

M:j.?d“x, (6.9)
we obtain the field equations
R*,, =0, (6.10)
-6, -0, B4 - 0* G+ 0, @
—§6”,,ﬂ”4p@$"‘— [%.,6*]=0 (6.11)
A\
where
R*, =R, +1L,, (6.12)
Ba Ba
L,=(- 1/2::2)[(;,“,((; VGp) + (G GV)Gs,
a8
+3{6,.(GYGy) + (G, GV)Gap} +6, ]
(6.13)
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TABLE I. General table for symbols used in the text.

Borchsenius or

General relativity Nonsymmetric quaternionic Octonionic
theory theory theory theory
(R algebra) (C algebra) (Q algebra) (O algebra)
Line ds =g, dx*dx” ds’ =g, dx* dx” ds =} Tr (G,, dx* dx") ds’ =} Tr (G,, dx* dx")
element =g, dx" dx” = g, dx* dx” = Yy, + Tuvp)dxt dx”
“Tr” acting upon @ matrices “Tr” acting upon Zorn matrices

Metric g, =8, 8uv =8y + ikF,,

- v

F,, = Maxwell tensor

& =8
Affinity T*,=(°}=r" 0°, =62, — 2584
y pv"[”vl— ™ uy = pv—; uly
A, = — )0 s,
v
8°%,, = Schridinger connection
05,=0
Curvature R°,,, =R7,,,({ :vn R°,,=R°,.(Q°",)

Gyv = (g’w + ixF, pv)a,o
- v
+f,r0
v

f,, = Yang-Mills field

v
G?pv =G,

“$” acting upon Q matrices

X, =0°%,,0,+85C, 0

C, + © = Q affinity

R =R%, (%)

=R appv(nppv)a)() + 8: va

P,, = Q curvature

Gy = 5,0, 48 + Ty o

+8,°u"+r,. 0
v v
G, (s 7
Suvgs Tuvy: DONSymmetric-theory-like

8., T,,: Yang-Mills-like

v \"
Gl N =G, % r*)
=G,,(s 7,

whens,, =r,, =g,, +ixF,,
v

“4” acting upon Zorn matrices
Ipyv =0 ppv(uo + “3)
+84(L, -u* +K, +u)

L, - u* + K, - u = O affinity

R°

v = Rappv (i Puv)

= R appv (ﬂapv )(ug + “o)
+6,P,,
P,, = O curvature

If, in (6.11), we use the Schrodinger connection, 6 7,
ar, =6, -310,06°,, (6.14)
0, = (3/in)d, , (6.15)

A, the electromagnetic vector potential, and 8 #,,, a space-
time connection such that

6,=6°,=0, (6.16)
\'
we obtain,
L A C Ly R . i
+ 64,64 - [%,,6] =0, (6.17)
or, in Einstein notation,
v
8+, +[%,.,6#~] =0, (6.18)
equivalently,
uv
&*-,=0, (6.19)
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the O-total-derivative of &**. For ¥, we have, according to

Borchsenius, and from (5.7),

L, =(—é€/fe,,

(6.20)
K, =(—e/fijd, .
Also placing (6.13) in (6.12) we obtain
R*,0)=0, (6.21)
R ",\‘/,,(6) +3Q,, —Q, Nup+ u*o) — P,\,’v =0, (6.22)

with P, given in (5.10). Antisymmetrizing (6.17) in » and v

\

and contracting in z and a, we obtain

pv uv

®Y,+ Stv,@"] =0.

Again we have

(6.23)
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nv v uv nv
GV =ixFV(ug+u*y)+s8’ -u*+rVv-u, (6.24)
which gives, for (6.23),
nv
(wFV), =0, (6.25)
F7Y nv

(wsV), —2K, Ar¥w=0,

(6.26)

v v
(wrV), —2L, A sVw=0,

which are the ““current components” of the Maxwell equa-

tions, in the case of (6.25), and Yang—Mills-like equations for
uv pv uv

(6.26). In the limit sV—r¥ = —xuf¥, and K,—>L,

=(— €/#ib,, we reobtain the quaternionic Borchsenius

equations.

VIil. CONCLUSION

Table I shows a collection of objects, namely, the metric,
the affinity, and the curvature. We can observe there that
these objects maintain their “forms” when we go from gen-
eral relativity to the Einstein nonsymmetric theory, and then
go to quaternions (Borchsenius theory) and octonions. The
automorphism group of quaternions is SU(2), which is ho-
momorphic to the rotation group O,. In the case of split
octonions, the automorphism group is the split G, (an excep-
tional Lie group). We showed by means of what we called
“octonionic transformations” that these are homomorphic
to the rotation group O,. These “O transformations™ are
necessary to obtain the octonionic field equations, (6.19) and
(6.21)—(6.23). The component equations (6.25) and (6.26), of
Eq. (6.23), decompose in Maxwell equations and two equa-
tions of the type of Yang—Mills. These last ones are a sort of
“doubling” of the quaternionic Yang—Mills equations, but
with a symmetric mixing of component terms. Equation
(6.18), or (6.19), is the octonionic generalization of the corre-
sponding (quaternionic) Borchsenius field equations [see Eq.
(3.20), Ref. (5)]. The Moffat—Boal theory has proved to have
ghost poles and tachyons' in the weak-field approximatitf.l

The same must happen with non-Abelian theories, like that
of Borchsenius (quaternionic theory) and again, with the ex-
tension to the split-octonion field theory, developed here,
but the analysis of this part is out of the scope of this paper.
An important aspect of Q and O field theory that may be
remembered here is the relation to local quaternionic and
octonionic spinors.’® For example, under the SU(3) sub-
group of split-G,, leaving u, and ¥ invariant, the three split
octonions (u,,u,,4;) transform like a unitary triplet (quarks)
and the complex conjugate octonions (u¥, u¥, «%) transform
like a unitary antitriplet (antiquarks).®

APPENDIX A: THE CAYLEY ALGEBRA. REALIZATION
VIA ZORN MATRICES

The octonions algebra has eight dimensions and its base
vectors, e, ¢;, { = 1,...,7, satisfy the product law

€e; =€89=2¢;,

(A1)
eiej = - 5ueo + éijkek .

Now ¢, is an object completely skew-symmetric with seven
nonzero elements: €53, €516y €e24s €435 €4715 €s725 AN Eg3.
This algebra is also called the Cayley algebra.® It is neither
commutative nor associative, but belongs to the class of al-
ternative algebras, with the property that for any three oc-
tonions the associator of x,y,2, is given by

{x,y.2} = (xplz — x(y2) . (A2)
This changes sign when any two of its arguments change
position. The quantities x, ,z, are called Cayley numbers.
The Cayley algebra with the case given in (A1) belongs to the
class of division algebras (real base), but it can also be pre-
sented as a “‘split algebra” if we use a new basis defined on the
complex field. This is given as

uo = ie + les), u*y = leo — ie)
i=123.

u;, =Me; +ie;,3), u* =\e —ie ),

(A3)
From this definition follows the multiplication table

ijk=123

utu*; = €uu,, uu* = —6,u,,
uu; = € uty, utu; = —S;u*,,
uu,=0, u*u¥ =0,

Ug; = U; utqu®, =u*;,

uy? =, u*? = u*;,
uwuto=u,, u*u,=u*,,
u*qu, =0, ugu*, =0,

uou*o = utouo = 0 .
It is to our interest to find a convenient realization for

the basis elements {uo,u,,u*o,u*;} through the use of Pauli
matrices. This is possible by the identifications

00 ((oo O)
— * —
“o (o w)’ “o=\o 0/’
_ (O 0 ) . (0 —w,)
ui - (0,- 0 ’ u i 0 0 )
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i=123. (A5

(A4)

r
@, and w, are given in (4.1) and (4.2). For an arbitrary split
octonion 4, we have

A =au*y + buy + x;u*, + yu, = (; b_ x) . (A6)
The operation of octonionic conjugation is defined as
A =bu*,+ auy — x,u*;, — yu,
a x
= . A7
( -y b) (A7)
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The norm of 4 in then given by

AAd =44 =(ab+xy) 1, (A8)

where 1 is the identity element of algebra, 1 = 1.u*, + 1-u,,.
The “matrices” written above are called “Zorn matrices” or
“vectorial matrices.”'” If we define the product of two Zormn
matrices as

a —x\fc —u
=", 57, 7)
_(ac—x-v —f(au+dx+ y A v))
T \cy+bv+xAu bd—yu ’
the multiplication table for the «’s is reproduced in this Zorn

matrix notation. Besides, we have the following properties
for octonions:

A1=1-4=4, A

(A9)

=B4,
_ {A10)
A+A=Tr4)-, TrAB)=Tr(B4),
where the trace operation (Tr) is performed on Zorn matri-
ces. From (A 10), and using the definition of the associator
given in (A2) we have that
Tr[(AB)C] =Tr[4 (BC)] =Tr[4ABC], (A11)

and thus the trace operation on a product of Zorn matrices
follows the cyclic order of factors.

In general, the Cayley complex (split) algebra contain
seven Euclidean vectorial subalgebras, as well as seven sub-
algebras of quaternions. This property follows from multi-
plication rules of the complex (split) base given in (A4) and
from the definition (A3).

Finally we must observe that we are always using
A = Z (A), the Zorn matrix of the octonion A4, because the
Zorn algebra is isomorphic to the split ocotonionic algebra.

APPENDIX B: INTERNAL TRANSFORMATIONS FOR
QUATERNIONS AND OCTONIONS

1. Quaternionic transformations

If we have a complex unimodular matrix 4,

-2

then

A—l=(6—y—i)'

The conjugation operation of quaternionions and octonions
is equivalent to the inversion of a unimodular matrix.

Let U be a quaternionic transformation matrix, or Q
transformation,

U=m0wO+m,'wi ’ (Bl)

which is at the same time a transformation matrix of the
SU(2) group, i.e., it satisfies the condition

U-'=yt, (B2)

where Ut = UT* is the Hermitian conjugate of U. It is easy
to show that

UTEE* — mtowo _ m*i")i , (B3)
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where U is the quaternionic conjugate of U, defined as
U=mmw, — muo, . (B4)

Thus U, being a unimodular matrix, must satisfy the proper-
ty of the inverse unimodular matrix expressed above, i.e.,
U ~'=U, which, with the condition (B2) for matrices of the
SU(2) group, results in the coefficients mg, m;, i =1,2,3,
from expansion (B1), being real. Therefore

TU=UU=U""U=UU"'=mi +miw,=1,

(B5)
because
mi4+mi=detU=1. (B6)
We must have then
U=e*"=e *, (B7)

where A = (4,, A,, 4,) are real parameters.
The Q transformation of a quaternion 3 is defined by

v =UpU"". (B8)
If

¥ =aw, + a;v,, (B9)
1/ is given in terms of components, after (B8),

¥ = (moagmo + moa,my. + myagm;, — ma,molw,
+ [moa,my — meagm, + m,agmy + mya,m,
+ €xplmpa,mo — mea,m;)

— Egc€rpMia;m; |@, . (B10)

The symmetry group of this transformation is SU(2), which
is homomorphic to the rotation group O,. This is given
through the relation’®

Uo,U~'=Ry0;, i,j=123. (B11)
In terms of components it is
mid,, +m;m, — 2€,,mgm; + €y €,mm; =R, . (B12)

For the local Q transformations, which are used in the
space-time connected to internal quaternionic space, we
must have

U= U(x) = molxjwo + m,(x)o,
and

Ulx)=e~ 2, (B14)

where now, A(x) = (4,(x)4,(x), A,(x)) are real functions. Also,
in this case, the coefficient of 1 in (B9) are functions of space-
time coordinates.

(B13)

2. Octonionic transformations

When we consider octonions, we may define an octon-
ionic transformation, or O transformation, by means of the
octonion U, in our case, split

U= poo* + p:u* + qotéo +qst4; » =123, (B15)
where p, Pi» 4o» 4:» § = 1,2,3, are real coefficients. Then,
U= gqou*o— pit*; + Potlo — 4l (B16)
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is the conjugate of U. Comparing with quaternions, we can
define

U~ '=U.
Actually,

UTU=U0=U""U=U""U=(pogo + 2:g))1, (B1§)
which will be equal to 1 if

(B17)

Podo+ Pig;i=1. (B19)
In this case we have for U,
U=e " —yu, (B20)

where 8 and vy are real parameters.
For an extension of the case valid for quaternions, the O
transformation of an octonion ¥ is defined by

V=1 [(UY)U~! +TWUY]. (B21)
We can show easily that

UWU—'=UWwUu ", (B22)
which simplifies the relation (B21) above to

¥ =0UvyU""'. (B23)

If ¢ is given in terms of components by

Y= pott*o+ p,u*; + Kotho + K;U; , (B24)

we have, after (B23),

V' = (popodo + PoPrdix + Prkodr — PrKidol*o
+ [ PoPp Po— PoPoPp + PpKoPo+ PpKi P
+ €1 ( Po K19k — 90Kk 91) — €gpc€rap Pi P41 J1*,
+ (@Ko Po + Go Kk Px + Gk PoPx — 9k Px Poltbo
+ [90 4,90 — 9o Kop + 9 PoGo + i P4,

+ €ip( Pk P10 — Po Pic P1) — €y €xip9:iK; P14y - (B25)
We can obtain a relation similar to {B8), for O transfor-
mations:

Ulu*, +u U™ =kyu*, + Lu;, §,j=123.

In terms of components it is

(B26)

p(z)(sip + pi P, — €,9;{ Po + 90) + €€y D0 = Ky
(B27)
qéaip +49:9, — €y, Pi(po+ 9o) + €ix€rpq; Pr = lip s
with the additional condition
Po: — Pi9o=0. (B28)

From (B27) we see clearly that in the limit g, ,— p, ;, the O
transformation, through U, is equivalent to a @ transforma-
tion, through U. Therefore, the O transformation is homo-
morphic to the rotation group O; and so it must be SU(2)-like
(in our case). This is due to a mixture of terms observed in
(B27). Besides we observe a certain symmetry, with regard to
the positioning of components terms, in expressions (B25)
and (B27).

For the local O transformations, which are used in the
octonionic space, we must have
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W =W(x) = polxju*o + p;(x)u*; + Kolx)uo + Ki(x)u; ,

U =Ux) = polx)u*o + pi(x)u*; + qolx)uo + g:(x)u;
and

U(x) —e" B(x)u* — yi{x)u ,

where 8(x) and y(x) are now real functions of the space-time
coordinates.

1A. Einstein, Rey. Mod. Phys. 20, 35 (1948); M. A. Tonnelat, Les Theories
Unitaires de 1’Electromagnétisme e de la Gravitation (Gauthier—Villars,
Paris, 1965).

2A. Einstein, The Meaning of Relativity (Princeton U.P., Princeton, NJ,
1955), Apendix 2.

3Mann and Moffat {R. B. Mann and J. W. Moffat, Phys. Rev. D 26, 1858
(1982)] and Kunstatter, Leivo, and Savaria [G. Kunstatter, P. Leivo, and
P. Savaria, Class. Quantum Grav. 1, 7 (1984)] showed that the physical
sector of the nonsymmetric theory, based on the Einstein—Strauss field
equations [A. Einstein and E. G. Strauss, Ann. Math. 47, 731 (1946)], cor-
responds to spin-2 and spin-0, i.e., the skew part g,, must have spin-0 in

v
the weak field approximation, and therefore cannot be interpreted as the
electromagnetic spin-1 field 7, .

*J. W. Moffat, Phys. Rev. D 19, 3554 (1979); J. W. Moffat, J. Math. Phys.
21, 1798, (1980).

K. Borchsenius, Phys. Rev. D 13, 2707 (1976).

SWe want to thank Professor L. A. Maia, Department of Mathematics,
Universidade de Brasilia, for important elucidations on the aspects of oc-
tonionic algebra.

"In a recent paper, Moffat [J. W. Moffat, J. Math. Phys. 25, 347 (1984))
treats an octonionic Riemannian geometry. However, he takes into ac-
count only the geometrical formulation of the nonsymmetric theory of
gravitation, which is not the same as the one we are exposing in this work,
that treats an extension of the unified (quaternionic) Borchsenius theory of
gravitation, electromagnetism, and Yang-Mills fields.

8A. Cayle, “Note on system of imaginaires,” Phys. Mag. (London) 30, 157
(1847); The Collected Mathematical Papers I (Cambridge, U. P. Cam-
bridge, 1889), p. 301; M. Gunaydin and F. Gursey, J. Math. Phys. 14, 1651
(1973); L. A. Maia, “Sobre a Analiticidade de FungSes em uma Algebra de
Divisdo,” thesis, Universidade de Brasilia, Departamento de Matematica
(1982).

°V. Hlavaty, Geometry of Einstein’s Unified Field Theory (Nordhoff, Gro-
ningen, 1957). See also the work of Kunstatter and Yates {G. Kunstatter
andR. Yates, J. Phys. A 14, 847 (1981)]. More recently, there is the work of
Kunstatter, Moffat, and Malzan [G. Kunstatter, J. W. Moffat, and J. Mal-
zan, J. Math. Phys. 24, 886 (1983)], which extends general relativity to the
algebra of hyperbolic complex numbers.

104, Einstein, Ann. Math. 46, 578 (1945); A. Einstein and E. G. Strauss,
Ann. Math. 47, 731 (1946).

11C, G. Oliveira, in II Escola de Cosmologia e Gravitagao, edited by M. No-
vello (Jodo Pessoa,Brazil, 1980); Rev. Brasil. Fis. 10, 121 (1980).

12J, W. Moffat and D. H. Boal, Phys. Rev. D 11, 1375 (1975); W. B. Bonnor,
Proc. R. Soc. London Ser. A 226, 336 (1954).

3R, L. Mills and C. N. Yang, Phys. Rev. 96, 191 (1954},

14R. B. Mann and J. W. Moffat, Phys. Rev. D 26, 1858 (1982).

5D, Finkelstein, J. M. Jauch, S. Schiminovich, and D. Speiser, J. Math.
Phys. 3, 207 (1962); D. Finkelstein, J. M. Jauch, and D. Speiser, J. Math.
Phys. 4, 136 (1963); D. Finkelstein, J. M. Jauch, S. Schiminovich, and D.
Speiser, J. Math. Phys. 4, 788 (1963). The last of these papers about quater-
nionic quantum mechanics studies the properties of a quaternion Hilbert
space local to the space-time manifold.

M. Giinaydin and F. Giirsey, J. Math. Phys. 14, 1651 (1973); M. Giinay-
din and F. Giirsey, Phys. Rev. D 9, 3387 {1974); M. Giinaydin, J. Math.
Phys. 17, 1875 (1976).

"/M. Zorn, Abh. Math. Sem. Univ. Hamburg 8, 123 (1931).

183, Aharoni, The Special Theory of Relativity (Oxford U. P., London, 1965),
2nd Ed., Eq. (11.6), p. 297.

S. Marques and C. G. Oliveira 3139



Two-mode para-Bose coherent states
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The construction of eigenstates of the square of annihilation operators for a two-mode para-Bose
system is reported. Bose coherent states can be deduced from these eigenstates as a special case.
These states are termed para-Bose coherent states. These states are degenerate. The expansion of
the coherent states in terms of two-mode para-Bose energy eigenstates has been obtained and their
salient properties are discussed. Also discussed is the uncertainty product of the square of position
and momentum operators in the para-Bose coherent states for a two-mode system.

I. INTRODUCTION

We discuss in this paper the construction and properties
of two-mode para-Bose coherent states. These states are de-
fined as eigenstates of the square of annihilation operators.'
It may be recalled that for normal Bose and one-mode para-
Bose systems,’ the coherent state is defined as the eigenstate
of the annihilation operator a,, i.e.,

@12, 2,2 ) = 2|21, 25 02 0 0) (1.1a)
(normal Bose case) and
alz,L)=z|z,L) (1.1b)

(one-mode para-Bose case). Here L is a positive integer
known as the order of parastatistics.> For bosons, L =1,
while for parabosons, L > 1. The minimum energy of a para-
Bose system depends on L. For a Bose system (L = 1) the
operators belonging to different modes commute among
themselves, i.e.,

[aia;]=0. (1.2)
As a result it is possible to find simultaneous eigenstates of
a,(i =1, 2,...). For a one-mode para-Bose system it is again
possible to define a coherent state as an eigenstate of @ [cf.
Eq. (1.1b)). However, for a para-Bose system with two or
higher modes, we are confronted with the problem of the
non-commuting nature of the annihilation operators belong-
ing to different modes. Therefore simultaneous eigenstates
of annihilation operators cannot be constructed. On the oth-
er hand, the square of annihilation operators and J,
= j[a,,a;] commute among themselves for a multimode
para-Bose system, i.e.,

[¢3d5] =0, [a%Jx]=0, (1.3)
and we define para-Bose coherent states as the simultaneous
eigenstates of a7 and J;, (i,k = 1,2,...). We shall discuss only

the two-mode para-Bose coherent state, a representative of
the multimode system. The contents of the paper are ar-

® Permanent address: Department of Physics, Indian Institute of Technolo-
gy, Hauz Khas, New Delhi-110 016, India.

3140 J. Math. Phys. 26 (12), December 1985

0022-2488/85/123140-06$02.50

ranged as follows. In Sec. II we shall define the two-mode
para-Bose coherent state and obtain its expansion in terms of
energy eigenstates. The matrix elements of Hamiltonian and
the squares of the position and the momentum operators will
be obtained in the coherent state, and the familiar results of
the normal Bose and one-mode para-Bose cases will be de-
duced as special cases. In Sec. III, the uncertainty relation
for the squares of position and momentum operators with
their expectation values in the coherent state will be dis-
cussed.

Il. DEFINITION OF PARA-BOSE COHERENT STATES

We define the two-mode para-Bose coherent state
|2y, 2,, z, L ) as an eigenstate of a commuting set of operators
at,a;,and J =}[aya,] (/=0 for normal bosons) with
eigenvalues z2,z2, and z, respectively, i.e.,

a}|zy 202, L) =22 |2}, 25,2, L), (2.1a)

as|zy, 25,2, L) =22 |2y, 25,2, L ), (2.1b)
and

J|z1,252, L) =2|z), 25,2, L ). 2.1¢)

We shall see that coherent states |z,, z,, z, L ) are not orthog-
onal. The expansion of |z,, z,, z, L ) will be obtained in terms
of energy eigenstates,*> |nlm) for the two-mode para-Bose
system. The energy eigenstate |n,/,m) is defined as

1
|nim) = ({a.a})"a; )T +70) (I>m). (2.2)
nim
Here |0} is the vacuum state such that
{anaf}lo) =L5ij|0>’ (2.3)

with L being the order of the parastatistics. Here J * is the
Hermitian conjugate of J, and J * creates one particle each in
both the modes. Its nonvanishing nature for parabosons
gives rise to antisymmetrical states. For the state |n/m) the
number of excitations of first and second modes are n + m
and / + n — m, respectively. Hence there is degeneracy if
only (m + n) and (/ + n — m) are fixed. It is because J * #0.
The Bose energy states are nondegenerate as J © = 0. The
normalization constant® N,,,, is given by
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CDml— AWM AT+ 1= A, Mo+ I+ L =2+ A, M — AN+ L —3+A,)

nlm (I +1—A NI — mYL —2)!

where A, is the projection to odd k values, i.e.,
A =4[1— (=11 =0, ifkiseven, (2.5)
Ay =3[1—(— 1)1 =1, ifkisodd.

The states |nlm) are orthonormal, i.e.,

(n,I ,mllnlm) = 6nn’6ll'6mm' . (2'6)
Let us define the expansion of |z,, z,, 2, L ), in terms of ener-
gy eigenstates |nim), as

|21, 252, L) = Y Cpp [nlm)  (I>m). (2.7)
nim

Here C,,,, is the expansion coefficient and is a function of
z,,2,,z and L. The Hilbert-Fock space of our two-mode
system spanned by states |n/m) is composed of the following
subspaces, which are invariant with respect to all the genera-
tors of symplectic Sp, p algebra: (i) the subspace S,(L)
spanned by all the vectors |n/m) having both n and / even,; {ii)
the subspace S,(L ) spanned by all the state vectors having n
odd and / even; and (iii) the subspace S,(L ) spanned by all the
vectors having / odd.

Thus the expansion of |z, z,, z, L ) in |nlm) will yield
J

(I) For even n and [ values,

_[m+2)m+ 1)n+1+L)n+14+3)]>

_ [(m—l+ W)om —1)n +2)n + L — 1)]1/2C

) (2.4)

r
degenerate eigenstates of @ (i = 1,2) and J because of invar-
iance of the subspaces with respect to a2, It will be a trivial
exercise to verify that even for bosons and the one-mode
para-Bose system the eigenstates of a? are degenerate. But if
the eigenstates of the square of the annihilation operator are
allowed to be eigenstates of the annihilation operator as well
for bosons and the one-mode para-Bose system then the de-
generacy vanishes. By definition, the two-mode para-Bose
coherent state is an eigenstate of a?,a2, and J. It can be veri-
fied that, on putting » = 0 in the expansion (2.7), the eigen-
value, z, of J for the eigenstate |z,, z,, z, L ) becomes zero and
the states |z, z,, z=0, L ) span the subspace of the Hilbert
space. Therefore for the two-mode para-Bose coherent state
|21, Z,, 2, L ) to span the complete Hilbert space, it is neces-
sary that it should be an eigenstate of three commuting oper-
ators a?,a3, and J. These three operators ensure the com-
pleteness of the two-mode para-Bose coherent states.

Now let us consider the expansion of states |z,, z,, z, L )
in terms of basis |n/m) using Eq. (2.2), (2.4}, (2.6), and (2.7).
In the process of expansion we obtain the following recur-
rence relations.

nl+2m+2

n+21—2m>» (2.8)

+1l-1)
L+ ln+I143)-—m+2){—m+1)]2
22C = [(n + Cn m
2 Y nim (l+3)(l+ l) I+ 2,
_ m(m—-—l)(n+2)(n+L—l)]"2C 29
[ (I—I— 1)(1_ 1) n+2l—-2m-—2 ( . )
zcnlm = [(n +L + 1)(L +n— 1)11/2Cn+ Lim- (2-10)
(II) For even n and odd |,
ACy = —,ﬁ [m + 1 — m)n + 14+ 2L + 15— D] 2Coy 1
+U+27m+2)m+Nn+ 14+ 2+ L+1+1)]VCopiamya
— 17l —m)l—m—=Un+2n+L—1)]1"C, 21— 2m> (2.11)
-2
zgcnlm = I(I+ 2) [m(l'— m+ 1)(I+ n+ 2)(L +n— l)]l/2Cn+ 1,m—1
+(+2)l-m+2—m+Nn+1+2)n+1+L+1)]1V*Cpppom
=17+ 2mm — WL +n—1)]"*C\ 51 2m2> (2.12)
2Cp = — [+ L= +1+2]"C, 1 1m- (2.13)
(III) For odd n and even I,
22C. = [(m+2)(m+ Yr+!4+2)n+1+L+1)]2
1 ~nim (l+ l)(l+3) nl+2,m+2
(l—ml—m—1)n+1)n+L) ‘”C
- ’ 2.14
(l— 1)(1+ 3) n+2l—2m ( )
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Cn,l +2,m

2C ___[(n+L+l+1)(n+l+2)(1—m+2)(l—*m+l)]‘/2
2 I+ 10 +3)
a [m(m ~ln+Lin+ 1)) (2.15)

n+2l—-2m—2*

(I — 1+ 1)
2C = [(n 4 Vi + 1+ 2)1"*C, , 11m- (2.16)
(IV) For odd n and odd  case,
22Cy = T(Tftz [(m + 100 = m)n + 1+ LY + D)2, 1
+(4+2"m+2m+ Vn+1+LYn +14+31%Copy2maz
~ 17 =m =1 = m)n + 1)L + m)]"C, s 21— 2> (2.17)
R -2

ZZCnlm = l(l + 2) [(n + l)(n + I+L )m(l— m+ 1)]”2Cn+l,l,m—l

~ {7 (n+ 1)+ Limm — 1)]2C, , 2)_2m_»

++2)MI—m+ YW —m+2n+ L+ n+1+3)1"2C, it am (2.18)
2Cppy = — [(n+ WL +1+012C, 4 1 (2.19)
On solving the recurrence relations (2.8)—(2.19) we obtain, for all even and odd values of # and J,

g+1—-AM +L—-2+AMNL -3 ]"2
0,,m

2.20
M+n+1—A, Ma+L—3+AMI+n+L—2+A, N (220

Cn,I,m =(1—2‘u)zn[(n—/1

where y is defined as
i =0, forany combination of » and / when both are not odd;

u =1, when n and/both are odd.

We can also write C,; ,,, for all values of / and m as

Coim =(2)"2)' ™™ :
x[ ({1 + 1)/2] + ) (L /2T (3) ]vz
2T ([m/2] + W ([( — m)/2) + WO ([{ —m + 1)72] + YL ([m + 1)/2] + YOI+ 1)/2]1 + L /2)

X Cooo Fim(2, 21, 25) - (2.21)

Here,
Co1 =(2122/ \/2'_ )Cooo

is taken and [Y] stands for the largest integer smaller than or equal to Y.
The F,, (z, z,, z,) are defined as

™ 2m)2] — 2p — I — m)! ( z )2"
. 2.22
212m + p;l (m _p)‘p!(2l — 1)!!(1 —-m —P)‘ Z,2, ( a)
™ 2Pm)(2] ~2p — I — m — 1)l ( z )”
. . ’ 2.22b
2am+1 =1+ i m—pp2d — il —m—p— 1) \z,2, =

mot o p+ i)l — 2p — W ~ m)! ( z )2P+1 ™ 29ml(2] — 2g + 1)I(] — m)! ( z )2«
¥4

F =1
2+1am =2 F ,,Zo (m—p— 1)l + W — m — p)t \ 2,2, S m— g2l + ) —m — gt \ z,2,

(2.22¢)

o 22mi 2 —2p + W — m) ( z )” e 297 \ml(2] — 2 — 1) — m)! ( z )2“'
s (m—pipl2 + W — m —p)i\ 2,2, isogim—g2l+ 1M/ —g—m — 1)\ z,2, )

Fyiiomer =1+

(2.22d)
From Egs. (2.20) and (2.21) and the above derivations we may obtain C,,,, for all values of n, /, and m.
The Cyy, can be evaluated using the normalization property of the state |z,, z,, z), i.e.,
(zpzpzlz252) = 1. (2.23)

Up to an arbitrary phase it comes out to be
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~ N (1= 26 + 1 — AL +1—2 + A
Cm—[,%"l' 22l el [(n—A,,)!l(l+n+l——A,,+,)!!(L+n—3+A,,)!!(l+n+L—2+A,,+,)!!
(L — ([0 + 1)/2] + YL L /AT
X I (m72] + W= m)/2] + W (U —m + 1/2] + )T (0 + 1721 + )

]r([(1+ 1)/2] +L/2)] )

X| Fymlz, 21, 25)| 71 (2.24)
If we put L = 1 in the above equation with n = 0, and F,, =1, then
C.. — 2m|,, |21 —2m r (i))2
000 [z,zmlzll & lz'r([m/zl + OO([( = m)/2] + WE([(— m + 1)/2] + YT ([m + 1)/2] + 5)”

e e e IR R (2.25)
o mi(l — m)!
which is the familiar expression of the normal boson case.
We shall now obtain the matrix elements of energy (free Hamiltonian), square of position, and momentum operators in
these para-Bose coherent states.
First we shall express the Hamiltonian, square of position, and momentum operators in terms of annihilation and creation
operators. We have for two-mode para-Bose system,

H=}{a,ai ) +}{aras' }, (2.26)
¢ =4{a.a*} +al+a"?, (2.27a)
pi=Mla,ar} —al—a*? (i=12). (2.27b)

Using Egs. (2.7), (2.26), and (2.27) we obtain the matrix elements of H, ¢7, and p?, which are given by the following
equations:

(24,25, 2|H |2y, 25, 2) = ; |Coim |*2n + 1+ L), (2.28)
L

(21,2 2|q7 |21, 25, 2) = — (zl + 2P + 2 |Cotm |2(” +m+ 2) (2.29a)

nlm
L

(zl’ 227 thg lzl’ 229 Z> (22 + 2‘2'2) + z | nlm IZ(n + 1 —m + 7) ’ (229b)

nlm
2 2 L 1 2 2
(2125, 2| P12, 25, 2) = Y [Cum|*{n+m +7 —'2'( 1 +21), (2.30a)
nlm
and
L 1
(21’22’z‘p§ 21,22 2) = Z |C ot |2(” +1—-m+ 7) - 7 (2 +227). (2.30b)

The C,,,,, can be substituted from Egs. (2.20) and (2.21). Here we have also made use of the fact that |n/m) is an eigenstate of
i{a,a;" } and }{a,,a," |} with eigenvalues (n + m + L /2) and (n + I — m + L /2), respectively.

We shall now deduce the familiar results of the normal Bose system and of the one-mode para-Bose system from the two-
mode para-Bose system as special cases.

(i) Normal Bose system: In the normal Bose case, L = 1, n =0, and J =} [a,,a,] = 0. On putting these values in Egs.
(2.20)—(2.22), we obtain

Coim =22 " (L W)/2 T (M2 + )W (U —m/2) + W (U —=m + 1172 + YT ([m + 1172 + 3172 (2.31)
We know that

K1'=2kC([K12+ W ([K+ 1172+ 4)/T(}).
So Eq. (2.31) can then be rewritten as

Coum =272 " [1/mi(l —m)!] =172 Coqo - (2.32)
This is the familiar result obtained from the expansion

|z, 2,) = ;CI,m |lm)

for the normal Bose system. The constant Cy, is given by (2.25).
(ii) One-mode para-Bose system: If we put either m =0, or / = m (and L # 1), we can realize the one-mode para-Bose
system. Here again n = 0 and F,,, = 1. We obtain from Eqgs. (2.20) and (2.21) the relations

3143 J. Math. Phys., Vol. 26, No. 12, December 1985 G. M. Saxena and C. L. Mehta 3143



(i) form =0,

Coso =2, [TL 22T ([1/2] + W (1 + 1/2) + L /2)]"*Cop0 ;

(ii) for I = m,

Coyy =25 [T(L/2)/2'T([1/2] + D (U + 1/2] + L /2)]"*Cog -

These results are in agreement with the results of the
one-mode para-Bose system.?

We just observed that the eigenstates of a? (i = 1,2) for
the two-mode para-Bose system readily give the familiar re-
sults for normal and one-mode para-Bose coherent states.
We can, therefore, say that the above deductions also fulfill
the requirement for the states |z,, z,, z, L ) tobe the coherent
state.

lil. POSITION-MOMENTUM UNCERTAINTY RELATION

For a multimode para-Bose system the position ¢; (mo-
mentum p,) operators belonging to different modes do not
commute. Consequently their simultaneous eigenstates can-
not be constructed. However, the square of the position ¢?
(momentum p?) operators commute and we consider them
observables. Their simultaneous eigenstates can be defined.
The commutator of the square of the position (g?) and the
momentum ( p?) operators is not a C number, i.e.,

m=v-T1).

The operator within the curly bracket on the right-hand side
(rhs) is a Hermitian operator. We know that for the Hermi-
tian operators A4, B, and C, which satisfy the commutator
relation

(47, Pi] =n{27(a;"* — a})} (3-1)

[4,B]=7C, (3.2)

the uncertainties ((44 )?) and {(4 B )*) satisfy the inequality®
(A4 ) (AB)>4(C)*.

As a consequence for the operators g7 qand p? we have the
inequality

(AgP)(Ap)*) >1(2n(a;"* — a}))? .

Taking the averaged value of the uncertainties in the square
of the position and momentum operators in the para-Bose
coherent states |z,, z,, z, L ) for a two-mode case, we should
have

(g AP > — ¥z} (i=12).

The rhs of the inequality depends on the state and it is a
positive quantity. The para-Bose coherent states will be min-
imum uncertainty product states only if relation (3.5) is an
equality and {(447)*){(4p?)*)/|2n(z } — 2z ?)| is a minimum.
In the para-Bose coherent states

(lz,, z,,2, L) = z Coim |nlm})

the uncertainties (4¢%)?) and {(4p?)*) have the values

(3.3)

(3.4)

(3.5)
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(2.33a)

(2.33b)

i
(4qif) = (q1) — (g1)*

- [;ﬂlcn,ml%n 4P+ 3 [Con -+ )

X [1 —z lCnlmlz(n+m)] +Zf +Zf2+%] ,

nlm

(3.6)
and
((dp? )y =(p}) — (p})?

= Z |Cnlm |2(n + m)2 + Zlcnlm |2(n + m)
nim nim

X [1 - 2|Cnlm|2(n+m)] —Z% —ZTZ+-£2‘—] .

nim

(3.7)

Similarly ((443)*) and {(4p3)*) can be evaluated. The un-
certainty products {(4¢7)?){(4p??) (i = 1,2) in the para-
Bose coherent state are then given by

(Ag3)») 1 ap? )

=[ S |Cotm (1 + m)
nim
L 2
x(14n+m = 3 (Cop i+ m) + =]
nim

o2z, (3.38)

and

(AgzV){(4p3)*)

B “% | ot + 1 — m)

2
X (l+n+l—m—;lC,,,,,,|2(n+l—m))+£2'-]

-z - 2|zz|‘] . (3.9)

The values of |C,,, |* can be substituted from Egs. (2.20)-
(2.22).

The value of {(4¢%*){(4p?)*) (i = 1,2), obtained from
Egs. (3.8) and (3.9), when substituted in the relation (3.5), will
not make it an equality. The rhs of the relation (3.5) depends
on the state. Therefore the uncertainty product
(A9 ((4p}) or the quantity ((4q])7){(4p:f)
X [1{2n(a;** —a})}|]~" will not be the minimum for the
two-mode para-Bose coherent states. The above product de-
pends on the state even for the normal coherent state since
the commutator [g7, p7] is an operator. However, for the
normal coherent state (defined as an eigenstate of a? and a;)
the uncertainty product ((4¢,)*){{4p;)*) is the minimum.
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But for two- or higher-mode para-Bose coherent states the
uncertainty product {(4q,)?){(44;)*) does not have any sig-
nificance, as for a para-Bose system g7 and p? are considered
observables.

IV. CONCLUSION

We have defined in this paper eigenstates of a}, a3, and
J and called them two-mode para-Bose coherent states. The
nomenclature “para-Bose coherent states” has been used for
these states as normal coherent states, and the one-mode
para-Bose coherent states can be deduced from them as spe-
cial cases. The two-mode para-Bose coherent state is an ei-
genstate, not of two but three operators, as otherwise these
states are not complete and will span only a subspace of the
Hilbert space of the para-Bose system. We also observe that
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because of the operator J, different modes are not indepen-
dent of each other, unlike in the normal coherent states. For
the para-Bose coherent state the uncertainty product or the
quantity ((44)°){(4p})*)/|(27(a;* > — a})}| is not the mini-
mum. It depends on the state and L, the order of parastatis-
tics.
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The energy-time conjugation is discussed in terms of mutually Laplace conjugated positive
variables. The quantum statistical distribution functions in the energy are thus put into
correspondence with “draw” distributions in the time, represented by sums of Dirac §
distributions. Time averages on correlation functions correspond to ensemble averages in energy.
Conversely energy coupling of systems can be represented by a special operation on the §
distributions in time. For this aim, the connection of distributions is introduced, which enables one
to take into account in some “multiplicative” way their simultaneous and cooperative effects. The
Appendix is entirely devoted to the definition and properties of these connections and to some
aspects of their algebra that make them suitable for treating some fundamental problems bound to
the necessity of accounting interactive effects of singularities.

I. INTRODUCTION

In quantum mechanics, the use of the Fourier transform
is very frequent, leading to the consideration of mutually
conjugated variables.

For instance, the momentum components of a quantum
object (p,, p,, p.) appear to be conjugated to the position
components of this object (x, y, z); or in other terms, the reci-
procal lattice of wave-vector components &, ,k, .k, appears
to be the conjugated one of a space lattice with fundamental
vector components X, y,z. Expressing « 1 correlations
between Fourier conjugated variables leads aiso to the well-
known uncertainty relations’ (4p, 4x>4,...).

The situation is quite similar (as suggested by the relativ-
istic point of view) to that between the energy and the time
variables, but the physical meaning of this conjugation is not
exactly the same: energy is a dynamical variable of the con-
sidered system and the time is a parameter.

Therefore, if position and momentum play a symmetric
role in the description of the system, being measurable at the
same given time ¢, energy and time in contrast do not play the
same symmetrical role: the uncertainty on the energy (4E ) is
related to a duration (4¢ ), which is characteristic of the evo-
lution of the system (for instance, a quantic transition or a
lifetime of a resonance).

Moreover, we have to consider that the time variable,
due to its possible irreversible character, does not present the
same symmetry features as the position ones. Such a remark
can also be related to the fact that the energy, for its part, has
to be considered as essentially positive (excluding of course
the case of the antiparticles for which, if one may speak of
negative energies, we also have to speak of past-oriented
time, as in Feynman time-oriented graphs).

Given these considerations, it could be interesting to
raise the following question: if to a particular distribution of
positions (like a lattice) there corresponds a conjugated dis-
tribution in momenta—or wave vectors—(like a reciprocal
lattice) by the means of a Fourier transform, which involves
all the relevant space (from — o to + o), what type of
distribution in a temporal space would correspond to a dis-
tribution in energy of an ensemble of particles, both spaces
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allowing only positive values for their variables, using for
this aim, for instance, a Laplace transform? (which can be
considered as a particular, restricted, Fourier transform)? In
order to answer such a question two approaches are possible,
which lead, of course, to the same results. Either we consider
a special distribution in time variables and we ‘“Laplace-
transform” it (in the same manner as special positions of a
lattice permit by the means of a Fourier transform to con-
struct, for instance, Brillouin’s zone in a reciprocal lattice),
or we choose a particularly significant energy distribution
for our quantum objects and we “‘inverse-Laplace-trans-
form” it. The physical meaning of this second way is more
evident and for this reason we will use it in the following.

Il. ENERGY DISTRIBUTIONS AND THEIR INVERSE
LAPLACE TRANSFORMS

Indeed we know quite natural relationships between the
distribution in energy of quantum objects and their available
energy levels, which are represented by their statistical dis-
tribution functions.

Considering the particles as indistinguishable, the func-
tion @(E,) representing the occupation number of the rth
energy level E, is

QE)=(""" +e" M
Here @(E, ) obeys the normalization condition 2,¢(E,) = N,
where N is the total number of particles; 8= (kg T)™" is
related to the temperature 7 (kg is the Boltzmann constant);
4 is either the Fermi level (for fermions) or the chemical
potential (for bosons), both related to the condition
3,p(E,)E, = E (the total energy); € is a constant, + 1 or
— 1, depending on the type of the statistics: Fermi—Dirac for
fermions (submitted to the exclusion principle) and Bose—
Einstein for bosons, respectively.

In the case of a distinguishable particle statistics, ¢(E,)
takes the form ~e~?* (Maxwell-Boltzmann distribution).
It is clear that such an expression can be derived from (1)
putting € = O directly in it or considering a degeneracy when
(E, — u)B »1; but it is worthwhile to remark that the impor-
tant fact lies in the physical (and conceptual) aspect of the
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difference between discernability or undiscernability of the
elements themselves much more than in a limiting procedure
for the distribution function.

Developing (1) for a Bose—Einstein distribution
(e = — 1 and £ <0) we obtain

ps(E)= 5 LETITE (2a)
k=0
In the case of a Fermi—Dirac distribution (€ = + 1), the
situation is a little more complicated, because we have to
distinguish between two possibilities: E, >u and E, <pu.
In the first one (p = @x ) we have

Pr. = i (— 1)kPt+ D~ E) (2b)
and in the s:;(:nd p=ec )

Pr = 3 (=10 (2c)

For ZEM;x;ell—Boltzmann distribution we simply have
=€ .

Now we have to choose a relevant so-called Laplace
variable in such a way that, as far as possible, these expres-
sions are mutually comparable. Choosing the energy E, di-
rectly would work without difficulty for (2a) and (2b) because
of the minus sign in the exponential in front of the argument
E,, but it would cause trouble in (2c), which shows another
formal behavior. (In the following, however, we will some-
times make this choice in order to illustrate some examples
in the two restricted cases.) To be more general, we will
choose s, = |AE,| = |E, — u| for this Laplace variable to
which correspond, respectively, the functions

Wols,) = 3 e Fhr (3a)
k=0
WF+(S,+)= i (_ l)ke_ﬂ(k+1)s'*, (3b)
k=0
U 5, )= 3 (— e (3¢)
k=0

(and of course ¥y ~e ~ ™),

At this point it may be asked how to distinguish basical-
ly the two eventualities (3b) and (3c) for which the variable s,
does not mean exactly the same physical quantity (E, — u in
the first case and u — E, in the second). We propose here a
physical answer coming from the fact that for a zero tem-
perature (T—0, f— o) ¥g_ has to be equal to zero and ¥g_
to 1 (Fermi degeneracy). This feature has a clear correspon-
dence in the “reciprocal space” we introduce now.

Let us consider indeed the functions ¥ as Laplace trans-
forms (with variable s,) of some functions f (with variable ¢ ).
It is easy to obtain by inverse Laplace transformation the
following results:

o0

fle)= 3 8t—aBlk+1), (4a)

felt)= 3 (= 18l —aBlk + 1) (4b)

fe )= 20(— 18(t — aBk), (4c)
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where & is the Dirac distribution.
We write the operation of the Laplace transformation as

¥is,) = Lw e "% (t)dt.

Therefore « is a constant with the dimension of an action (it
may be bound to #, the Planck constant). From this point of
view of the dimensionalities, it is to be noted that the “func-
tions” f have the dimension of the inverse of a time, i.e., a
frequency (through the § Dirac distribution), and that their
transforms ¥ (occupation numbers) have no dimension as
requested by our conventions. [We have also fy
~§& (t — aff).] The “functions” f are represented in Fig. 1.

The two following remarks may be made at this stage.

(1) The distinction between the situations generated by
Ve and ¥y is very easy to specify in the t-variable space: it
corresponds indeed to the impossibility or possibility of the
“occupation” (0 or infinite value for f), respectively, of the
t =0 state. This point will be discussed in the next para-
graph.

(2) The values of the integrals of f, depending on ¢, are
interesting to calculate. We have, with G = §; f (¢ )dt,

Golt)=k, for k<t/af<k+1, (5a)

f&

3 -

2 R

A1 -

0 op 2« EYTY.Y ['TE] >t

(a)

1.6 4

Al rt|{-——1++t|~——

o B T N T AT -t

(b)

f,ﬁr 4

0 —> ¢

{c)

FIG. 1. (a) Inverse Laplace transform for Bose-Einstein statistics (—) and
its integral (~ — —). (b) Inverse Laplace transform for the Fermi-Dirac statis-
tics in the two cases mentioned in the text: ( + + + + ), under the Fermi
level; (—), above the Fermi level and their integrals ( + + + ) and (-—-),
respectively. (c) Inverse Laplace transform for the Maxwell-Boltzmann sta-
tistics (—) and its integral (— - -).
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Gg (t)=0, for 2p<t/af<2p+ 1,
(Sb)
Ge, (t)=1, for 2p+ 1<t/aff<2p + 2,
and conversely
GF__(t)=1’ fOI' 2P<t/aﬂ<2P+l,
(5¢)
Gg (t)=0, for 2p + 1<t/aff<2p + 2,

Gult)=Y(t—aB),
where Y is the Heaviside distribution.

lil. COMMENTARY

From these results it is conceivable to consider the ¢
space as the space of the drawings of the different particle
species according to their possible assignations at definite
states to which correspond the energy levels in the “recipro-
cal” energy space. Denoting the different combinations of §
distributions as “draw functions” (Fig. 1) their integrals G
can be interpreted as the possibility for a given species to be
characterized by the corresponding occupation number for
the available states. Thus the Fermi—Dirac statistics permit
only the repeating of the numbers 0 and 1, according to the
exclusion principle, while the Bose—Einstein statistics autho-
rize all the possible numbers, draw after draw, for one state.
The Maxwell-Boltzmann statistics, for their part, permit
numbers 0 and 1, but once only, due to the fact that its ele-
ments are all distinguishable; so when a draw has taken place
for one of them, then no more is possible for the considered
species.

Coming back now to the question of the distinction
between two situations for the-Fermi-Dirac statistics (f¢,
and f;. ), it is easy to interpret it in the drawings space we
have introduced. Indeed it may be considered that the differ-
ence lies essentially in the initial state at ¢z = O: has a draw
taken place or not initially? If yes, then the state is full what-
ever the temperature [T = 0, f— w0, cf. (4¢)]; if not, then the
state is empty whatever the time (as measured by k ), because
af is infinite at 7 = 0 [cf. (4b)]. In the energy space it corre-
sponds to the fact that at the absolute zero temperature all
the energy states under the Fermi level have a probability
equal to 1 to be occupied, and the energy states above the
Fermi level have the same probability to be empty.

IV. ENERGY AVERAGING AND TIME CORRELATIONS

From a statistical distribution point of view, what we are
interested in is also mainly the possibility of taking averages
for physical quantities. In this way some important remarks
can follow from the results we have presented here.

In the energy space the individual operations for taking
averages are (1) to multiply the statistical function by some
other one corresponding to the quantity to be averaged, and
(2) to integrate the product over the relevant energy values.

What types of operations correspond to these ones in the
reciprocal ¢ space of draws?

To the first corresponds no more a multiplication but a
convolution, which can be interpreted as the establishing of a
time (or draw) correlation. If g(z ) is the inverse Laplace trans-
form of a function #/{s), then the correspondence
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o o[ glrf (e — i =g, 1) G

holds.

The second operation (integration in the s space) is relat-
ed to another one in the ¢ space depending on the limits of the
integral, for instance,

r Holp = - . ). U

It is interesting to note that to an ensemble average (on
the energy) in (7) (left-hand side) corresponds something like
a time average (or a drawing average) in the right-hand side.
This fact could be possibly related to the ergodic properties
for such systems.

Taking into account the special form of f (as sums of a
weighted §-distribution), g, can be expressed as

glt)= S agl—apk),

k=0or 1

The coefficients a, depend on the nature of the statis-
tics; so does also the lower bound for k.

Being careful in the regularization of the involved inte-
grals, it is then possible to show that to a density of states
D (E,) proportional to \/E_‘, —in order to define the number of
particles as N = f& D (E,)p (E,)dE, and in this way the Fer-
mi level or the chemical potential—corresponds a distribu-
tion in the  space of the form 3, b, (t — Bk )~>/2 It is then
possible to represent in this manner different particular phe-
nomena such as the Bose-Einstein condensation in this spe-
cific case.

K<t/af <K + 1.

V. ENERGY COUPLING AND DISTRIBUTION
CONNECTIONS IN TIME

Conversely it may be asked if some correlation in the
energy space may arise from a specific process in the draw
space. Of course usually there is no particular problem to
create such correlations in the Laplace conjugated variable.
It is sufficient indeed to consider the direct product of two
functions, say f;(f ) X f5(¢) in the time coordinate and its La-
place transform can be written in the form of a convolution
product like (1/2im)§5* (= @, (2)pa(s — 2)dz, @,(s) and @,(s) be-
ing the Laplace transforms of /(¢ ) and £,(¢ ), respectively, all
the poles of the functions being at the “left” of c.

But in the specific case of our distributions we have two
reasons to consider such a procedure as irrelevant.

(1) Direct product of functions in the time coordinate are
not possible because we have no more functions but Dirac
distributions, the products of which are not defined.

{2) It would be more interesting and useful to be able to
assign some operation in the time coordinate system leading
toa coupling like §5@ (E '}p (E — E ')dE ' between the energy
probability functions, for instance, or for any other functions
developable as a series of exponentials of the energy, i.e.,
involving a Dirac distribution in time. It is possible to specify
such a combination defining an operation between Dirac dis-
tributions, which we call connection (see the Appendix where
the definitions and properties are given and results are ob-
tained that we will use here).
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For our purpose it is sufficient to know that given a
connection (indicated by a dot @) between & (x — x,) and
8 (x — x,), then, if x,,x, € [a,b],

r Slx — x;) @ 8(x — x,) f(x)dx = ﬁi;’—:fT(’“-} (8a)

[cf. Egs. (A7a) and (A7b) of the Appendix] and that at the
limit x ,—»x,, for instance, we have indeed, fbeing a “good”
function,

fb 8(x — x,) @ 5(x — x,) f (x)dx
- f " 8120x  x ) el
b
= — [ 8t~ xariekix = lxd

[cf. Eq. (A5) of the Appendix], which means that the expres-
sion (8a) is true for all x,,x, € [a,b ] (also when x, = x,).

Taking the Laplace transform of connections is then
equivalent to calculating

© ~PXo __ o= P%
f 8x — xo) @8(x —x e P dx =€ "
) Xo — X
(8b)

for all x,,x,>0.

Let us apply this procedure in our case of the draw dis-
tribution. To be specific (and also because it is less complicat-
ed) we choose the Bose-Einstein function as the basic statis-
tical distribution with E, as the Laplace variable [cf. Eq.
(2a)l

In the time coordinate we have then the corresponding
distribution:

folt)= 3 S+ W6(t—aB (k + 1)) o)

Suppose that some function / {¢ ) is developed under the form

o0

ty= 3 a,8(—apm),

m=0
to which corresponds by Laplace transform, in the energy
space, the exponential development

AE)= 3 a,e ™
m=0

Then coupling/ (¢ ) tofg (¢ ) by means of the connections leads
to the expression

Cle)=1()®finlt)

= i i a, e +5(t — af (k + 1)) @ 5(t — afm).

m=0k=0
(10a)

Laplace-transforming (10a) and taking into account Eq. (8b),
we obtain I" (E) as®
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o0

(k+l)_e—BEm

o0 — BE
FE)= 3 3 a,ett+is
m=0K=0 aflk+1—m)
m=0k=0 a

E
xf e~ BEm=—k-Ngp (10b)
0

And finally performing the summations over k£ and m, we get

E
r(E)=§fo @s(E"A(E — E'ME".

Equation (11a) is the desired expression for a correlation in
energy. Of course, if A (E ) itself corresponds to a Bose-Ein-
stein distribution @g(E), i.e., if a,, = é#™ for m#0 and
a, = 0, then (11a) takes the form of a self-correlated statisti-
cal distribution:

1 [ , g
;fo n(E '\ (E — E'E".

(11a)

(11b)

VI. CONCLUSION

These examples are easily extended to other cases. The
important feature lies in the fact that we have been able to
construct correlations in both mutually conjugated spaces:
energy and time.

We have to remark that relations like (11a) and (11b) are
typical of results for coupled systems, each of them having
independently its definition and individuality before the cou-
pling process, if we neglect the proper interaction param-
eters.*

Thus it appears that the use of the connections in the
draw space (i.e., in the time coordinate) between the Dirac
distribution plays the role of establishing such a coupling
between the systems represented each one by their own dis-
tributions developments. This method enables us to repre-
sent the coupling directly in the space where the draw takes
place (or where the relevant time variable is flowing).

In particular it is to be noted that (11a) and (11b) play an
important role in passing, by coupling between systems,
from a microcanonical ensemble to a canonical ensemble in
statistical mechanics (and thus also in defining a system in
interaction with a thermostat®).

Saying it in another way, to the question, “What would
correspond, in the time coordinate space, to the coupling in
energy of physical systems?,” we may answer in terms of
distribution connections.

Only a few special energy distribution functions in ener-
gy have been considered in this paper and their inverse La-
place transforms physically interpreted. However, we want
to point out the fact that in principle every distribution func-
tion in energy, developable as a series of decreasing exponen-
tials of the energy (or of some simple function of the energy
as Laplace variable), may be transformed and interpreted in
the same way by the means of § distributions and their con-
nections in the time, as it appears considering the general
method we have used here.

Indeed, writing, for instance, (whatever p, )

?(E)=3 pe~ ",
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leads to an inverse transform in time of the shape

flt)=73 p,blt —apn),

and then all the considerations we have developed above can
be applied.

More generally these types of results hold for any corre-
spondence between energy and time through the Laplace
transform, but the interesting fact of having to introduce
connections for § distributions may disappear.

Before terminating this conclusion we want to discuss a
last important point: What happens with the uncertainty

relation between time and energy in this representation?

Of course this relation is a physical one directly associat-
ed with the existence of the action constant and is not bound
to a special representation of the correspondence between
energy and time, but it may be interesting to discuss briefly
how it appears in our particular representation. To do it we
will follow two different, but corresponding, types of consid-
erations.

Usually in the frame of the Fourier transform represen-
tation a qualitative argument is to be found in accounting the
rate of periodic oscillations contributing to plane monochro-
matic waves in a wave packet and it is shown that there is a
relationship {(whose notations are evident) such as A E~(JE /
dp)ap.

As dE/dp=v and At~Ax/v, one obtains then
AEAt~AxAp, R h (the last inequality having been demon-
strated earlier).

In our case such a qualitative argument can be used too,
but we have now to consider the relevant contributions in
evolutive, nonstationary processes. Such processes are well
represented, for instance, by an exponential decreasing evo-
lution in the time involving a relaxation time (or a lifetime) 7
(e~ ).

Similar considerations as above for stationary oscillat-
ing situations show that these relevant contributions to such
processes are indeed fulfilling the same types of conditions
and so AEAt must be greater than 4. (A more precise and
deeper discussion applicable in our case may be found also in
Ref. 5.)

However, a more rigorous result can be established,
starting from another point of view.

Considering, indeed, the well-known quantum mechan-
ical commutators or their classical counterparts, the Poisson
brackets, these operators obey, for time ¢ and energy E, the
obvious relations

22]- (5]

Now we recall that in our Laplace transformations the
operator d /dt is transformed into a multiplicator (E ) (drop-
ping out an inessential additive constant for the transformed
function at # = 0) and that, conversely, the operator d /JE is
inverse-transformed into the multiplicator { — #) (cf. also the
rules of the symbolic operational calculus and similar corre-
spondences for Fourier transformations).

We obtain thus, as in the usual representations where
these commutators take place (neglecting here the dimen-
sional factor 4 ),
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[Et]= —[tE]=1.

Now, as discussed by most of the authors on quantum
mechanics (see also Ref. 7), the “fourth” uncertainty rela-
tion, between time and energy does not possess the same
status as the three others (between position and impulsion),
for if the energy represents, indeed, a physical observable of
the system to which corresponds a quantum Hermitian oper-
ator, the time for its part is by no way such an observable but
much more an external parameter with no corresponding
operator.

Thus in order to derive mathematically such a relation,
it is necessary to come back to the earliest bases of the opera-
tor algebra of quantum mechanics, i.e., the classical Pois-
son’s brackets, which describe precisely the evolution in time
of some physical quantities and to take into account directly,
as done for instance by Morse and Feshbach,® the effect of
such commutation relations on the mean square deviation of
the considered quantities.

Let 4 and B be such quantities; then, to the value k of the
Poisson’sbracket between them {[4,B ] = k ) corresponds the
value k /2 of the product of their mean square deviation
(AAAB>k /2)withAA4 = [(4 %) — (4 )*]'/*andsimilarlyfor
AB (the (--)’s indicate an average).

Thus we can consider that our representation is conser-
vative with respect to the uncertainty relation for energy and
time, due to the structure of the Laplace transformation.
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APPENDIX: CONNECTIONS OF DISTRIBUTIONS

In the text we have encountered the need for, but also
the difficulty in having to define something like a “multipli-
cation” of distributions (in the drawing space), which could
lead to energy correlations for the probability functions in
the energy space.

In order to construct such correlation functions in ener-
gy we have been lead to introduce the operation of connec-
tion between distributions.

In all the following this connection will be noted by a dot
@, z represents a complex variable, x a real variable (with
values x,,x,,...), and fis a function of the complex variable as
good as desired.

1. Connections at one point

Given a point on the real axis x,, characterized as a pole
singularity, we define the connections at this point.

Let I be a closed path in the complex plane. If x, lies in
its interior it will be noted as 'y and as I', otherwise. Let us
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consider x,, as a pole of order & + 1 in the plane. Denoting by
f ®)(x,) the k th derivative of fin x, (the superscript (k) will
always denote a k th derivative), we have

o) =S s (L) e
zZ—X,

2ir Jr,
{for I =T ,, the integral is, of course, zero).
Similarly if [a,b ] is a closed interval on the real axis con-
taining x,, we have

£ e = (— 1) f " Sl — xg) f ke

(if the interval does not contain x,, the integral is again zero).

Comparing (A1) and (A2) suggests associating a Dirac
distribution at x, on the real axis to a pole at x, in the com-
plex plane and at the same time the interval [a,b ] to the path
r.

(A1)

(A2)

Consider now the expression (1/(z — xp))* 772 We
can interpret it either as a product, (1/{z—xo)**!
X{(1/(z—xp)P *1, or as a (k+ p + 1)th derivative of 1/
(Z - x0)1

| Ry

k+p+ 1 \z—x,

Under the first aspect we have then

( 1 )k+p+2 (—1)"( 1 )(k)
zZ—x, k! z—Xx,

)(k+p+l)

_ ®
Xﬂ(;) (A3a)
! Z— X,
and under the second one
1 k+p+2 (_1)k+p+1 1 )(k+p+1)
(z—xo)  k+p+1) (z——xo '
{A3b)

Associate now, as suggested by the similarity of (A1) and
(A2), the distribution §*{x — x,) to (1/(z — x,))*' as opera-
tors, and similarly for the others; we define then the oper-
ation of connection @ such as (A3a) = (A3b), and conse-
quently

—(—_—l)ké""(x —X,) ® (—1F 59(x — x,)
k! D!

( _ l)k +p+1
~ P Skt+p+ l)(x — X,).

(k+p+ 1)
The sign ~ denotes an operational equivalence.
In particular we have, with k =p =0,

S(x — xo) @ 8(x — xp) = 8P x — xp)~ — 8'(x — x,).

And, more generally reiterating the operations, we ob-
tain from (A4),

(A4)

8" (x — xo) ~ (A3)
the superscript [#] (n> 1) represents the n times reiteration of
the connection at x,, and of course §"'}(x — x;) = &{x — x,).
[Considering such an operatorial equivalence makes the
connections & ["l(x — x,) comparable to the functional
(x — x0) 7" usually introduced in the distribution algebras,
whose residue is exactly the same.®]
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The relations (A4) and (A5) contain all the needed prop-
erties of the connection at one point for the purposes of the
text. But some of them are interesting in themselves and
deserve to be made explicit or generalized. Such a generaliza-
tion will be postponed until subsection 3 of this Appendix.

Before this we have to discuss the definition and the
effect of the operation of connections between several dis-
tinct points.

2. Connections between several points

These points are always considered as pole singularities
on the real axis. Two of them, x, and x,, are sufficient to
express the principle of the procedure used, which is similar
in many aspects to that we have used in Sec. A 1.

Principally, it is sufficient to split the expression 1/
(z — xo)iz — x,) in the two additive terms [1/(x, — x)](1/
(z — xo) — 1/(z — x,)) and then to establish the former corre-

spondences.
Let
2im Jr (2 — xg)lz — x,)
Ifxo.x, 6,

r'=r, and ¢(I,)=0.
Ifx,orx,erl,

olrg =L

Fr=r, oo '=T, and x"f;")‘
ry=_4%)
() X, — %

Ifx,and x, eI,
I'=r,, and @{l,,)=[f(x)—fx1)}/(xo—x))

Let us consider now the interval [a,b] and let us define
the connection & (x — x,) @ 6(x — x,) such as

¥irox) = " Six — xo) ®bx —x,) fividx  (ATa)
and
ifxox,¢[a,b],then Y=V, =9¢(I,)=0,
ifx,orx, €la,b],
V= ¥,=lo) =f{x)/lxo— xy),
then jor
V=V, =¢()=fx)/x; — o)
(A7b)

ifx,and x, €{a,b],

then ¥=¥,, =g(I,,) S —flr)

0— X1

Taking the limit x,—x, in ¥, , shows that the definition
(A7a) and (A7b) is compatible with the definition of the con-
nections at the point x, of the Appendix subsection 1

81(x — xg)~ — 8'(x — x,).

It is to be noted that (choosing for fa constant) the fol-
lowing result holds:
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+
f S(x — x,) @ 5(x — x)dx =0.
But with x, (or x,) € [¢,b] and x, (or x,) & [a,b ],

fb 8(x — xo) @ 5(x — x,)dx =

Xo — X

(or 2y rspetivet)
or ,respectively | .
X —Xo

It is easy to generalize all these definitions and results
for any number of connections between any number of pole-
singular points in such a way that we assume the compatibi-
lity of these definitions with the definitions of subsection 1 of
this Appendix for connections at one point, when a limiting
procedure is applied for collapsing two or more points to-
gether.

Thus IT7_ , @, representing the composition of the con-
nections between n different points x; € [a,b ], gives

b n n .
f I] ®6(x —x,)f(xldx =3 _SE
e i1 = e — X))

Of course if one point, say x,, does not appear in the
considered interval [a,b ], the corresponding term in the sum
(f = k) vanishes in this relation [as if f (x, ) were zero], but
remains still among the values of / in the products of the
denominator.

We want also to point out the important fact that if the §
distributions are “weighted” by some functions of x, then the
connections compose these functions in a multiplicative
form.

For instance, if we have to deal with two singularities at
different points, each one weighted by a good function in the
interval of interest, say f(x) at x, and g(x) at x,, then
(x0%1 € [a,b ])

.rau—xaﬂﬂoau—xoawu
= [f(xo)g(xo) _f(xl)g(xl)]/(xo - Xy),

which makes evident the multiplication of the functions.
This result is closely related to the correspondence in the
complex plane for which

1 f2)gz)

2im Jr,, (z — xo)z — x,)

= [ f (xolglxo) — f{x1)glx1)1/(xo — x,)

may be considered as the relevant Cauchy integral of the
product of the one pole function in two different points, f(z)/
(z — xo) and g(z)/(z — x,). [We remark that such an approach
makes it necessary to distinguish essentially the two func-
tionals f (x)6(x — x,) and f (x,)6(x — x,), when referred at the
operation of connection. For in the second case we would
have obtained a different result, namely 0.] Thus in the scope
of the connection algebra, weighting a distribution becomes
equivalent to connecting it with a regular function. We have
to indicate here, however, that connecting two regular func-
tions together leads to a vanishing result as shown in the
following, due to the fact that no more singularities appear
and thus there are no more intervals in which a singularity
exists (cf. subsection 3).

dz
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Such an approach can be useful for all the problems
where the properties of several points, considered as singular
ones, have to be correlated simultaneously, i.e., from a “mul-
tiplicative” point of view of their mutual effects (and of their
concurrent effects on a common fact). Physical examples
are, for instance, perturbations, transitions between states,
and, of course, correlations such as these we consider in the
text, particularly for couplings of systems.

3. Some generalizations for connections and their
algebra

Connections at one point behave like usual “multiplica-
tion” in their “power” form used in (A5). In fact from Eqgs.
(A4) and (AS5) it follows that

Slk+ ll(x - xo) @slr+ ll(x — x0)~5lk+p+2](x —_— xo)-

(A8)

So do the connections with respect to the derivation as it

is seen, writing successively

(8" x — xo))’
S sy gy =
(n—1) (n—1)!
= —né" " Yx — x,) ® 5 (x — x,)
= né'(x — x,) @8~ V(x — x,). (A9)
Other interesting properties follow from (A5). Multiply-

ing by (— 1)"~! and summing over n, we obtain, for the
right-hand side (x, € [a,b]),

S+ ix — xp)

fb i -(—:—E(S‘"_ ”(x — Xo) f (x)dx

=1 (n—1)
0 (n—1)
= S L= (A10)

The last equality is formal, introducing the operator ¢/~

for the development 2% _ (1/m!)(d "/dxg’). This operator is
also a translator T, for fat x,. We have indeed

T o1 f(x0) = €/%f (xo) = £ (xo + 1), (All)
as can be shown directly by the Taylor development of
f(xo + 1) around x,.

[Dropping the factor ( — 1)* ~ 'in (A 10) would have lead
us to the definition of e ~?/#* and to the translator T_, such

as T_, f(xo) = flxo — 1).]
Now taking into account the left-hand side of (AS5), we
may write

" 5 8 —xg) flxids

a n=1

Efw—WOE&“%—mmm

n=1
= f(xo + 1). {A12)
Following the same analogy as before with the usual
powers, multiplications, and developments, for connections,
we define the new operator as follows:

S 80" e — o)~ [1 — 8(x — xo)]' .

n=1

So (A12) takes the form

(A13)
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Jb 8(x — xo) @ [1 — 8{x — x0)1' = "f (x)dx = f (x5 + 1).
’ (A14)

(Dropping—introducing—again the factor (— 1)" ~ 'in
(A12) leads us then to define in place of (A13) the operator
[1+48(x—x,)]'~" and to the corresponding f(x, — 1) in
place of (A14).)

Such results are not very surprising if we recall the ini-
tial correspondence between the Dirac distribution and the
poles in the complex plane that permitted us to construct the
connections.

In fact, the integral

_ 1 flz)dz
A= 2i17£ 7 — %ol — 1/(z — xg) (Al3a)
can be rewritten as
o) =— Sz _ (A15b)

2imJ z— (xo+ l)’
and, if the point x, + 1 lies in the interior of I (I"=I' §"),
P ) =flxo+ 1) (Al5¢)
{and = O otherwise).
But formally if we associate the distribution § (x — xg)on
the real axis at each occurrence of the pole (z — x,)~", the

expression (A 15) may be expressed in terms of connections
exactly as in (A 14):

Jb Slx — xo) @ (1 — 8(x — x,))l ~'f (x)dx

=flxo+ 1)
[and conversely for (1 4 1/(z — x,))~" in (A15a) leading to
Sxo—1)).

What should be noted here is the fact that, with respect
to the connections operation, it is possible to write
5(x — xo) @ [1 — 8(x — xg)]' "V ~S(x — x5 — 1) (A16)
(and also 8(x — x,) @ [1 + 8(x — xp)]! ~ ' ~8(x — xo + 1)).

But the first condition on the interval (x, € [a,b ]), which
corresponded to the fact that the pole x, had to lie in the
interior of I, is to be changed to a second one, x, + 1 (or
xo — 1,depending of our choice) € [a,b ] corresponding to the
new position of the pole relatively to the path 't (or I"§,
respectively). Saying it in another form, we would get the
same result by moving the boundaries of the first definition
interval [a,b Jtoasecond one[a + 1,b + 1] (or[a — 1,b — 1],
respectively). Thus the term translator appears as well
adapted for describing all the conditions of the system, in-
cluding the definition domains.

From the point of view of possible physical correspon-
dences with usual operators, it may be worthwhile to indi-
cate that such exponential-differential operators as we have
encountered here are frequently found in the time-depen-
dent evolution of quantum situations, for instance, as a com-
plex evolution operator like e#9/9"),

It is also interesting to indicate that expressions like
{A16), for instance, may be manipulated as if they were true
multiplications. Actually, following the same procedure as
in (A15a)and (A 15b), which lead us to (A 16), it is very easy to
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show that we can treat this type of connection algebra in a so-
called “multiplicative” way such as, for instance,

8(x —x,) @ [1 — x,8(x — x,)]L "
O [1+x,80x — % —x)] =B —x), (A7)

which could be symbolically written (keeping in mind that
we have always to work with the § distribution, i.e., pole
singularities in the complex plane)

[1— %80t — x0)]' =V @ [1 + x,8(x — x— x,)]' 1 ~1,
(A18a)

I being the identity for this algebra ( = 1).

Indeed, to maintain the correspondence between the ef-
fects of the poles in the complex plane and that of the Dirac
singularities on the real axis, we have to recall that the inter-
val [a,b ] on the axis has to correspond to the contour around
the considered pole. If the pole disappears the integral van-
ishes, the result of the integration being reduced to zero. In
the same way, the interval [¢,b] has to collapse and to be
reduced to zero ([@',a'] for instance), because no more simple
singularity appears in its interior; so the integral taken
between a' and a' vanishes too. Maybe, it would even be
more appropriate for a single pole at x,, to write the integral
under the form line lim,_, 72 * ¢--- instead of f .. butit is
sufficient to keep in mind that it is necessary, for performing
a nonzero integration in this type of algebra, to preserve the
existence of a § singularity in the integration range (conserv-
ing the equivalence with the Cauchy integral).

In these examples, the importance of specifying the fwo
prescriptions—positions of poles, definition of the related
considered intervals—appears very clearly, if we want to
work with the connections.

Under these conditions it is then possible to write for-
mally the operatorial equality [derived in a “multiplicating”
way from (A18a)]

[1—x8(x —x0)]' U ~1 4 x,8(x — x5 —x;) (A18b)

or any other equality of this type and submitted to similar
restrictions.

Under the same conditions it is possible to introduce (in
the spirit of the connections we used up to now) another type
of distribution: the form that derives Dirac’s 8. It is well
known that the Heaviside distribution Y (x — x,) (=1 for
x>xq, =0forx <xy) hasad (x — x,) for its first derivative,
but it corresponds to no more poles at x,, only to a discontin-
uity. This may be made evident by the following consider-
ations.

Write 8 {x — x,) as a formal derivative X '(x — x,) of a
given unknown but without pole X (x — x,). Then,

X, + €
lim Slx — x) fx)dx
0 Jx, — €
Xo + €
=f(x,) = lir_g X'(x — xp) f (x)dx. (A19a)
Integrating by p;rts,
Fiw = lim | D — x0T
€—0
Xo + €
- f Xx—x)f (x)dx] . (A19b)
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As there is no pole in X (x — x,) between x, — € and
X, + € [and f(x) is a function as good as desired], then the
second term of (A 19b), i.e., the integral, becomes zero when
e—0.

The integrated part remains and we have

Jeo) = lim [X (€).f (xo + €) — X — €)f [xo — €]]

=f (xo) im [X(e) — X( — €)]
e—0

and

lim[X(e)—X(—¢)] =1
-0

Thus X can be made equivalent to the Heaviside Y.

Now going back to the correspondence for the § ’s with
poles in the complex plane, it can be argued that the corre-
sponding 1/(z — x,) is the derivative of the function
log(z — x,) (even if this function is a multivalued one, which
necessitates a limitation of the range of the variable or a cut
in the plane). The singularity shown at x, by this function
can then be brought into correspondence with the discontin-
uity induced by ¥ (x — x,) on the real axis.

All these considerations can be extended easily to the
case of several singularities. The only important remark we
want to point out in this latter case is the essential difference
between the usual convolution algebra involving the distri-
butions and the connection algebra we present here. Actual-
ly in the convolution algebra the composed effect of two
different distributions always gives a result equal to zero,
whatever the functions on which the operation is applied;
this fact is basically different in the connection algebra as
shown by the definitions (A7a) and (A7b). Thus the connec-
tions really take into account the simultaneous effect of two
or more distinct pole singularities.

However, it must be emphasized that some precautions
are to be taken in working, for instance, with derivatives or
“powers” among the connections.

As an example, we have (x,,x, € [a,b])

f 5'(x — x,) @ 8lx — x,) f x)dx
_ Sf'x) Sx)) S %)

X=X, X —xf (x—x)

The first two terms on the right-hand side seem to be com-
pletely natural [taking into account the fact that
&'(x — x;)~ — 8'%(x — x,)] but it may be asked about the
third one. For explaining its presence we have to remember
that the &’(x — x,) [or conversely 6'*(x — x,)] operates on
all functions and distributions under the integral (in the
same way as for a product) and thus also on the §(x — x,), the
effect of which is precisely to introduce this term.

This point appears very clearly in writing down the cor-
responding underlying Cauchy integral (which permitted us
to construct the connections) (x,,x, € I'"):

_fB
2117' z —x, Pz —x,)
) ) flx)
Xi—x,  x—x)f  (x—x)
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It follows from this remark that we have to be careful in
calculations, particularly when there appears, for instance, a
“power” of distributions among the connections, this “pow
er” being operatorially equivalent to a derivative [Eq. (A5)].

From a similar point of view, in introducing the Heavi-
side distribution it may be asked if it is possible to define an
operator like § | ~#{x — x,), i.e., something like an inverse in
our connection algebra.

Actually it is not difficult to do it if we remain careful in
the definitions of the integration ranges (or in the contours of
the Cauchy integrals).

Following the correspondence in the complex plane let
us associate the function (z — x,)° to 6 ! ~#)(x — x,) on the
real axis and any closed contour around x, then

$ fiele —xop dz =0
r
Consequently we also have (for all p>0)

"Xo + €

lim 8Pl x — x,) flx)dx =0

-0 Jx, — ¢

(A20)

More generally and taking into account the earlier results for
connections at one point, we write

X, + €
lim 8= Plx — x,) f (x)dx
0 Jx, —¢
0, forn<p,
= A21
{f"“”_”(xo)/(n —p—1), forn>p. (A2la)
In a similar way we obtain for two points (x, #x,),
X, + €
lim S Plix — x,) @ 8™ (x — x,) f(x)dx
€0 X, — €

=7/ n — Dy — X,
and, more generally (x,,x, € [a,b ]5£x,),

fb 8Pl x — x,) @ Sx — x,) @ 5(x — x,) f(x)dx

=[xy = x0ff (x1) — (x2 — X0 (x2)] /0, — x,).
(A21b)

Results like {(A21a) and (A21b) show that such an inverse for
our distribution (in the spirit of the connections) does not
lead to a result always equivalent to zero as (A20) suggests.
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A model recently proposed by Hagen is examined from the point of view of Dirac quantization of
constrained systems. This model exhibits interesting particular features for the Dirac method
itself. Among them are the odd number of second-class constraints and the fact that, when a gauge
is fixed, constraints result from compatibility conditions between Lagrange multipliers. From the
point of view of the model itself, the invalidity of the axial gauge in the non-Abelian case is
obtained by comparing the effective Hamiltonians for two different values of the arbitrary

spacelike vector.

I. INTRODUCTION

Recently, Hagen' proposed a three-dimensional gauge
model in order to have a better understanding of the con-
cepts involved in gauge theories. He studied this model from
the conventional Lagrangian point of view in the Coulomb
and axial gauges and concluded that the axial gauge is, in the
non-Abelian case, in conflict with relativistic invariance. We
want to study this model in the framework of Dirac? quanti-
zation of constrained systems in order to have a better under-
standing firstly of the method itself and secondly of the Ha-
gen model.

First of all, the number of second-class constraints is
three. This means that one of these constraints must be
transformed into a first-class quantity with respect to the
other two. A priori, the selection of this constraint from the
set of the second-class constraints can be arbitrary. How-
ever, if we want the theory to look like a usual gauge theory,
it appears that the primary second-class constraints must be
kept as such in contrast to the secondary second-class con-
straint, which must be transformed into a first-class quanti-
ty. Other choices lead to difficulties in the gauge-fixing pro-
cedure.

Secondly, when a class-I gauge® like the Coulomb or the
axial gauge is fixed through a Lagrange multiplier inside the
Lagrangian, the Dirac algorithm leads to an overdetermina-
tion of some multipliers accompanying the primary second-
class constraints in the Hamiltonian. Compatibility of these
equations implies additional constraints which are also ob-
tained if the starting point of the gauge-fixing procedure is
the effective Hamiltonian, where primary second-class con-
straints are strongly realized. In other words, the procedure
of constraint determination does not stop with equations fix-
ing the Lagrange multipliers. Compatibility of these equa-
tions must also be required.

The third point we want to point out in our analysis
concerns the invalidity of the axial gauge in the non-Abelian
case. Here, it is easily proven by comparing the effective
Hamiltonian for two different values of the arbitrary space-
like vector. In the case of convenient class-I gauges, the effec-
tive Hamiltonian describes the physical system and must be
independent of the gauge choice. Such is the case for the
Coulomb and axial gauges in the Abelian case although the
proof is not trivial. Our proof rests heavily on the current

® Postal address: Institut de Physique au Sart Tilman, Bitiment B.5, B-4000
Liege 1, Belgium.
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conservation o 'J. = 0, which does not hold in the non-Abe-
lian case, where the Coulomb gauge is also not convenient
for the same reasons it is not in Yang-Mills theory.

We organize our work as follows. In Sec. I, we develop
the Dirac formulation of the Hagen model. We discuss the
gauge fixing in Sec. III, where we successively study Cou-
lomb, axial, temporal, and relativistic gauges and compare
the effective Hamiltonian in Coulomb and axial gauges. In
Sec. IV, we study the non-Abelian case and, in particular,
the invalidity of the axial gauge.

Ii. THE HAGEN MODEL IN THE DIRAC FORMALISM
Let us start with the Lagrangian'

L =€, F¢"+ ¢, (1)
where the Greek indices take the values 0, 1, 2. The metric
tensor is g,, = (1, — 1, — 1), €,,,, is a completely antisym-
metric tensor {€y,, = 1), and}, is a conserved current. Under
a gauge transformation

¢, —> b, +9,4, ()
we have
6.7 =1 FAE,,, Fo” + FAj,
= FMe,,, "+ 4j,), (3)

i.e., the Lagrangian is invariant up to a four-divergence,
which is sufficient for applying the Noether theorem. There
is thus a gauge invariance.

Let us now go to the Hamiltonian. We have

L 1

r— I —— 2
T = 3%, 2 ¢, (4)
_9ZL _ _ 1.,
0_9Z _,, (6)
9o

None of these relations is an evolution equation. They are
constraints and the total Hamiltonian density reads

Hr=u’n® +u'm' — ) $) + (7 + 1 ")
- % ¢“€#vi ai¢v - ¢1-'iv’ (7)

where 4°%u',u” are arbitrary functions of ¢,, 7, and j,.
Since the constraints (4)}-(6) must hold for any time, we have

0=30,m° = {r°Hr} =€y 8¢ +jo=0, (8)
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0=3y(m' —}¢°) = u* +3¢° +j, =0, )

0=23om +1¢")= —u' —3'¢°+j,=0. (10)
Equation (8) is a new constraint while (9) and (10) can be used
as equations determining the Lagrange multipliers u’,u°.

Again the constraint (8) must be true for any time. Its
Poisson brackets with the Hamiltonian lead to

3'w* — u' + 8P =0, (11)

i.e., a condition on the Lagrange multipliers u',u” which is a
trivial consequence of (9) and (10) and the current conserva-
tion.

A problem occurs with the constraints in this example.
While (6) is a first-class constraint, the Poisson brackets
between K,=7'—1¢%, K,=m" +1¢', Ks=¢€y; &'¢ +Jo
do not vanish, i.e., we have a system with three second-class
constraints. In order to use the Dirac algorithm, one of these
constraints must be transformed into a first-class quantity
with respect to the other two, according to the rule

K!=K, — {K,,,KB}CB‘,,‘KW (12)
where
Cs, = ({Kp.K, }), (13)

B,y being any pair among the indices 1,2,3. A priori the
choice of this first-class constraint is arbitrary.
If we transform K into a first-class constraint and rea-
lize strongly K, and K,, we are led to the Hamiltonian
H3=un’ —¢%3%¢' —29'7" + ) — $, — 27V,
(14)

while the nonvanishing Dirac brackets involving ¢!, 7', ¢°,
and 7° are

(1) 0)) Dy = 5, = 3 8%(x —y), (15)

(BT Do =y, = 8V(x — ). (16)
As usual, the first-class constraints #° = 0 and -

P 23 +°=0 (17)

are not compatible with these brackets. There are two unde-
termined functions u° and ¢° in the Hamiltonian, one of
them (4,) being the variable canonically conjugate to the pri-
mary first-class constraint #° as is usual in traditional gauge
theories.

If, instead of K,, we now transform K| into a first-class
constraint, the Hamiltonian becomes

Xy =u’n® + u'(x' —5¢2)—¢1jl — %2, (18)
where ¢* must be expressed in terms of ¢' and j, through Eq.
(8), i.e.,

$*=(0")19% + /). (19)
Here and in the following, the operator (3 ')~ ! will be defined
by

[0Y) 1) = —1 f A% elx' — YIS0 — ) f(p).  (20)

It is clear that other definitions could also work pro-
vided 8'(3")"!f = f. The Hamiltonian 5, is nonlocal and
there are again two arbitrary functions 4° and u'. However,
#' cannot be considered as the variable canonically conju-
gate to the primary first-class constraint, so that the theory is
quite different from a usual gauge theory. The same situation
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clearly occurs with K,. As it will be seen in the following
section, troubles occur with these choices, so that we will be
unambiguously led to the choice of X, as the first-class con-
straint.

lll. GAUGE FIXING

In order to quantize the theory defined by the Hamilton-
ian &7, or /), it is necessary to fix a gauge. We make differ-
ent choices suggested by the usual Maxwell theory.

A. Coulomb gauge

Originally defined by & ¢’ = 0, it is transformed into

J'¢' +23* 7' =0, (21)
in order to apply to the Hamiltonian 7°,. We have
(8'¢'x) + 287 (x),  F¢(y) —23'7'(y)

+ (M =y, = A8 (x —y) (22)
and

3,0'¢! +2r') = (d'¢' + 27", Hi}, _,,

= —A° + 3 -3 =0. (23)

Equation (23) fixes the undetermined parameter ¢%u° is also
fixed by taking
3olAg° — '/ + ') =0,
(24)
ie, Au®=3,a* — 34"
The two constraints (6) and (17) can now be realized strongly,
leading us to an effective Hamiltonian

%Jeﬂ' = —joA_lfaljz - azjl)’ (25)
which is a nonlocal interaction between material fields. This
is the physical content of the Hagen gauge theory.

If we want to use the Coulomb gauge with the Hamil-
tonian 777}, it must be transformed into

d'¢' +(3")"'(8°V¢' + Fol =0, (26)
or, by applying d', into
Ad' + Fj,=0. 27

It is not necessary to use such a complicated expression and
it is preferable to work with ¢' =0, i.e., the axial gauge.
Then

I’ = ($.H ) = —u' =0 (28)
fixes the undetermined parameter u'. However, #° is not
fixed here and #° cannot be realized strongly. The gauge

choice can be completed by taking 4° = 0 and the effective
Hamiltonian is

%mf = —jo(alrljz’ (29)

which is apparently different from 57, .. We will, however,
show later that 77| .5 = H 3 e

For a complete understanding of the Dirac method and
for making a clear choice between 57°; and 77, it is interest-
ing to introduce the gauge condition inside the Lagrangian
with the help of a Lagrange multiplier

"‘f = % #epvp a:¢v + ¢‘.’iv -5 ai¢i' (30)
This is a theory with four primary constraints
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=7 — )¢ =r+1¢' =75 =0.
The total Hamiltonian is
Hr =un® +ullr' — 4 %) + T +44") + usms
— ol — '¢* +jo) — #; + 53¢, (32)
and the Dirac algorithm leads to two secondary constraints

(31)

Pt —3'¢* +jo=3¢'=0 (33)
and to four equations on ' and >

W+ P+ +3'S=0, (33a)

4 —J P+ PS=0, (33b)

FPu' —3'u? -5 =0, (33¢)

du' =0, (33d)

while u, and ug are not fixed. Additional constraints, how-
ever, result from the compatibility between Eqgs. (33). They
read

AS = A¢° + &4 -3 =0. (34)
They imply
Aus = Auo i ao(aljz _ azjl) == 0- (35)

We recover in this way the results obtained from the Hamil-
tonian #°;. This shows that the use of #°, and 7, is not
natural and should be rejected.

Let us note that the constraints (34) are necessary for the
consistency of the method. The Hagen Lagrangian in the
Coulomb gauge thus provides us with an example where the
constraint search is not stopped with equations fixing the
multipliers. Compatibility of these equations must be re-
quired.

B. Axial gauge

We follow the same procedure by taking now 7,4, =0
or

n'¢' + 2n’7' =0 (36)
as gauge condition. We have

{n'$'(x) + 2n*7'(x), FP'(y) —23'7'( y)

+ (9} Dy =y, =1+ 88 (x —y) (37)

and

-3¢, =n’j' —n'f’ (38)
as the resulting class-II gauge condition.

The effective Hamiltonian is therefore

H g =Joln* d)7'(n%' — n'f). (39)

C. Equivalence between different axial and Coulomb
gauges

Such an equivalence is not evident by comparipg the’

effective Hamiltonians. It must, however, hold since both
axial and Coulomb gauges are convenient. The effective Ha-
miltonian involves only physical objects and we cannot
change the theory by changing the gauge. We make the cal-
culations in a formal way and we start with

3157 J. Math. Phys., Vol. 26, No. 12, December 1985

Hy o =Jd2x%3a

- —dexjoA-‘(a 12 _ 9%

= - (io’ A_l(a l]q - a2jl)>’ (40)
where { f,g) represents the scalar product of the two func-
tions f, g. We use successively

3'@Y) '=1=AA"" (41)
and
(A48 '1=0 (42)
to get
Hy e = — (Joo A™H3)"W(AVF —3" %)
= — (o @)
+ (o AT'@Y)71 @Y + %) (43)

Using current conservation,
Hye = — (oo @)+ (o A7HEY) 132 80J0)-
(44)
If we consider now

S= —fdon3eﬂ,

due to the antisymmetry property of the operator
A~Y3Y) 1 3% 8, we easily get

S= f % jox} )~ x — M)A )

which is the action in the axial gauge n = (1,0). By the same
reasoning it is possible, using current conservation, to go
from the axial gauge with n = (1,0) to the axial gauge with
n = (0,1). As a consequence, the Hamiltonians in any of the
axial gauges and in the Coulomb gauge are equivalent. This
is a result which is necessary for the consistency of the gauge
choice.

(45)

(46)

D. Temporal gauge

The temporal gauge is characterized by ¢, =0. It is a
consistent gauge if we start from 57;. It leads to the Hamil-
tonian

Hy = — @Y, — 21y, (47)
and, as usual, it is necessary to impose
P —20'r"'+j,=0 (48)

as a constraint on physically acceptable states in order to
recover the starting theory. Again, ¢, = 0 is not sufficient to
fix the gauge if we start with ¥°, or 5#°, and, as for the
Coulomb gauge, if we incorporate the temporal gauge inside
the Lagrangian through a Lagrange multiplier, we are una-
voidably led to 7, . This again confirms the inadequacy of
the choices 77, or 77,.

E. Relativistic gauges

We develop briefly only the Lagrangian formulation
and introduce the gauge condition through a Lagrange mul-
tiplier. The starting Lagrangian is

&L =1k, ¢ —SFP, +1aS*+ ¢, (49)
where a is the usual gauge parameter but is here dimen-
sioned. Field equations are
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" 3,8, — IS~ =0 (50)

and

¢, =as. (51)
Equation (50) implies

as=o, (52)

i.e., Sis a free field.

As in Maxwell theory, the unwanted states are eliminat-
ed by a condition on physical states which reads

S Yonys) =0. (53)

The relativistic gauges give us a local manifestly relativ-
istic formulation of a particular nonlocal interaction
between material fields. In our context, we do not see any

particular interest in pursuing this discussion, so that we go
to the following point.

IV. THE NON-ABELIAN CASE

It is possible to make a non-Abelian extension of the
Hagen model. The Lagrangian is

L =) dhe,., PP, + 8/6)ph¢€,.,, fucbrbl +Sufs  (54)
where f,,. are the antisymmetric structure constants of the
involved non-Abelian compact Lie algebra. Here .7 is in-
variant, up’to a four-divergence, under the gauge transfor-
mations

$pn— b5 +0,0" +8f " L0, (55)
provided the current satisfies

D4, jt =0, (56)
where the covariant derivative D#, is given by

D5, =6, + &fancd (57)

We can easily reproduce in the present case the Dirac analy-
sis of theory described by {1). The primary constraints are

=g =m +id, =7, =0. (58)
There are also secondary constraints
€0;(070 5 + (8/2) farc 40 c) +J6 =0, (59)

which will be transformed into first-class quantities with re-
spect to the two multiplets of second-class primary con-
straints. After the strong realization of the constraints, the
Hamiltonian reads

Hor=uqmg — @3 P, —23'm, + 28fumdb:

+/8)+ oo +2m (60)
The theory manifests the same difficulties as the Yang-Mills
theory, i.e., the Coulomb gauge is not acceptable and the
relativistic gauges cannot be realized in a Lagrangian way
without Faddeev—Popov ghosts. This last fact can be seen in
a very simple way. The Lagrangian in the relativistic gauges
is

L =186y PO + 8/t fure$ G

+é2 4 —S, 5 +1aS>% (61)
It gives rise to the equations of motion
euvp y#: - avsa - (g/z)eyvp#:-fcba% =j: (62)
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and

¢, =aS”’, (63)
from which we deduce, using (57),

D}y, a,8,=0. (64)

Since the operator D d,, is not Hermitian, such an equation
can never give rise to a unitary S matrix. The fulfillment of
this last requirement leads either to Faddeev-Popov ghosts
or to non-Lagrangian equations of motion

€uvp 0°8 — DS, — (8/2)€,, b2 frras = - (65)
Only the axial gauge seems to give a simple formulation of
the theory. It develops exactly as in the Abelian theory and
we are led to the effective Hamiltonian

H g =J3m0)" (% — n'f;). (66)

There is a big difference with the Abelian case, which
makes the axial gauge inconvenient here. It depends on the
particular choice of n as it can be seen if we take successively
n = (0,1) and n = (1,0). In the Abelian case, the current con-
servation ¢j, =0 allowed us to show the equivalence
between the two Hamiltonians. In the non-Abelian case, the
current satisfies instead D%, jf, =0 and it is impossible to
reproduce the same calculation. Axial gauges are therefore
not acceptable. This result was already stated by Hagen in a
different way. He has shown the nonrelativistic covariance
of this gauge. Here, we deduce it very simply from the none-
quivalence between the Hamiltonians resulting from two
different values for n, which is also a manifestation of the
noncovariance.

V. CONCLUSIONS

We have made a Hamiltonian analysis of the Hagen
model. Our analysis illustrates how the Dirac algorithm
should be used when an odd number of second-class con-
straints occur. It also shows that the search for constraints is
not stopped when a Lagrange multiplier is determined. It
may happen that consistency conditions for the Lagrange
multipliers determination produce additional constraints.
From the point of view of the model itself, it is clear that it
furnishes a way to study a particular nonlocal interaction as
resulting from a gauge theory. In the non-Abelian case, the
model shows essentially the same features as Yang-Mills
theory and cannot serve as an exemplary tool to solve the
Yang-Mills problems. An interesting particular result is the
invalidity of the axial gauge in the non-Abelian case. This
invalidity seems, however, to be restricted to the Hagen
model. The physical meaning of this non-Abelian model can
therefore be questioned since there is no gauge in which the
meaning is apparent.

It is also of interest to compare the Hagen model with a
similagr model including a kinetic term — 1/4mF, F*”.
Such a model has been extensively studied by Deser, Jackiw,
and Templeton® in both Abelian and non-Abelian cases.
They also give an interesting topological discussion of
i¢*€,., #@” and its non-Abelian partner, which appear to
generate a mass term in the field equations. This dynamical
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model does not present any particularity with respect to the
usual constrained theories. There is also no trouble with the
non-Abelian version since the physical meaning can be ob-
tained in the gauge characterized by the gauge-fixing term®
—(1/2m) 3, A" 8, A,°, where, in the asymptotically free
limit, the gauge field part of the Hamiltonian describes a
massive scalar field. Formally, the Hagen model is obtained
by taking an infinite value for the mass m. This limit is,
however, singular in the sense that the constraint system
must be handled with the care mentioned in this paper.
Moreover, the natural gauge-fixing term also disappears in
this limit and this impeaches us to find, in the non-Abelian
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case, a gauge in which the physical meaning is apparent and
described by the sole Hamiltonian.
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Using the generalized Grassmann variables or color variables, a theory of I'-graded integrable
evolution equations is presented by elevating the treatments of Magri, Gel’fand-Dorfman, and
Fuchssteiner of nonlinear integrable bosonic evolution equations to the I'-graded case. As an
example, it is shown that Kupershmidt’s super-KdV is characterized by a Z,-graded Nijenhuis
operator compatible with the underlying Z,-graded Hamiltonian structure.

I. INTRODUCTION AND MAIN RESULTS

Solitons and integrable nonlinear evolution equations
play an important role in several branches of theoretical
physics.2 After the famous discovery of the particlelike be-
havior of solutions of the Korteweg—de Vries (KdV) equa-
tion in 1967 by Gardner et al.,® a great interest has arisen in
studying the mathematical foundations of nonlinear evolu-
tion equations characterized by an infinite set of indepen-
dent conservation quantities. Several mathematical con-
cepts such as Bicklund transformations, Lax pairs, the
inverse scattering transform, and Hamiltonian and bi-Ha-
miltonian structures** have been shown to be useful and
effective tools in understanding and describing integrable
nonlinear evolution equations. The recent contributions of
Magri,® Gel’fand and Dorfman,’ Fuchssteiner,®'° Fokas, !
Fuchssteiner and Fokas,'*'® and Fuchssteiner and Oevel,'*
represent an additional culminating point in the mathemat-
ical, historical process of understanding and revealing the
algebraic and differential geometric structures behind the
integrable nonlinear evolution equations. They found that in
most of the cases, the soliton equations are moreover charac-
terized by recursion operators,’® by hereditary symmetries,
i.e., by Nijenhuis operators,>'* which in addition turn out to
be compatible with the underlying symplectic structure.
However, there are important nonlinear evolution equations
showing hereditary symmetries but lacking a Hamiltonian
structure (Burger’s equation'®) and there are cases where a
bi-Hamiltonian formulation need not give rise to Nijenhuis
operators (Hirota-Satsuma equation®).

Recently, there has also been a great interest in studying
the variational formulations of dynamical systems, in parti-
cular from the viewpoint of the possibility to mutate corre-
sponding prescribed sets of evolution equations. By defini-
tion, the mutation consists in premultiplying a prescribed set
of evolution equations by invertible integrating matrices
(called genotopic or isotopic operators), which lead to varia-
tionally self-adjoint evolution equations (see Santilli'~'® and
others).

In Ref. 19, we have given an explicit example of Santil-
li’s method in the area of soliton equations by finding out
that the exponential of a scalar multiple of the Nijenhuis
operator constitutes an invertible integrating operator, thus
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leading to a class of different variational formulations of the
corresponding integrable dynamical systems.

The question may arise if the technique described above
can be elevated to the supersymmetric case, i.e., to a situa-
tion where a physical system is described by commuting and
anticommuting variables and which is governed by a cou-
pled set of bosonic and fermionic field equations. In a very
recent and remarkable paper, Kupershmidt® has presented
a special coupled set of Z,-graded evolution equations, called
super-KdV equations, characterized by superintegrability
under super Poisson brackets. His paper constitutes a deci-
sive step with respect to the extension of theories showing
particlelike behavior to the Z,-graded case.

The purpose of our paper mainly consists in presenting
some initiating steps concerning the extension of several fa-
miliar concepts such as the “Hamiltonian formalism,” the
“Birkhoffian formalism,” the “Nijenhuis operator,” the
“symplectic two-form,” “Poisson involutivity,” etc., to the
case of dealing with an associative I'-graded algebra A of
generalized Grassmann numbers (or color numbers)?! char-
acterized by a finite Abelian grading group I" and equipped
with a [I'-compatible commutation factor o: I'XT
— C\ {0]. This means that we here present the theoretical
framework for I'-graded Nijenhuis tensors compatible with
I'-graded Hamiltonian structures and that we therefore lay
down and prepare the foundations for colored or I'-graded
soliton equations.

At this stage, it might be appropriate to remind the read-
er of the fact’! that a color analysis constitutes a natural
generalization of the usual Z,-graded Grassmann analysis. It
is nearly superfluous to recall that the latter is undoubtedly
important in conventional Z,-graded, i.e., supersymmetric
theoretical physics according to Martin,?* Volkov and Aku-
lov,?* Wess and Zumino,?>* Salam and Strathdee,?® Bere-
zin,?® Ramond,?” Casalbuoni,?® Neveu and Schwarz,?® Kos-
tant,® Corwin, Ne’eman and Sternberg,®’ Rogers,*? Dell
and Smolin,** Jadczyk and Pilch,* Kac,*® de Witt,® and
others.

It has moreover been found and emphasized in Ref. 21
that the variational formulations of dynamical systems, the
Hamiltonian and Poisson bracket formalism, can naturally
be elevated to the I'-graded case, so that it is evident to study
properties of generalized soliton equations from the outset in
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the abstract I'-graded theoretical framework. Its use is also
suggested and recommended if one wishes to generalize the
statistics in quantum field theory (see Ohnuki and Kamefu-
chi,>3° Omote and Kamefuchi,*® and Levine and To-
mozawa*"*?) or if one deals with the recently introduced
generalized Lie (super)algebras, also called color (super)alge-
bras (e.g., Kac,*® Rittenberg and Wyler,**** Lukierski and
Rittenberg,** Agrawala,*® Green and Jarvis,*’ Scheunert,*®
and others). Even in the conventional Z,-graded case, we
arrive at a couple of apparently new propositions that gener-
alize the corresponding bosonic treatments of integrable
evolution equations®'#+!° to the mixed bosonic fermionic
theoretical framework. As one example of our theory, we
show that Kupershmidt’s super KdV possesses a Z,-graded
Nijenhuis tensor compatible with the Z,-graded Hamilton-
ian structure thus permitting us to derive a Z,-graded Santil-
1i’s isotopic degree of freedom in the Z,-graded variational
formulation of the super KdV by using the exponential of the
Z,-graded Nijenhuis operator as an integrating operator for
the super KdV equations.

1l. COLOR ANALYSIS
Let A be a I'-graded associative Banach algebra over the
complex numbers C, with unit*’
A=wo0A, AACA, 5 Vydel,
vell

where the A, are the Banach subspaces of A and where oI’
denotes the neutral element in the finite Abelian grading
group I'. Moreover, A is characterized by a commutation
function

o: I'XT — C\{0},
glaB)olay) =olaB +7), VaByel,
o 95 = 010B) 45 Gor  V4a€A,, q5€A,,

where the last equation can be found, for example, in Ref. 43.

The conditions on the commutation function o entail the
relations

olaB)olfa)=1,

oa,0)=00,a)=1, oaa)= +1
oaB)=ol—a,—B)=0lB, —a)
= U( —B’a)’ Va,perl,

which indicate that one deals with ordinary bosonic or fer-
mionic numbers in each subspace A, of A. Let now [n ]

= (n,),er denote a set of positive integers n, €N, satisfying
n, =n_,. We introduce the Banach space (equipped with
the product topology)

Gl = g (A,
yel

being an A, module. Elements of G!"! are denoted by
x’y’ze(;["r], X = (qa ael’ »

y=Wihe -,

Qas Vi Za€A,.
In what follows, we shall be concerned with the set
C;’;(G[""],A) of A-valued functions f being infinitely many
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times continuously A, differentiable.*® If (icR),

(a7)-= (o )

d
a‘f,c+,1y|,1=o ;,Z{l’y( ] )x

denotes the left derivative of the functlon Jf with respect to

g €A, at x€G!"T], we can derive the generalized or color
Heisenberg commutation rules*

3 3
2~ ofa) 2
aq,, c?q’s dgs aqa
3
aq.,

Vapel, Viefl,...n,},
Note for the following that the generalized Leibnitz rule

2 g = 22 f g,+a(ﬂa)f,,

is vahd for arbltrary

Vje{l,...,ng}.

feCz (61" A,), g,€Cx (GI"LA,).
We point out that

s
aq.,

eCz (G A, _,)

holds. The I'-graded associative Banach algebra A can, for
example, be constructed as follows. Take || = v + pu infi-
nite-dimensional vector spaces #”, with countable basis
{e,i}ieN for each ael’, where |T"| denotes the finite number
of elements of I', where v denotes the finite number of bo-
sonic elements y; of I' [i.e., satisfying o{y;,¥;) = + 1], and
where u denotes the corresponding number of fermionic ele-
ments §; of T'[o{B,,8,) = — 1]. The tensor space T'(¥") over
7 = @ 4 7, is introduced and the ideal I generated by
the elements of the form v, ® w; — ola,8)w; ®v,, V€7 ,,
wse?’s, a,6€l’ is constructed. One arrives at the well-de-
fined associative algebra «: = T'(#7)/I***°and A is taken to
be the complex linear hull of the linear independent elements
E): = leo and

N} nl n? nh nl sy
EN:=(e))" (e -+ -er,) - - (e)) -+ (eg)™
"% " Ty "
. (ej} Joe- (eff‘). . (ej:‘). .. (ej:ﬂ)Ed,
B By B B.
where
L
ni’n%,...,nl’ nz’. ’nz;...;nl’...,nv“eNo’
a4 X,
<A< <l oee i< oo <jy*eN,
where Ly, ..., L,, K;,..., K,eN, and where a certain

counting procedure has been adopted, NeN. If M denotes
M: = max{|o{a,8)|; a,6eT}>1,

A is made into a I'-graded associative Banach algebra over
the complex numbers C, with unit and equipped with a T'-
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compatible commutation factor & by taking the norm

o0
llxll: = Ixo| + M +#71 ¥ x| < o,
N=1

x= Y xyE™leA, xyeC.
N=0

A tedious calculation shows that A in addition has the im-
portant property that each Ag-linear bounded linear map f
from A, to A, i.e., satisfying

L, (ALA;), abel,

f(xO'ya)=x0 'f(ya)’ V'xOE-A(» yaEAa
is already generated by a unique elementz;_ ,€A,__, sothat
f.) =y.25_, holds. We however find it advisable to weak-
en the additional topological condition expressed in Ref. 49,
p. 1545, third line from the bottom to

llzs - o ll<M > #|I£]l,

with corresponding modifications in Theorems VI.12-V1.14
in Ref. 49.

lil. '-GRADED BIRKHOFFIAN FORMALISM

For the following, let us consider a prescribed set of
infinitely many times continuously A,-differentiable A _ -
valued functions

F,_,t [tats]XG™IXGI™ A _

j=1... yel, t,<0<t,, t,t,€R,
called the set of evolution terms associated with a certain
physical system of differential type 1 concerning the time
derivatives. The special elements x of Q = C*([1,,,],
GI"Y), #"> 4 [i.e., of the Banach space @ of all at least %~

times continuously differentiable maps from [7,,z, ] to Gl

s n‘y’

0]
with standard norm |x||: = max [[lx(t)"; I=01,...,4;

0 Ul- ie n n .
te[ 2,1, ] ] where x(t) = (gL (t)lmr " "eG!"], which
satisfy

&, ex(t)x() =0,

Vjefl,...,n,}, Vyel, Ve[t 1,1, (1)
constitute the solution set ¥ CQ consisting of all physical
curves within a fixed time interval [¢,,2, ] of the correspond-
ing physical system. As in the pure bosonic case,'®!® we now
want to study the conditions on the functional structure of a
prescribed set of evolution terms &, _, so that they result
from an action functional, i.e., so that they turn out to be

generalized variationally self-adjoint. According to Ref. 21,
the generalized variational self-adjointness conditions read

9%, _
ﬁ = aji 4 +0'(ﬂ,7’)
_¥ip 4 ¥p ] : (2a)
aq’, dt ¢’
& 9%
0= i T (20
Vie{l,...,ng}, VBEF,
Vie(l,...,n,}, Vyel, VxeQ,
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or more abstract*’
dQc, [‘91]QE, =0, (3)
where ,€CZ (Q, -Z 5, (Q;A,)), defined by

o (y): = fdt D) j;’l )-8, i), @)

denotes the “physical one-form” on the curve space Q (see
Ref. 49), where Q denotes the Banach subspace (of Q) con-
sisting of all at least .#"-times continuously differentiable
maps from [¢,,z, ] to G!"r), which vanish with all their de-
rivatives up to .#”—2 at the boundary ¢, and t, where
C2 (Q, L3 (Q% Ay)) denotes the vector space consisting
of all infinitely many times continuously A,-differentiable
maps from Q to the completely antisymmetric bounded

— Ag-linear maps from Q to A, peN, (generalized p
forms) 49

Now using (2), one can easily show the following
theorem.

Theorem 1: &, _, is generalized variationally self-ad-
joint exactly iff there exist infinitely many times continuous-
ly A,-differentiable A _,_;-valued functions ¢, _,, _,:

[t £, ] X G A_,_, and also corresponding A_,-
valued functions @, _ 5:[2,,t, ] X Gl L A_ 5 so that

& — o (1x(t),x(t))

g z gst Wy, _ 87, — y(1X(2))
(5)
+ ¢, _, (2x(2)),
Vje{l,...,n,} Vyel, VxeQ,

holds, where in addition ¢, _;; _, and ¢, _
closure condition

0= 017’,5)

, satisfy the o-

¢k—a1—y

+ ola,y) Ef_ Y _sk—a
Ié

a
+ 0'(5’“) % ¢j, — ¥, — 8 (6)
the o antisymmetry
O0=9¢, 55—y +OOYW, _pi—s» 7
and
Ny _
0-—¢j—r_a'( ¢ ,— & +0'(6’7) ¢j’ a:;l’ 8
(8)

Proof: According to (2a), d*&, _ /3¢ 94, must iden-
tically vanish because no other % term appears in Eq. (2a).
Equation (2b) immediately leads to the o-antisymmetry rela-
tion (7). Exploiting once more (2a), using the commutation
rules like (9 /d¢4,)¢% = ole,¥)g,, d/dq’, and using the con-
ditions for the I'-compatible commutation factor o (see Ref.
21), one finally arrives at (5), (6), and (8). [ ]

Theorem 2: The physical one-form w, (4) is generalized
variationally self-adjoint with respect to (Q, Qg), i.e., o, sat-
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isfies (3) exactly iff there exist two, in general, time-depen-
dent forms

0,eCg (G, LGP A)),

@€CL (61, £, (61); Ag),

being C * in all of their arguments so that

orelp) = [at @ 010)300) — @a0)] )
holds for all x,yeQ, where @, and w, satisfy
dw, =0, (10)
do, = % @2 (11)
Proof: Using Theorem 1, we define
@0 =3 ¥ 3 3 5,2 ooyl
4 yvel' j=1 el k=1
@)= 3 ¥ (- 1), ),
’ yel j=1
(12)
=gy, y=ple e,
7= (zk)ke{l ..... ng} G["r],
and observe that (7) corresponds to (w,), (y,2z) = — (@,). (z.)),

™
Vx,y,2eG!"r] that {6) corresponds to dw, = 0 and that finally
t

(8) corresponds to dw, = (3 /3t \w,. ]
t t

Comment: It might appear surprising that in contrast to

Theorem 1, Theorem 2 seems to have nothing to do with any

grading I or with any I'-compatible commutation factor.

But this is absolutely not the case. First of all, the forms w,,
t

@, considered by us are not usual forms but they are A,

t

valued and A, linear. Second, they are infinitely many times
continuously generalized superdifferentiable, i.e., A, differ-
entiable (see Ref. 49), in contrast to the conventional forms,
which are only C = sections in antisymmetrized tensor pro-
ducts of the cotangent bundle. In addition, we refer to Ref.
(49), p. 1550, where we have shown that the exterior differen-
tial d and the Poincaré operator K are compatible with the
category of generalized superdifferentiable A,-valued and
Ag-linear forms. We now refer to Ref. 16 for the bosonic
version of the next theorem.

Theorem 3 (generalized Pfaffian action principle): Let
€, _, be generalized variationally self-adjoint, or equiv-
alently stated, let the physical one-form ,(4) satisfy
dg,[®]g, = 0, then the action functional 0,eCy (Q,Ao) up
to boundary terms (see Ref. 49) reads
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0oy =K (0)y =J-d7' o (X

173

1
_ f ar (dr [(afz),,,(,)(x(t )72 )

ty

- ("31)1«(:)(7‘(‘ )

= ,fdt [(yl)ﬂ,,(x(t D — ol J (13)

where

i =K (@)€CZ, (61,7, (61" A,),

vy: = K (@1)eCE, (6" ;A,), (14)
satisfy
dv,=w,, dv —wl—iv, (15)
! t 2 0 t at :

Proof? Using the lemma of Poincaré do Ko + Ko, dg,
= id for the Qy-equivalence classes [ ®, ] o, of generalized p
forms ®,eC3 (Q,-L%Q%A,)) (see Ref. 49), one obtains
[@,]q, = do, @0l g, With @,: = K (®,) because K and d are
compatible with the Q -equivalence structure.*® By virtue of
Theorem 1 or 2, we dispose of a certain functional structure
of the evolution terms &, _,, which finally permits us to
understand (13) and to derive (15), once more using the
lemma of Poincaré dK + Kd = id but now applied to (time-
dependent) generalized p forms

w,€C, (61, 23 (6p; A n

Using (12), one also has the following expression for the gen-
eralized symplectic potential

ns n,

4”22 2 295V

=1j=1

(i)e) =

Xy, _ 5, — o (6:7%), (16)
and for the generalized Birkhoffian

1

Wole = — |dr 3 2 q% ¢, (t:7x), (17)
0

yelj=1

where we have chosen the same designation “Birkhoffian”

for v, in our I'-graded case (with arbitrary finite Abelian
t

grading group I and with a corresponding arbitrary but I'-
compatible commutation factor) as it has been introduced
and chosen by Santilli'>!® in the pure bosonic case, i.e., if
I'=Z,={0]. Notice, if we specialize in the case
I'=2Z,={0,1} and 0{0,0)=0(0,1)=0(1,0)= —o(l1,1)
= 1, we would consequently arrive at a “super-Birkhoffian-
formalism.>!”
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{V. '-GRADED HAMILTONIAN FORMALISM

In what follows, we shall be concerned with generalized
Hamiltonian systems, which are by definition characterized
first by generalized variationally self-adjoint evolution terms

&, _,, being explicitly independent of time,

€ xX) =3 3 Gt _s;—,X) + 8 _,x), (18)
b6eI' k=1
and which are characterized second by the invertibility of
the A_;_,-valued functions ¢, _5; ,,eC;’fo(G["’];
A_;_,), ie., by the existence of ()~ %" ~7eCg (G!");
A; . ) satisfying

S s T B (x) = 8,6,

yer j=1

S @Y A, 56 =885 (19)

yel' j=1
Proposition 4: Presupposing (19), Egs. (6) and (7) are
equivalent to

0= (¥}~ "% + o(y,8)o(y,¥)016,6)
X(@e-srmr, (20)

0=2> ; [a(ﬂ,a)drﬂ oty ™) =

X
a

+ o(y,Blola,y)ola,a)y =y~ 7"~ 8

a :
(¢— l)k, —nh—a
ag;

+ ola,y)olB,a)oB B Yy~ 'Y~ "0

O (ymesel]. 21
95

The proof of Proposition 4 is tedious but straightfor-
ward and is left to the interested reader.
We now define

w0y IV’I’P'l)
=33 S S P T s

velael’ j=1k=1

d (,/,—l)i. — Bk, —v
75

X

X

Vp,0,€C2 (G, .7, (G1"LA), (22)
Pl,U’) = 2 y‘;'(pl)j,—y(x)’
yel' j=1

(pl Vi, — VEC:O (G[nr];A— y)’
and the “generalized time-evolution bracket”
{GoFo): = w5 "dGy,dF,),
VGoFoeC3, (617;A,) (23)

We also need the concept “generalized Hamiltonian vector
field” '

’l.y Ny aG .
dGy)*: = O (g,
(dGo) ';1 kz_—:l aq’y Wy ag*

vel® ael’ j
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for any A;-valued function GoeC;:(G[""] Ag)
Theorem 5: Presupposing (19), Eqgs. (6) and (7) are equi-
valent to

o5 oup1) = — o7 '(p1p)), (25)
Vp.p1€C5, (61,2, (614 )
and
{(Fo,{GorHo}} + {Gor [ HooFo} }
+ [Ho’{Fo’Go}} =0, (26)
VF,GoHyeCg, (61" ;A,).
Proof: The following formulas are valid:
@5 Youp1) + @5 (e 1)

@2) ny  Ma . ,
T2 [
vl ael j=1i=1

=222
+ ola,aloly,a)otv, ™) " "lpy) —ar  (27)
(For{ GosHo} } + cycl
TG OFy 3Gy 9H, .o
oq, dq5 Iq; A

X3 3, |oBneesietesiy Y

»7)

L —yk, — B, ~ &
Xaqf, W)

+ o{8.B)oty.dloty, )"y~ =
d

e

+ o(vdoBrIoBB Y~ "~ e

4 —l-—nk——ﬁ] 28
o, (7 , (28)

so that the proof becomes obvious by using Proposition 4. B
Proposition 6: dw, = 0 and (19) imply

Xy

X

oy - ,{dGo)¥) = dG,, (29)
o5 '(dGo, -) = [dG,)¥, (30)
[(@Go)¥, ([dFo)*] - = (d { GoFo})* - (31)

The proofs of (29) and (30) are easy. According to
Theorem 5, we have ([(dGo)¥, ([dF,)*1_ — (d {G,F,})¥)
X(Ho) =0, VGoFo,HeeCZ (G");A,). We then choose
H,=Z3gq.y, _, with arbitrary but constant y, _,€A_,.
This proves (31). |

The generalized Hamiltonian evolution equations now
read

q‘ﬁ = (d‘Vo)f(,i)B = [‘02— l(dVO, . )x(r) ]1‘9 ’ (32)

and are obtained by putting the evolution terms (18) zero and
by using (19). Equation (32) is nothing more than the I"-grad-
ed flow equation of the generalized Hamiltonian vector field

(dve)* with generalized Hamiltonian v,€Cg, (GI"); A,). The
T-graded (local) flow ®,eCg, (GI"r); GI"")) (being C= in all
of its arguments; for brevity, we do not use the, of course,
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more precise flow-box notation®?) satisfies

D, =P, 0P, Vist+se[t,t,], Po=id
As in the pure bosonic case,>® we have the following
theorem.

Theorem 7: Let the generalized two-form
@,eCZ, (61", 2 (G IP5A,),

a’z,()’,z)= = ZI‘;‘jz 2 .V'yz,;'/’k — 8 j, —y(x)

=1k=1
be closed and let (19) be valid. Let now ® be C* and let
®,eCg (GL");G1"r)) be the (local) T'-graded flow of a gener-
alized vector field X = SX%( - ) - 9 /9g5eX4(G!™ ), X%(-)
€Cg (G!"r);A,). Then, ®, are generalized canonical trans-
formations, i.e., ¥, (w,) = w,, VueR, if and only if X is gener-

alized Hamiltonian, ie., X=(dF,)*, where F,eCg
(61" ;A,)

Proof: The formulas

L, =diy +iyd (33a)
and

d .. .

Lol =L, (33b)

du

where L denotes the Lie derivative, also apply in the
case of dealing with generalized p forms w,eCg (G["r],
LGP Ag). u

Theorem 8: The Lie algebra of Ay-valued conservation
quantities with respect to the generalized Hamiltonian v, is
isomorphic (modulo constant) to the Lie algebra of infinitesi-
mal generalized canonical transformations which leave the
generalized Hamiltonian v, invariant.

Proof : The Lie algebra of A,-valued conservation quan-
tities is equipped with the generalized time evolution bracket
(23} as product. The isomorphism (modulo constants) is then
given by F, — (dFy)¥*. [ |

V. GENERALIZATION OF SANTILLI'S ISOTOPIC
ACTION FUNCTIONALS AND OF NIJENHUIS TENSORS

The question may arise if there are invertible general-
ized tensors 7€Cz, (6!"), £, (6!"™; G!™r))), which map
generalized vector fields X = 2X( - }(@ /3¢g}), where X’ - )
€Cg (G");A,), via

X =2 > Z 2 X3(x) l‘k’s(X)—q,— (34)

yel ek =1j=1

to generalized vector fields, where 7k%(-)eCy (G,
Y

A _, , g), so that the mutated physical one-form ©{”'eCg

(Q, s, (Q:Ao)) defined by
oy = [drS 3 (T b1
i f vell j=1

X &,y x(t)x(2)), (35)
which of course describes the same physical evolutions as w,
does (because of the presupposed invertibility of 77), remains
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generalized variationally self-adjoint, i.e.,

do,[01], =0 (36)
and

doo [017 '] o, =0- (37)

According to Theorem 2, we observe that besides

0’1,5( y) = f dt [(‘”2)::(:)()’(‘ )y X(2)) — (@) ey ( VM2 ))]» (38)

do, =0, dw,=0,
the following conditions for

%

(Y= f dt [(@)u0) (T ) (M D3{0)

- (wl)x(t) (-7::(:)()’“ )))] (39)
must hold:
— @[T X),Y) = 0,7 (Y)X),
d(w,09)=0, d(w,°9)=0. (40)

This means that we ask if there are generalized Hamiltonian
systems (i.e., dw, =0, dw, =0, w; ' exists), which remain
generalized Hamiltonian after applying a generalized Santil-
1i’s integrating tensor 7 to the set of the original generalized
Hamiltonian evolution terms. As in the pure bosonic case, '
we shall try to construct for a restricted class of generalized
Hamiltonian systems characterized by I'-graded integrabi-
lity, not only one integrating tensor 7~ but a A-parametric
class of tensors .7 = exp{A.#), A€A,, where #"is a I'-grad-
ed Nijenhuis tensor.
Definition 9: A generalized tensor field

#eCg (G, 7, (Glrhglrly),
which maps generalized vector fields
X= zzx (- )—eae‘*o(cl"“)
yelj=1
via
n "B . .
'/Vx(Xx)_ z 2 z z ij(x)'/;/:]Z(x) P
yer Aot /=1 K= Y g5
A5 1€CLC " A p),
to generalized vector fields ] (X )ex2(GL*)) and which
obeys
L.Aqxr/V(Y):-/V(Lx-/V(Y)
—LyAX)) — A Ly (Y),
(41)

SPE AL

yell j=1 aqu

= S yif. cxAqg ]
;N;Yr( ) 6q", oG
is called a I'-graded Nijenhuis tensor.

We emphasize that the bosonic Nijenhuis tensors play
animportant role in the theory of nonlinear integrable evolu-
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tion equations.>'* As in the pure bosonic case,”® one shows
that each formal power series F{A4) = 2_,a,(#)" with
a, €A, remains a formal I'-graded Nijenhuis tensor. We shall
later take the well-defined function

oo /‘L n
expAA): = Zo T/V”’ AeA,,

also because of the obvious invertibility of exp (A.#) via
exp (— AA) = (exp(AAt)) . If #"is a -graded Nijenhuis
tensor, the following formula can be proved by induction:
L) (A ™Y ) = AL ™(Y)))

=N [Lpg) I T) = A g A" HTN],  @42)

V X, Yexio(G!™),

from which
L)Y ) = ALy (Y

=-/V"(L/(X)(Y) — ALy Y)) (43)
follows.

Proposition 10: (Compare this proposition to Magri® in
the pure bosonic case.) Let X be a generalized vector field
X =3X(. )8 /3¢, )exdG"™); X7 - )eCy (61"];A, ) with
the property

neN,

Lyt =0, (44)
where 4" is a I'-graded Nijenhuis tensor, then
L y? =0, VneN, (45)
is valid.
Proof'
m,mm Ly F) = ALy Y)

= M(LXW(Y)) — ALy Y))

= ALy YY) =0, n

Proposition 11: (Compare this to Magri® in the pure bo-
sonic case.) Let .#" be a I'-graded Nijenhuis tensor and let

Xex2(G!"")) be a generalized vector field which leaves ./~
invariant, i.e.,

L,/ =0,
then, the following formula is valid:
(A™X), APX)]_=0, (46)

i.e., all generalized vector fields .#™(X) are involution and
therefore lead to commutable I'-graded fiows.
The proof is evident by using (45):

Vn,peNy:

L), A7)
Ly A7)
L PR 4 e PP K]
+ AL ) X)
SNy X) = = N g VX)) =0, .

Definition 12: The triple (w,, vo, .#) is called a general-
ized Hamiltonian system with compatible I'-graded Nijen-
huis tensor .#” if the following formulas:
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d{w,o) =0, 47)
AN X),Y) = 0, X, NY)), (48)
ie.,
0,04°€C3 (61, £5H(GI%A,)),
d(w,o8) =0, (49)
w,=dvy, w,=dv, (50)

are valid, and if v, ! exists.
Theorem 13: (Compare this to Refs. 6, 7, and 54 in the

pure bosonic case.) Let »,€Cg ('™, (G!");A ) and let
" be a I'-graded Nijenhuis tensor. Let

do,=0, d{w,°4)=0.
Then, we obtain
d(®,o4™) =0, VneN. (51)
Proof: The following identity holds for each
#,eC2,(6!",.Z, (61" A ),
J/ECZ(G["r],on(G[”r];G["r])):
d (@04 Y,Z)
=d (@0 Y HZ)) +d (@, AW Y)Z)

—do(Y),HZ))
— 8Ly HZ) = H [LyHZ)— LA Y]
+ A Wy Z), (52)
]
VY=SY/(- ,
2 y( )_aq_,y'
z=%Z7!( )TGQ‘*’(G[”“)
so that (51) can easily be proved by putting " =4,

@ = w2 A", m=0,1,...,successively. [ |
Corollary 14: The same presuppositions as in the pre-
vious theorem lead to

d(@,of(#) =0

for all formal power series

fn= 20“»“’”"’ a,€A,.

In particular, we obtain

d(w.%expAA)) =0, V AecA,. (53)
Proposition 15: Let

@,6C (G, 223G A,)),
J”GCfo(G["‘"],.YAO(G[""];G[""])),
with the property
AN X),Y) = 0,(X HY)), (54)
a
VX=3X/(-) L
Y=3Yi(- )= _ezpgi™),
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then
O, lfNX),Y) = o X, fIANY))

is valid for all formal power series

f('/‘i/) = zan‘;i/'n’ anEAO!
especially, we have

w(expAA)X),Y) = @ (X,exp(AA )Y ). (55)
In this case the notation @,0f(.#) does make sense. Let now
@, and ¥ obey the same presuppositions as in the previous
proposition. The identity

d (0,04 ?)X,Y,Z)
=3[d (@2 I WAX),Y,Z) + d (0,09 )X HY),Z)

+d (@0 X, Y HZ))]

— i[dofF X ) HY)Z) + do| V(X )Y HZ))

+do,(X Y ) AHZ))]

— 10 (Lyx) FY) = F [ Ly Y ) — Ly F X )]

+ AL, Y,Z)

+ 0oLy A Z) — F [ Ly FZ) — LA X))

+ AL Z,Y)

— 0oLy N Z) = F [LypHZ) — Ly Y]

+ 7Ly Z,X) (56)
permits us to prove the following theorem.

Theorem 16: Let

0,605 (61", £ 0Y(G " )3A,),
AeCg (6", 2, (GGl

obey
do, =0, w)X)Y)=a,X.HY)),
d{w,o ) =0,
and let 4" be a I'-graded Nijenhuis tensor, then
d(,°f () =0, (37)

for all formal power series

N =T8N a,eh,

In particular, we arrive at the formula

d (w,0exp(AN) =0, VAeA,. (58)

We point out that formula (56) is the I'-graded counter-
part of the corresponding formula (in the pure bosonic case)
5.10, p. 352, in the article by Frolicher and Nijenhuis,** put-
ting L =M =.4",/ = m = 1, and taking into account
AR =H?, 0, AV = 20,04,

(@, RANARA = 40,0072,

W AXY)
=2[Lyx, A1Y) ~ ALy Y) = Lpt'X))
+ ALy Y ].
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If we now collect all our results, we arrive at the following
theorem.

Theorem 17: Let now (w,, v,, .#) constitute a general-
ized Hamiltonian system with compatible I'-graded Nijen-
huis tensor 4" (Definition 12), then

d(w,°explAt)) =0, d(w,expldAt)) =0, (59)
are valid, VA€A,. Consequently, the generalized tensor
fields

T = exp (AN) (60)
constitute a A-parametric class of generalized Santilli’s isoto-
pic operators, this means, that the mutated one-forms
0!71eCg (Q,.Z 4, (Q;A,)) defined by (35) remain generalized
variationally self-adjoint and of Hamiltonian type. The cor-

responding action functionals 5" read

w{,y’ =K (m{7])¥
- j dt [K (@;0expld )y (00 )

— K (@,°exp(At )y ] (61)
with a A-parametric class of generalized symplectic poten-
tials

vitlh = K (w,0expldt), dvi'! = w0expt), (62)
and with a A-parametric class of generalized Hamiltonians

vt = K (w,%expAA)), dvi = o oexpiAAt). (63)

We emphasize that the limit A — 0in (62) and (63) con-
tinuously leads to the initial generalized Hamiltonian v, and
to the initial generalized symplectic potential v,. We also
point out that @, and w}” describe the same physical evolu-
tions, because o, = Ois validifand only if (! = Ois valid.

Theorem 18: Let again (w,, v,,.#") constitute a general-
ized Hamiltonian system with compatible I"-graded Nijen-
huis tensor .#” (Definition 12), then

L(dvo)# (expd1) =0, (64)
VAeA,, is valid, where (dvo)* = w; '(dv,, -). This means
that (dv,)* constitutes an infinitesimal generalized canoni-
cal transformation, which leaves the I'-graded Nijenhuis
tensor .4 invariant. (Compare this result with Ref. 6 in the
bosonic case.)

Proof: Because of

(@20exp{AA) (X,(dvo)¥)
= w,(exp(AA)X ),{dvo)¥)

Z dvifexpi A X))
2 (0 eexpli A )X)

(63)
= dv([J/I ](X )

we find

di ,, »(@:0explAA)) =0,
and because of (59) and (33a) we arrive at

L(dvo)# (w,0exp(A1) = 0.

Robert Trostel 3167



Finally, because of Theorem (7) and as w, is supposed to be
invertible, we arrive at (64). |
By virtue of Proposition 11, we obtain

[exp(AA)dvo)*, exp(d ' Adve)*]1_ =0,

VA, A '€l
Theorem 19: Let again (w,, v,, /) denote a generalized

Hamiltonian system with compatible I'-graded Nijenhuis
tensor .4”, then

expldt)dvo)* = (aviH)*. (66)
This means exp{A.#)(dv,)* constitutes a A-parametric class
of commutable generalized Hamiltonian vector fields,
whose Hamiltonians v{*! commute under the generalized
time evolution bracket (23)

0= (i), W) = w7 ! (W), Vi), (67)
VA,A 'eA,.
Proof: We observe
@, X, exp(AA Vdvo)¥)
= o,(exp(A A )X ),(dvo)*¥)

(29)

Z dvyfexpld A X)) = (w;0expANE)

(65)

(©3) 9)
= dvg' (X ) = o)X, (@v§ )*).

Finally, we consider
()

= (dvg* )* (v )
(29) ,
= w((dvg* ¥ (vl )¥)

= (@,°€exp((A + A "M W((dvo)* (dvo)¥) = 0. u

Corollary 20: Let again (w,, v, .#) constitute a general-
ized Hamiltonian system with compatible I'-graded Nijen-
huis tensor .#"and let v, denote

k

(v6* )11 2 0€C%, (61" Ao, (68)
di* _
then, the system {vo }, 0,1, ... constitutes a set of general-
ized conservation quantities with respect to the Hamiltonian
v, which are involutive under the generalized time evolution
bracket:

{Vos Vo } =0= {vou> Vo, ), Vk,peN. (69)

We finally stress and underline that the propositions
and theorems exposed above constitute a generalization and
extension of well-known facts in the pure bosonic calculus (if
one, for instance, deals with integrable nonlinear evolution
equations® %) to the case if using a color analytic calculus,
i.e., if one starts with an associative I'-graded Banach alge-
bra A with arbitrary but finite Abelian grading group I" and
equipped with a corresponding I'-compatible commutation
factor ¢. Incidentally, we automatically comprise the con-
ventional Z,-graded supersymmetric case also by choosing
r=2,={0,1}, 2(0,0)=01{0,1)=0(1,0)= —o(l,1)=1
and by taking A to be the Banach—-Grassmann algebra of
Rogers®? and Jadzcyk and Pilch.>* We point out that even in

Vo;k =
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the conventional Z,-graded case, the concepts, “Z,-graded
Nijenhuis tensor,” “Z,-graded Santilli’s integrating opera-
tors,” and the corresponding theorems are apparently new.
The following example shows that the very remarkable su-
per-KdV (see Ref. 20} recently studied and introduced by
Kupershmidt possesses indeed a Z,-graded Nijenhuis tensor
being compatible with the Z,-graded Hamiltonian structure.

Vi. Z,-GRADED NIJENHUIS TENSOR AND
KUPERSHMIDT’S SUPER-KdV

As in the following, the example considered is a field
theory, we now formally extend the results of Secs. II-V to
the infinite-dimensional case. This means that we do not take
the space G!"*! as configuration space but instead of G
we necessitate the Schwarz space H!"*! consisting of all C =
maps from R to GI""], which vanish with all their deriva-
tives at infinity more rapidly than any power of ||7|| ~ ', FeR™.

We confess that the formal substitution of G!*! by
HI™, the substitution of 3, by =, §d 7, and the substitu-
tion of partial left derivatives d /d¢), by partial variational
left derivatives 6/58¢), (7) in all previous formulas in order to
transcribe the results from discrete systems to field theories
is a daring mathematical procedure, in particular, from the
topological viewpoint, because of some subtle problems
which arise if one deals with an analysis on non-normable
vector spaces.>7 Because of the validity of the symmetry
rule (see Keller’’), however, we are not algebraically hin-
dered to perform the transcription indicated above.

Section VI is therefore exclusively devoted to the appli-
cations of the algebraic part of the corresponding transcrip-
tion of results and formulas contained in Secs. II-V to the
field theoretical case. Let now A be the Banach—Grassmann
algebra B (see Rogers® and Jadzcyk and Pilch?)

B=B,eB, (70)
which is Z, graded. The corresponding Z,-compatible com-
mutation factor o obeys ¢{0,0)=0a(0,1) =0{1,0)

= —o{l,1)=1. Let us consider the B, module G'"!
= B}, ® B} and the corresponding Schwarz space H!""! over
R. Elements of H!"!! will be denoted by

x =)@ (Mers ¥ = (37 9r)rr>

z=(Zr), (r)ercH"".
In what follows, we also need the vector space @ consisting
of all maps x, y from R to H'""!

QI x:t—x(t) = (ult,r)hp (t,r)),EReH“'”,

(71)

) (72)
QDy:t—y(t) = (¥t,r)7(t,r)er€H ™,
having in addition the following properties.
(a) The maps u(-,+), @ (), ¥(-*), 77(++) are C = in all of their

arguments.
(b) The maps
d"ulty) d"plt) Iyt 9™t
an’  xr T ar ar"

with all their spatial derivatives vanish uniformly with re-
spect to all elements ¢ of a compact neighborhood of ¢ (de-
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pending on 7) at spacelike infinity more rapidly than any
power of |r| ~!, r€R, for each ¢ and neN,,.
According to Kupershmidt,?® the super-KdV reads

ut (t’r) = ar [3u(t’r)2 - urr(t’r) + 3¢ (t’r)¢r(t’r)] ’

(73)
¢7t(t)r) = 3ur(t’r)¢ (t’r) + 6u(t’r)¢’r(t’r) - 4¢rrr(t’r)’
where
3
u,(t,r) = ﬂa(—;’L), @ lt,r) = %M, et
Equation (73) can equivalently be rewritten as
( j - % J }s u,(2,5)
= 3u(t,;)2 —u,(tr) + 3@ (t,Ne,(t,7), (74)
@:(t.r) = 3u, (t.rp (t,1) + 6u(t,rp, (t,7) — 4@,,, (2,7).
One easily confirms that
o(tzs)i= | dry,_c(r)( -5 )dsz,_‘(s)
+ [ armien (75)

leads to a Z,-graded symplectic two-form w,,
wzg(.l’;»za_c)z _w23(g)_ﬂl)_¢)’ dw2=o’ (76)

where y, .z, €H!""! depend infinitely many times functional
B,-differentiable on xeH!"!). Instead of y, ,Z,, We write the
Z,-graded vector fields Y, ,Z, in functional differential geo-
metric notation

P)
Sp(r)’

+ oo + =
é
Y = f dry . (r——+ f dr q,(r)
Su(r)

— o — oo (77)

r)—‘s— .
¢ (r)

The following Z,-graded tensor field .#"is introduced

_ + o 5 + o0
ZzZ, = _fdrz,_,(r)m+ fdrg‘,_‘(

+

N (Y )= f dr[4u(r)y,_‘ (r)

~— oo

+ 2u,(r( f - % T)ds Yls) — 3, (r)

+ 30 00,1,(0) + @, 0] o

+ Ywdr[3¢ (v, (7)

+ 2¢,(r>( f -5 T)dsy,_As)

’. )
sp(r)’
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+ 4l () — 43, 7,00 (78
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which maps Z,-graded vectors fields to Z,-graded vector
fields. A tedious calculation shows that .#" is a Z,-graded
Nijenhuis tensor, that means that 4" satisfies

Ly NZ) = A [LpH1Z) = LpH Y] —/V?Ly(z,)
79

for all Z,-graded vector fields Y, Z [see (77)]. Let us now put
(74)in Z,-graded Hamiltonian form. We find that (74) is equi-
valent to

@, (pX(t) =dvo (p), VyeH!"1, (80)
with Z,-graded Hamiltonian

vo = [ dr[utP + S0P + 3utlp )

! 81)
according to Kupershmidt.?’ We now want to show that
d(dv,eN) =0, d(@,oN)=0 (82)

are valid.
Proof: We calculate

K (dveo),

= [artaveento
- j dr[%u(r)“ + Sulr rF + 2, P

— oo

+ 15u(rPp (N, (r) + 20u(r)p, (e, (r)

+ 80,1911+ 150 (g, ]

(where X is the Poincaré operator) and find that
dK (dv,eV) = dveV”

is valid. A short calculation confirms the validity of
0ANY), Z) = w,(YNH(Z)),

for all Z,-graded vector fields ¥, Z [see (77)]. We then calcu-
late

K (wZ o‘/’/])s (Z )

- fa’r 1'((020-/’/),,_, (x,2)

= [ (Lutrr + w00 - 20,1010 )
X'z = iz, ) + %qo (10~ ug (7

+ %u(r)cp (S () — 29 (NS, (. )]:

where we have abbreviated

a4, ur = (_j@ - -;— if:)is u(s),
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etc. We again find that

dK (@,08) = w,o N
is valid, so that (82) is proved. [ ]

According to Theorem 17, we know that exp(A.#) is a
Z,-graded integrating operator, thus leading to a Z,-graded
isotopic degree of freedom within the Z,-graded Hamilton-
ian description of Kupershmidt’s super-KdV. The A-para-
metric class of the Z,-graded symplectic potentials reads

1

v = 3 AL ar dwa)en ) 83

and the corresponding A-parametric class of the Z,-graded
Hamiltonians reads

(1/([)/3.]))5‘= i AR

n=0 n!

fdr«dvo)ﬁom,_c)(:_c) (84)

being continuously deformable to v, and v, via A—0. Ac-
cording to Theorem 20, we know that the

(Vous =fdr«dvo),,_¢ oM™ )) (85)

commute under the generalized time evolution bracket,
which in our case reads
{F,Go} = w5 (dFo,dGy)
+ o
- Jarafte) (5
Su(r)) \bu(r)

+
" f dr (_‘&) (ﬁz.) (86)
J o \bp(n/\épl(r)
for suitable infinitely many times formal functional B,-dif-
ferentiable and B,-valued functionals F,, G, on H'"!), Be-

sides the original Hamiltonian v, = v, the next conserva-
tion quantity v, reads

(Vou)y = f dr[%u(r)" + Sulru, (/1 + —;-u,,(r]2

+ 15u(rPe (e, (r) + 20u(rp, (e (r)

+30, g, )+ o g, )| (87)

VIl. CONCLUDING REMARKS

Using the calculus with color numbers, i.e., with varia-
bles having unusual commutation properties, we have pre-
sented the initiating steps towards the construction of a the-
ory of I'-graded integrable evolution equations under the
viewpoint of generalized Hamiltonian systems compatible
with I'-graded Nijenhuis operators. As an example of our
theory, we have found that Kupershmidt’s super-KdV fits in
our scheme by presenting a Z,-graded Nijenhuis tensor com-
patible with the Z,-graded Hamiltonian structure of the su-
per KdV. The explicit construction of I'-graded integrable
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evolution equations with grading groups I different from Z,,
Z, is under current investigation and will be published else-
where.
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Spectrum doubling and double-valuedness
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(Received 27 March 1985; accepted for publication 7 June 1985)

The effect of making the lattice Dirac operator the square root of the Laplacian is investigated.
The doubling of the fermion spectrum is then matched by that of the boson spectrum, unless
bosons are restricted to a double-spaced sublattice. Fermion spectrum doubling is found to be a
necessary consequence of the double-valuedness of the square root.

|. INTRODUCTION

In the continuum the Dirac operator d and the Lapla-
cian {J are related by

4-6="0 (1)
Equation (1) can be formally inverted:
3 =0 2)

The Dirac operator can therefore be described or defined as
the “square root” of the Laplacian. In this paper we will
examine the effect of enforcing Egs. (1) and (2) on a lattice.
We hope in this way to cast light on the lattice fermion dou-
bling problem.’

First (Sec. II) we start from the naive lattice fermion
prescription with its doubled (27 -fold) spectrum. Enforcing
Eq. (1) we get a lattice boson prescription with an identical
2¢ doubling (Sec. III). To eliminate boson doubling we have
to restrict the boson fields to a double-spaced sublattice.

In Sec. IV we start from a standard undoubled lattice
Laplacian and use Eq. (2) to define a lattice Dirac operator.
The resulting theory has an undoubled fermion spectrum.
Unfortunately, it is ill defined, with multiple sign ambigu-
ities. Now these are inevitable when we take square roots,
and occur in the continuum also. The crucial difference is
that on a lattice we cannot specify a single set of signs consis-
tently. To get a well-defined theory we are forced to intro-
duce fermion spectrum doubling. We end up with the theory
and conclusions of Sec. I1I1 all over again.

In Sec. VI we look for a deeper understanding. We ob-
serve that difficulties identical to those found in Sec. IV beset
the definition of the square-root function on C. Now this
analog has a known mathematical solution, in the theory of
Riemann surfaces.”? Fermion spectrum doubling emerges
from our analysis as a natural and inevitable consequence of
the double-valuedness of the square root. This result holds in
the continuum also (Sec. VII). Perhaps the true resolution of
the lattice’s problems lies in a better understanding of the
continuum theory. In Sec. VIII we comment on our assump-
tions and state our conclusions.

Il. LATTICE FERMION DOUBLING

The lattice fermion doubling problem is seen at its sim-
plest on a cubic lattice with the derivative prescription

ay
ax

/7

~ o (96 +af) = ¥ (x — ). @)
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The Fourier transform of Eq. (3) is

Pu¥ o)~ [sinlp,a)/a] ¢ (p). 4)
An arbitrary translation-invariant derivative prescription is
characterized by the “lattice momentum” D, (p) that re-

places p, in this transform. For instance, the lattice Feyn-
man rules involve P (p) rather than p. In our example,

D, (p)=a""sin (py a). (5)
Spectrum doubling arises because D,, (p) has two zeros in the
Brillouin zone (defined as any 277/a range for p,, ). There are
in all 2 energy zeros giving 2¢ fermions, with equal
numbers of each handedness.

A good way of seeing the 2¢ degeneracy is to solve

W _o, (6)
dx,
Because of the 2a spacing over which dy /dx,, is measured
[Eq. (3)] there are 2¢ double-spaced sublattices, on each of
which ¢ is constant, but the constants are independent. In
the continuum theory there is a single constant, and one
fermion field.

We cannot eliminate doubling by restricting attention to
a single sublattice. Observe that, since handedness is given
by

sgn ( 1‘1[ 3D, (p) )

i=1 p;
a transformation

Py —p +7/a, p—pi (k#) (7)
exchanges left- and right-handed components. The subfields
defined on each of the double-spaced sublattices [e.g.
3 exp {iZ;p; 2n;a)} ¢ (2n,, ..., 2n,)] are either even (our
example) or odd under the transformation of Eq. (7). They
are therefore “mixed fermion” fields of the form L 4 R, with
L and R equal up to handedness. Such fields cannot be asso-
ciated with one handedness or one fermion species.

HI. LATTICE BOSON DOUBLING

Theories of bosons involve the second derivative of the
field ®. Using the prescription of Eq. (3) twice, we get

52<1>=_1_{ O\ 0y O (x_aﬂ)}
ax7 2a|ax, W T, YW

)

— 5 (b +20) + B (x — 200 — 2000),  (8)
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which Fourier transforms to

P, @ (p) — [sinp, a)/a]*®(p). &)
The theory is characterized by the “lattice momentum-
squared” D *(p). In this case

Dp)=3 (sm (p#a))z.

m a

Clearly, Egs. (4) and (10), with the usual y algebra, give
the desired relation [Eq. (1)] between & and . Equally clear-
ly, D ?(p) has 2¢ zeros in the Brillouin zone, giving exactly the
same doubling problem for bosons as for fermions.

Boson spectrum doubling is easily removed. Because of
the 4 2aji terms in Eq. (8) the 2¢ boson fields lie on the 2¢
distinct double-spaced sublattices discussed in Sec. II. They
do not mix like fermions. If we restrict the boson field and its
gauge couplings to one of the sublattices (e.g., x; = 2an,, Vi),
the doubling disappears.

(10)

IV. DOUBLE-VALUEDNESS

The standard undoubled lattice boson prescription re-
places Eq. (8) with
ad 1 . .
——— (P (x+afi) + Plx —af) — 20 (x)}, (11)
ox, a
leading to a lattice momentum-squared

, 2 . (pa)] 12
D"?p)= [—— s1n(—i‘—)] . (12)
) ; ; 5
Preserving the square-root relation of Eq. (2), we areled to a
new lattice momentum

D’, (p)=(2/a)sin (p,a/2). (13)

This prescription gives a single energy zero in the Brillouin
zone, however the latter is specified.

Unfortunately, D, '(p) is not well defined. It changes
sign under

Pu — P, +27/a.
This double-valuedness results in a 2¢ ambiguity in the spe-
cification of the Dirac operator D '(p).

Such ambiguities are not peculiar to the lattice. In the
continuum,

\/;T= Tt ... £PaYa (14)

shows the same problem. To overcome it we simply specify a
single sign in front of each p; over the whole of momentum
space. A similar approach on the lattice would be to choose a
particular Brillouin zone, e.g.,

pu€(—m/a, + w/a), Vu, (15)
and stick to it. However, such a restriction cannot be consis-
tently enforced in the presence of gauge interactions. Sup-
pose we have a fermion loop, and restrict the momentum in
one fermion line according to Eq. (15). The other fermion
momenta are completely specified by that in the given line
and by the external (photon) momenta. In general, they will
range over ( — 7/a + k, + 7/a + k) for some k #0, proving
our assertion of inconsistency.
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V. RETURN OF DOUBLING

A general solution of the Dirac equation using D', (p)
will have a 47/a period in each p,,. To get a well-defined
theory with solutions of period 27/a we must take symmet-
ric combinations of the form

Ys=yYp) + Ylp + 27/a). (16)
If p is chosen to make t{p) left-handed then Y{p + 27/a) is
right-handed. We have spectrum doubling.

The theory obtained this way is actually a subset of the
standard doubled theory (Secs. II and III) on a lattice of
spacing la. Consider the following.

(i) D, '(p) [Eq. (13)] is just D, (p) [Eq. (5)] with a — la.

(i) In order to define D, ‘(p) in terms of fermion fields
#(x) we have to use the derivative prescription

a 1 )
a¢ —— {¢ (x +ap) — ¥ (x)} (17)
xy a
Y . '
to define at x + 1aji. If we do this then
Xy
J '] ip(x ap a
2. V() — ,g Pl + (1/2)a) axti
= (2/a) sin (p,a/2) ¥ (p), (18)

as required. The Ja-spaced lattice is unavoidable.
(iii) The Fourier transform of Eq. (16) is (d = 1)

sna)= [ e 9+ #(p +22)) o

0 a

/a
= J:" P Yp) dp. (19)

The final expression is exactly what we expect in the doubled
la-spaced theory.

It should be clear that the particular subset of the la-
spaced theory selected by Eq. (16) is that where all fields
except those on the x; = n;a sublattice are constrained to
vanish. The remaining subfield gives a symmetrized mixed
fermion theory (cf. end of Sec. II). This is useless if we want
fermions of a specific handedness. If the theory makes no
distinction (e.g., quantum electrodynamics) it might be use-
ful. Otherwise, since we already have all the effects of dou-
bling, we might as well have the full 2¢-doubled }a-spaced
theory. Note that bosons [using Eq. (11)] live on a double-
spaced sublattice exactly as in Sec. III.

VI. COVERING SPACES AND AN ANALOG

In the search for deeper understanding we will now con-
sider a closely analogous problem. The attempt to define a
square-root function on the complex plane is beset by diffi-
culties identical to ours in Sec. IV. Again there are sign ambi-
guities, which cannot be resolved consistently. If we follow
one choice of sign through a 27 rotation about the origin we
arrive at the opposite sign. We will consider possible ap-
proaches on C, and see how they can be applied to the lattice.
Note that here and in Sec. VII we consider only d = 1 for
simplicity. The generalization to arbitrary d is straightfor-
ward.
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A. Complex analysis

One option on C is to cut the plane from 0 to «, and
define a consistent square-root function on the cut plane.
This approach is crude and generally unsatisfactory. The
position of the cut is arbitrary, and varies when z is rotated;
there are unwelcome discontinuities across the cut; and the
topology of the plane is altered.

A much more satisfactory understanding of all “multi-
valued” functions is provided by the theory of Riemann sur-
faces.? According to this the square-root function has for its
range not C but a surface over C. Two points on the surface
lie above each point z of C. These correspond to the two

choices of yz. If we could define the two branches consistent-
ly over all C then the surface would be like two distinct copies
of C. We cannot, and the surface is connected. A 27 rotation
about the origin on C is covered by a line on the surface
whose end points are distinct, but lie above the same point on
C. A further 27 rotation on C is required to give a closed loop
on the covering surface. Observe that in this approach the
square-root function is essentially 1 — 2, taking zeC to two
points ( + vz) on the covering space. It is natural that the
square root should have this property, since it is the inverse
of a function (the square) that is 2 — 1.

B. Lattice analogs

The cut plane approach is analogous to the SLAC deri-
vative prescription® and others like it.* The discontinuities in
lattice momenta cause serious problems.> This approach is
not a success, and we will not consider it further.

The ideas of the Riemann surface are easily applied to
the lattice map

(4/a”) sin? (pa/2) — (2/a) sin (pa/2). (20)

The Brillouin zone on which p and (4/a?) sin? (pa/2) are de-
fined is topologically a circle S of radius 1/a (period 27/a).
The square root (2/a) sin (pa/2) is defined on a space above
S (1/a) that is like the edge of a Mobius band of radius 1/a. If
it had been possible to define the two branches consistently
everywhere, this space would have been the border of a twist-
free band [i.e., two copies of S !(1/a)].

Once again we are dealing with a 1 — 2 function. The
consistency problems of Sec. IV arose solely because we tried
to treat it as a 1 — 1 function.

The edge of the Mobius band is topologically a circle S

of radius 2/a. The lattice momentum (2/a) sin (pa/2)is prop-

erly defined on S !(2/a) rather than on the Brillouin zone
S !(1/a). The Dirac equation defines ¢ in terms of the lattice
momentum, so ¥ too lives on the space S '(2/a). If we are to
interpret ¥ ((2/a) sin (pa/2)) as a function on the Brillouin
zone S '(1/a) we must associate each p with rwo fields, ¥{(2/
a) sin (pa/2)) and ¥(( — 2/a) sin (pa/2)). That is, we have a
doubled spectrum. Doubling occurs because the Dirac opera-
tor is defined as a square root, and square roots are properly
1 — 2 functions.

Vil. CONTINUUM SPECTRUM DOUBLING

We can duplicate the analysis of Sec. VI in the contin-
uum. Equation (2) implies that it is not the momentum p that
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appears in the Dirac equation but

VP’ = tp.

The square root is defined on a covering space over momen-
tum space (R') that is like the edge of an infinite band. Fol-
lowing Sec. VI we define 3 also on the edge of the band. Once
more there are two fields associated with each momentum p,
¥ (p) and Y( — p), each satisfying a conventional Dirac equa-
tion. We are led to a theory that is just the @ — O limit of the
lattice theory of Sec. VI, with the doubled spectrum of that
theory.

Of course it is possible to avoid doubling in the contin-
uum by restricting attention to one component of the cover-
ing space. Whether it is legitimate to do so depends on how
fundamental Eq. (2) is.

VIll. COMMENTS AND CONCLUSIONS

Assuming that the square-root definition of & or g is
fundamental, we have found the following.

(a) When bosons and fermions appear together on a lat-
tice the fermions are 2¢ doubled, while the bosons must be
restricted to a double-spaced sublattice if they are not to be
doubled also (Secs. III and V). This result could be important
for models like that of Ref. 6, which have bosonic and fer-
mionic excitations of the same field.

(b) When the space on which the lattice momentum lives
is defined properly, and the fields in the Dirac equation are
defined on that space, then fermion doubling is inevitable
{Sec. VI).

Finally, we must comment on our fundamental assump-
tion [Eq. (2)].

(i) If 8 were well understood it would be simple to use Eq.
(1) to define [J, and there would be no ambiguities. However,
it is the Laplacian which is well understood, and the theory
of bosons, so that is where we must start. We need Eq. (2). It
is notable that Kihler fermions’ start from Eq. (2) to get a
different sort of square root of [I. Since lattice bosons are
well understood and unproblematic it is natural to copy the
continuum analysis from the beginning and use Eq. (2) on the
lattice.

(ii) It is possible that such properties of ¥ as its double-
valuedness under rotations are connected with the square-
root ambiguities discussed above.

(iti) The square-root definition has the virtue that it
makes sense of lattice fermion doubling [conclusion (b)].
Against this may be set the fact that the same analysis leads
to fermion doubling in the continuum (Sec. VII). This last
fact may not be the demerit it seems. Perhaps it indicates that
the lattice’s problems are rooted in the continuum, which is
where we should look for their solution. We look forward to
further comments.
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Differential characters: The Dirac monopole as an example
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Choosing the Dirac monopole as an example, the theory of differential characters is sketched and
the quantization condition is recovered in a new way without considering singularities and
without using a global formulation of gauge fields (i.e., without using fiber bundle techniques).

I. INTRODUCTION

Assume that the space (time) is a manifold of dimension
n and suppose that, while studying some physical system,
there is a contribution to the Lagrangian of a quantity 4
which cannot be associated with a globally defined # form on
M. One possible solution is to subdivide M into patches { U, }
and to choose a collection of locally defined quantities {4, }
but then one also has to add a contribution to the action
associated with the change of patches (a recent papervl actual-
ly generalizes these ideas and advocates the use of Cech co-
homology in relation with topological quantization). An-
other possibility that we want to describe here is based on the
fact that only phase factors (and not phases) are physically
meaningful: thinking of a Bohm-Aharanov experiment, we
are therefore led to define a magnetic monopole as a map f
from loops on the two-sphere S to the group U(1) =R /Z
(remember that, classically, this is a static problem with
spherical symmetry and that a test particle moves on a two-
dimensional sphere centered on the monopole). Actually, we
will impose a quite severe restriction: although f is not a
differential form, we want it to admit a kind of differential (a
smooth two-form) in order to be able to write Stokes’
theorem. It ha}\)pens that the structure of the set of all such
maps 7 [callit H,(S %R /Z )] can be computed easily, without
using forms with singularities and even without using a glo-
bal formulation of gauge fields. However, its structure could
also be computed by considering one-forms with smooth de-
rivatives and point singularities in S (interpreted as gauge
potentials) or by probing the structure of S * by putting U(1)
bundles over it and classifying those bundles (via the first
Chern class); the link between these last two approaches be-
ing provided by the pullback on S ? of the secondary (Chern—
Simons) characteristic classes, which are only locally defined
on the base S 2. More generally (and in plain terms), a differ-
ential character of order p is an object which has nice deriva-
tives and which assigns a U(1) phase factor to any p-cycle of
M (for example, a S* sphere included in M ). To our knowl-
edge, differential characters have never been used in physics
and they are not even very popular among mathematicians
since the basic reference® is not published. However, it is
clear that the whole study of anomalies in gauge theories (in
particular, the geometrical meaning of the Wess-Zumino
effective Lagrangian, the Witten quantization condition,
etc.) could fit into the framework of the theory of differential
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characters; this actually motivates the present article, which
will be mainly expository. We will start with a short study of
differential forms with singularities which have been consid-
ered historically in the first place, both in physics (Dirac
string) and in mathematics.? There we give a first definition
of differential characters (following Ref. 4), which is not real-
ly canonical but is quite intuitive. Then we give (following
Ref. 2) an axiomatic definition of differential characters and
derive a few of their properties; in order to illustrate these
ideas, we recover the quantization condition for the Dirac
monopole in a way which relies neither on the study of singu-
larities (Dirac string) nor on fiber bundle techniques (as in
Wu and Yang>®). Finally, we show how differential char-
acters can also be obtained from Chern-Simon classes and
we recover the usual discussion based on the study of the
U(1) bundles over S 2.

The abstract actually summarizes the content of section
III which is the main section of the paper and can be read
independently of the others.

Il. DIFFERENTIAL FORMS WITH SINGULARITIES

Let M be a manifold of dimension # and let f = f;, bea k-
form defined on the complement of some (p =n — k — 1})-
dimensional polyhedron d,. We can think of f as a differen-
tial form with singularities but we impose that the singular
set of f [call it sing( )] is included in d, ; notice that sing( f)
needs not to be a manifold. In the example of the Dirac mon-
opole, we would take M =S2, f,, a one-form, and d,

= sing( f), a point on S 2. We suppose, moreover, that there
exists a differential form @ = w, , ; or order k + 1, defined
onall Msuchthat ., @ = fa, fwhenevertheboundary
of the (otherwise arbitrary) k + 1 chain ¢, , , does not meet
d, . In other words, we set (by Stokes’ theorem) w = df when-
ever df is defined and assume that w is smooth on M: we are
therefore not interested in all possible k-forms with singular-
ities but only in those which have smooth derivatives. In the
example of the Dirac monopole, » would be the Maxwell
field. We would like to define an object f associated with f,
which could be integrated on all the cycles of M, even on
those which intersect the singular set of f'; the idea is the

~ following: first notice that for a given arbitrary cycle z, (even

intersecting the singular set), it is possible to find a cycle z;,
not intersecting the singular set such that z, =dc; , ; + z;
for some k + 1 chaincj, , , ; for example, withn =2,k =1,
we are in the situation depicted by Fig. 1 (the cross X indi-
cates a point singularity). If f had no singularity, we would be
allowed to write Stokes’ theorem as
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FIG. 1. A singularity on S2.

J;; 4= J:acgfz L _z;fz J;f_ Lf’ (1)

and we would get, in particular,

£ 1= f K @)

We are therefore tempted to define the object f acting on
arbitrary k-cycles as the k-dimensional generalization of the
right-hand side {rhs) of Eq. (2). However, if f possesses singu-
larities, the above prescription is ambiguous; to see it, let us
return to the (Dirac) example n = 2, k = 1 and choose the
cycle z{ depicted by Fig. 2; a careless use of Stokes’ theorem
would lead to

Lf= | I+ j . )

Let us then evaluate the difference between the rhs of Eq. (2)

and Eq. (3); we get
(Lr+]o)=([r+o)=[o-[r w
z} 24 c de
where ¢ = c; — ¢} is the two-chain depicted by Fig. 3. The
right-hand side of (4) does not vanish because of the singular-
ity and is a deviation from Stokes’ formula, which we can call
the residue of frelative toc. In this particular case, if fw is an
integer n and if we call e the oriented chain which satisfies
¢ + e = [S?] (intuitively e is the oriented complement of ¢ in
S$2), then dc = — Je and we can write

n=sz=£w+£w=£w+£df
=£w+ aef=-[_ acf

The right hand side of (4) is therefore an integer; the right-
hand-side of (2) is then defined up to an integer and we have to
reduce mod Z to get a single valued map. Let bar denote
reduction mod Z, then, we define

@ f) = Lf+ f o Ul - (5)

Recall that @ = df whenever df is defined. More generally,
ifcisak + 1form and if / has no singularity on the boundary

FIG. 2. A singularity on S2,
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@[ﬂﬂ) FIG. 3. A singularity on §2.

de, the rhs of (4) is linked to the number #(sing(f)nc) of
singularities of f contained in ¢ (taking into account the pos-
sible multiplicities and the orientation); notice that in order
for this number to be a finite integer in a generic case, we
have chosen p (the dimension of the polyhedron d,, ) satisfy-
ing p + (k + 1) = n and also @ as a form with integer per-
iods. The above prescription (5) can than be generalized* and
we define the differential character fassociated with fas the
map from (arbitrary) k-cycles z, to U(1) by the equation

@i = [r+] areon=%, ©

where z}, is any cycle not intersecting the singular set of fand
where c; , , is such that dc , , =z, — z; . In practice, it is
convenient to write §, f (Zp, f ), but one should keep in
mind that this is not a real number and that f is not a differ-
ential form. Finally, one should also notice that the corre-
spondence f — f is not one to one; indeed, it is clear that if 5
is a smooth, closed (dn = 0) k-form with integer periods,
then fand f + 7 define the same differential character f; the
representation of differential characters by forms with sin-
gularities is therefore not canonical. Also, the amount of
information contained in f is not clear at that point: we saw
that f determines fbut we will see that f actually determines
o{ = df) and also another quantity associated with the ambi-
guity at the singularity (it will turn out to be an integer coho-
mology class). These two remarks justify the following (axi-
omatic) definition.

lll. DIFFERENTIAL CHARACTERS

As already announced in the introduction, a map of f
from k-cycles to R /Z = U(1) is called a differential charac-
ter? if it is a homeomorphism [f (2, + z,) =Flz,) + 2 (2,)]
and if there is a differential form o (of degree k + 1) such
that @ f Jd (where bar still denotes reduction mod Z).
With more _familiar notations, we would  write
Soyvnf=1J. f+ 5., fand ©® =d £, although fis not a dif-
ferential form. It should be clear that such restrictions are
quite severe and that not any U(1) valued map on k-cycles
(even a homeomorphism) can be extended (via @) on k + 1
chains (their boundary being k-cycles). We now want to
study a few properties of £ but at this point it becomes con-
venient to use the terminology of simplicial (co)homology
with coefficients in Z (or R or R /Z ) because we do not want
to miss a possible torsion phenomena which would be over-
looked by the use of De Rham cohomology. Let us choose Q,
areal cochain (a homomorphism from chains to R ) such that
O coincides with f on k-cycles; then d Q = @ (by definition of
w); dQ will therefore differ from o by some integral cochain ¢
{a homomorphism from chains to Z} and one gets
dQ = w — c. Let us now show that @ and c are necessarily
closed: since d? =0, we get dw = dc, which would imply
that do has integral values, but it is clear that a differential
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form, even if it has integral periods (i.e., integral values when
integrated over cycles) cannot have integral values (when
integrated on any chain); therefore, dow = dc = 0. Via inte-
gration, we can consider @ as a real cochain, the relation
® — ¢ = dQ implies then that @ and ¢ (considered as real)
belong to the same cohomology class (call it [w]). Let us now
show that o has integral periods: we know that fJ vanishes
on k-cycles z(since dz = 0) but d0 = f3, therefore dQ also
vanishes on cycles which implies that dQ has integer values
when evaluated on cycles. The same will be true for
o = dQ + c (since ¢ has integer values on anything). The
choice of Q was, by no means, unique; it remains to show
how the above is modified by choosing @', another real co-
chain coinciding with f on k-cycles: then Q — @' = O on cy-
cles and therefore @ — Q' takes integer values on cycles; this
implies first that d (Q — Q') is an integral (k + 1) cochain and
that Q — Q' =t + dw where t is an integral cochain and w is
some k — 1 real cochain (the dw contribution will vanish we
evaluate Q@ — Q' oncycles); wecannow write Q' = @’ — ¢’as
we did for Q@ and we reach the conclusion that
dQ —dQ' = dt = (w — ®') — (c — ¢} is an integral cochain.
Here again, we use the property that a differential form can-
not take integer values when evaluated on any chain; this
shows first that »' = w, next that ¢’ — ¢ =4dt. In other
words, o is uniquely determined and c,¢’ belong to the same
integer cohomology class (call it # = [c]); actually, we have
already seen that @ and c¢ (considered as real) belong to the
same real cohomology class. The main conclusion of this
analysis is that a differential character f of degree k deter-
mines (i) a closed differential form @ of degree k£ + 1, with
integral periods; and (ii) an integer cohomology class u« of
degree k + 1. The following exact sequences provide a nice
bookkeeping device which helps one to remember most of
the above:

0—-Z-—->R—->R/Z-—-0, (7)
A ‘Sl
0—->H*R/Z)—>H*R/Z) — AL -0, (8)
A 5,
0—>A*¥/AL S H(R/Z)— H**'z)—0. 9)

Here, H* (R ), H*(Z ), H*(R /Z ) denote cohomology groups
of M with coefficient in R,Z,R / Z; H* (R /Z) is the group of
differential characters, A* is the set of differential forms of
degree k, and A% is the subset of closed k-forms with periods
lying in Z; also, we set @ =8,(f) and u =8,( f) for feH* (R /
Z). These exact sequences also provide a very efficient tool
that we can use to compute H* (R /Z ) as we shall see below.
We now return to physics and to the magnetic mono-
poles by defining a Dirac monopole as a differential charac-
ter of degree 1 on the two-sphere S 2. In other words, we want
to classify the possible phase factors on S 2. Mathematically,
S 2 comes in because S * is a deformation retract of R * — {0}
and has therefore the same cohomology; we would work
directly with R * — {0} as well with a monopole sitting at the
origin. To compute H !, we use the exact sequence (8); it is
well known that, for a sphere, only the first and the last
cohomology groups are nontrivial; also, a sphere has no tor-
sion, hence, for S we get 0=HYZ)=H'R)
=HYR/Z), H}Z)=Z and we get the short sequence
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A 61
0— H' — A? s 0;therefore, 5, is one to one in this case. In
other words, a Dirac monopole is fully characterized by a
differential form of degree 2 on S ? (physically, the magnetic
field of the monopole), which, when integrated over S 2, gives
an integer (all other two-cycles are just multiples of S w
recover the usual results. Notice that we can write & l~A2
~Z + dA',indeed a two-form with integral periods on S s,
in particular, characterized (up to the d of a one-form) by the
value it takes on the fundamental cycle (S 2 itself); of course,
dA' givesa zero contribution by Stokes’ theorem (3 [S *] = 0).
This corresponds to the fact that for a fixed integer 7, we can
write any monopole magnetic field (solution or not of Max-
well’s equations) as the sum of an integer multiple of the
volume form (F = (n/2)sin 6 d@, dg, this solves Maxwell’s
equations) and of the differential of any one-form. Before
ending this paragraph, and in order to complete the study of
differential characters on S2, we would just like to mention
that, using Eq. (8) and (9), one shows that HYs isomorphic
with the set of all smooth maps from S?to U' = R /Z and
that /2 = R /Z = U(1). Notice that we have obtained these
results without dealing with a possible point singularity on
S 2 {or with string singularity on R * — {0}) and that we did
not make any use of the classification of U(1) bundles yet: we
now want to study this last link.

IV. RELATION WITH PRINCIPAL BUNDLES

Another way of obtaining the same results relies on the
classification of U(1) bundles over S%; this method became
standard (see, for instance, Ref. 7) after the work of Ref. 5:
the first Chern class for a U(l) principal bundle P is
¢,(P)= —[F/2n], F being the curvature of an arbitrary
connection; the integral of ¢, for a U(1) bundle over S ?is the
integer giving the monopole charge f5: ¢, = —m;if n =0,
we have the trivial bundle P = S3xU(l), if n = 1, we have
the U(1) Hopf fibration of S = SU(2) over S?, etc. Notice
that Fis a closed form on S 2, the base of the bundle, and also
closed on P, however, although exact on P [Fis the d of the
connection form for a U(1) bundle], it is not exact on S %: one
has to choose an open covering of S with two patches
H, H_ and write F=dA, on H, , F=dA_ on H_, the
one-form A4 ., associated with the northern hemisphere H
has a singularity at the south pole; if we now want to define
globally on S2, an object associated with 4, , we have to
consider differential characters (either defined from forms
with singularities as in Sec. II or abstractly, as in Sec. III).
More generally, it is possible to construct differential char-
acters out of principle bundle P with connection : let () be
the curvature form of 8 and 7, an invariant polynomial on G
(the structure group of P), then the cohomology class of 7 (Q2)
is a characteristic class; 7 (}) is closed on M (the base of the
bundle P)and on P, it is usually not exact on M (it represents
a nontrivial cohomology class); however, is is well known
that it is exact on P. One can then find a form Q (@), globally
defined on Psuch that I (Q) = dQ (6 ). Toconstruct @ (¢ ) and
other Chern-Simons forms, one may use the so-called
transgression formula.®® It is clear that, when projected on
the basis, the form Q () is not a globally defined object: one
has to use a local section to project it down and the above
equality holds only locally. If we want to define globally on
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the base M, an object corresponding to Q, one has to use the
concept of differential characters: the reduction mod Z of
Chern—Simons forms Q (6 ) agrees, on the cycles of P, with the
lifts (using the projection 7*) of differential characters on the
base; for more details about these properties (in particular, if
one wants to study what happens when the bundle P above
M can be extended to a manifold N such that IN = M), one
should consult Ref. 2. In our particular example (the Dirac
monopole), the situation is quite simple: since we are inter-
ested in the first Chern class (whose representatives are pro-
portional to the curvature of a chosen connection), the
Chern-Simons form coincides in this simple case with the
connection itself; if we call 4 the differential character under
study (i.e., the Dirac monopgle under study), we see, with the
notation of Sec. III that §,(4 ) = F, the curvature two-form
and that §,(4 ) = ¢,(P) = [F], the first Chern class which in-
deed is an integer class. In this example, §,(4 ) can be deduced
from &,(4 ), this is not necessarily soin general; tobuild a very
general example, one should use a bundle (P,M,G ) admitting
a non-torsion-free classifying space BG, choose an integer
characteristic class # and an invariant polynomial / such
that u and [@] = [1 (Q2)], for some connection &, coincide at
the real level, then finally proceed to the construction of the
differential characters via the mod Z reduction of the
Chern-Simons class Q (¢) associated with 7 {}).

V. CONCLUSION

Besides the intrinsic interest of casting a new light on an
old subject (the Dirac magnetic monopole), we hope that this
sketchy discussion of the theory of differential characters
will have convinced the reader of its potential impact in
physics; in particular, the remarks made in Sec. IV show why
the analysis of anomalies in gauge theories could be done by
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studying the set of differential characters associated to the
space of connections modulo gauge transformations. Notice
that an analogous theory can be held by merely replacing Z
by @, therational numbers, and therefore U(1) = R /ZbyR /
Q, this remark may indicate that differential characters
could also provide a natural mathematical framework for
the study of other physical phenomena (like the quantum
Hall effect).

ACKNOWLEDGMENTS

I would like to thank my friends K. Pilch for many dis-
cussions and especially T. Januszkiewicz for his patient ex-
planations. I would also like to thank Professor C. N. Yang
and the members of ITP for their hospitality.

This work was supported in part by National Science
Foundation Grant No. 81-09110 A03.

10. Alvarez, “Topological quantization and cohomology,” preprint LBL
18658, 1984.

2J. Cheeger and J. Simons, “Differential characters and geometric invar-
iants,” Mathematical preprint, Stony Brook, 1973.

3C. B. Allendoerfer and Y. Eells, Jr., “On the cohomology of smooth mani-
folds,” Comment. Math. Helv. 12, 165 (1957).

*J. Cheeger, Multiplication of Differential Characters, in Symposia Mathe-
matica (INDAM, Bologna, 1973} Vol. XI.

*T. T. Wu and C. N. Yang, “Concept of nonintegrable phase factors and
global formulation of gauge fields,” Phys. Rev. D 12, 3845 (1975).

°T. T. Wu and C. N. Yang, “Dirac monopole without string: Monopole
harmonics,” Nucl. Phys. B 107, 365 (1976).

"T. Eguchi, P. B. Gilkey, and A. J. Hanson, “Gravitation, gauge theories
and differential geometry,” Phys. Rep. 66, 213 (1980).

8R. Stora, “Algebraic structure and topological origin of anomalies,” Car-
gese Lectures, 1983 (Plenum, New York, 1983).

°B. Zumino, “Chiral anomaly and differential geometry,” Les Houches
Lectures, 1983 (North-Holland, Amsterdam, 1983).

Robert Coquereaux 3179



Spinorial infinite equations fitting metric-affine gravity
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Two different approaches are used to construct infinite-component spinor equations based on the
multiplicity-free irreducible representations of SL(4,R). These “manifield” equations are SL(2,C)
invariant; they exist in special relativity, and can directly be coupled to gravitation in the metric-
affine theory, i.e., in Einstein’s general relativity with nonpropagating torsion and nonmetricity.
In the first approach the maximal compact subgroup SO(4) of SL(4,R) is “physical.” A vector
operator X *is constructed directly in the infinite-dimensional reducible representation .2%*(4,0)
®.279°(0,}). In the second approach, SL(2,C) and a vector operator y* are embedded directly in
SL(4,R) via the Dirac representation. A manifield equation is then constructed (in 2 manner
analogous to the Majorana equation) by taking an infinite-dimensional irreducible multiplicity-
free representation of SL(4,R), spinorial in j,, in the (j,, j,) reduction over SO(4). Both manifields

can fit the observed mass spectrum.

I. INFINITE COMPONENT FIELDS

Relativistic quantum field theory exploits the concept of
a local field as the fundamental dynamical object, with the
particle aspect emerging as the offspring. The particles span
unitary irreducible representations of the Poincaré group

ISO(3,1) and its double covering ISO(3,1). Fields, on the
other hand, transform as finite—and thus nonunitary—re-
presentations: of GL(4,R) when tensorial, or of SL(2,C) for
spinor fields. The latter group appears here as the double
covering of the Lorentz group, i.e., SL(2,C) = SO(3,1)(quan-
tum probabilities do not involve phases and thus allow the
double covering). The nonunitarity of the representations [or
non-Hermiticity of the relevant matrices of the Lorentz or
GL(4,R) algebras] does not matter physically: the Lagran-
gian’s Hermiticity requires the addition of the complex con-
jugate expression, and the non-Hermitian parts of the
Noether-theorem-generated densities cancel.! As a result,
the special Lorentz transformations in SL(2,C), for instance,
have only orbital components with the pieces
§ d>x(oo; 0 + H.c.) canceling. Boosting an electron state
thus contributes only to the kinetic energy. The same type of
cancellation occurs for the (noncompact) deformation gener-
ators in GL(4,R).

The compact subalgebras of GL(4,R) or SL(2,C) being
the only ones to contribute to the physical currents and gen-
erator observables, why do we need the full groups alto-
gether? The action and its Lagrange density have to be glo-
bally invariant under the (active) Poincaré group. When we
include gravity we require invariance under the (passive)
general covariance group (the diffeomorphisms A with local
dependence of the transformations). The latter is realized
nonlinearly over the linear subgroup GL(4,R); we thus have
to use “world tensors” and the equivalence principle can be
fulfilled in the easiest manner by keeping them in special

) Present address: Department of Theoretical Physics, Research School of
Physical Sciences, Australian National University, Canberra ACT 2601,
Australia.
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relativity, too. This involves regarding GL(4,R) as
“GL(3,1;R),” i.e., introducing the Minkowski metric linear-
ly and identifying accordingly the SO(3,1) subgroup, with
the special Lorentz transformations given by symmetrical
matrices that do not belong to the SO(4) maximal compact
subgroup of GL(4,R). Alternatively, one may define x* = ix°
(the “Pauli metric’’) and identify the orthogonal matrices of
the compact SO(4) with the physical Lorentz group, as we
demonstrate in (5.3). One can then ask, in either case, for
global Lorentz invariance and ensure that this be manifest
invariance.

For spinor fields with a finite number of components,
the transition to A does not exist [there is no finite spinorial

representation of SL(4,R )] and the spinor components are
invariant under GL(4,R ). Global (active} covariance under
the double-covered Poincaré group is formally ensured by
SL(2,C). For all fields SO(3,1) = SL(2,€) C ISO(3,1), the
double covering of the Poincaré group is the global covar-
iance group in the final result. This is thus the covariance
group of special relativity both for particles and for fields. Of
course there is the additional advantage of a smooth mani-
festly invariant classical fields’ limit, where the particle as-
pect does not enter, and neither does unitarity.
Infinite-component fields, however, as they correspond
to unitary representations of SL(2,C) and to Hermitian infi-
nite matrices of the si(2,C) algebra will, in contradistinction,
yield “internal” contributions to the special Lorentz trans-
formations. In this case, the boosts will excite the spin vari-
able, too, and may thus contribute to the potential energy
(i.e., connect to a different mass). Such infinite-component
fields were first introduced by Majorana,? who used the only
two irreducible representations of SL(2,C) for which an in-
variant (linear) first-order wave equation of the form>

(X*d, +ik)Ylx)=0 (1.1)
can be written. The operators X # (u = 0,1,2,3) close on the
Lie algebra sp(4,R) =s0(3,2). The so-called “ladder represen-
tation” of Sp(4,R) is unitary and splits into the direct sum of
the two Majorana representations. The algebra sp(4,R) was
suggested as a spectrum-generating algebra® for hadronic,
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nuclear, or other excitations, following the reintroduction of
Majorana’s work by Fradkin.> However, difficulties arose
due to the presence of a continuous set of solutions with
spacelike momenta, in addition to the discrete spectrum-—
which is itself not realistic since states of higher spin have a
smaller rest mass. Dirac® recently rediscovered these equa-
tions and further developed the formalism. ’

Il. GRAVITY: THE EINSTEIN, EINSTEIN-CARTAN AND
METRIC-AFFINE THEORIES

(i) Einstein’s theory is Riemannian, i.e., it precludes the
propagation of either torsion or nonmetricity. Only the met-
ric field g, (x) propagates. Alternatively, we may use the
tetrad fields e (x), with

8 (X) = €L (x) (X7 (2.1)
where 77, is the Minkowski metric (+ 1, — 1, — 1, — 1).

In the above, the Latin indices a,b represent compo-
nents of the four-vector representation of the anholonomic
group. In Einstein’s theory with spinor matter fields,” or in
Einstein—Cartan theory,? this is SL{2,C) acting on the local
frames.

The tetrad fields had to be introduced’ in gravity after
the discovery of the electron’s spin, in order to cope with
half-integer spin fields. In differential geometry they de-
scribe a general moving frame, i.e., a set of one-forms 6°
defined over some region U of space-time:

6°=et dx*. (2.2)

Ateachpointx = y € U, the 8 ° serve as local “coordinates,”
inertial at £°. From the principle of equivalence, i.e., a
smooth transition to special relativity, when the gravita-
tional field is extinguished, we now get a requirement of Jocal
SL(2,C) = SO(3,1) invariance of the locally inertial coordi-
nate system at each point: the frame is orthonormal. The
spinor field carries a (4,0) ® (0,}) representation of this (an-
holonomic} local Lorentz group, but is invariant under the
diffeomorphisms (general coordinate transformations). Or-
dinary tensor fields vary under the (passive) action of the
(holonomic) diffeomorphism group A and its affine
[GA(4,R)] and linear [GL(4,R)] subgroups but are scalar un-
der the anholonomic Lorentz group. To recapture their vari-
ation under the active anholonomic transformations of the
local Lorentz group (and thus to satisfy the principle of
equivalence) they have to be contracted with the tetrads:

o (x) = €%, (x) €, (x)-{e ™) (x)
X (e~ )3 lx) o (2.3)

They would then become world scalars (i.e., invariant under
the holonomic A). General relativity with spinors is thus re-
written in a manner which makes A act trivially on all fields.

This treatment was presented in most textbooks as if it
was required by the (erroneous) assumption (to which we
return later) that there can be no world spinors, i.e., that the
diffeomorphism group has no double covering A. In any case
this is irrelevant for the Dirac field, as there are indeed no
finite-dimensional unitary bivalued representations of
SL(4,R), GL(4,R), or GA(4,R), or of the diffeomorphism
group A. Finite spin fields are thus treated anholonomically
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only, as objects belonging to the tangent manifold, Min-
kowskian for a theory obeying the equivalence principle.

So the discovery of half-integer spin did not modify Ein-
stein’s theory, but it required reexpressing the gravitational
field in terms of tetrads rather than the metric, the latter now
appearing as a higher construct.

(i) In Einstein—Cartan gravity, as developed by Sciama,
Kibble, Trautman, and Hehl,® space-time is allowed to carry
torsion, as well as curvature. Applying the Poincaré group
double covering as a local gauge on the anholonomic indices,
curvature is seen as the field strength of the SL(2,C) Lorentz
connection w%’(x) and torsion as that of the translation gauge
field, represented by the tetrad ej(x) (the “fundamental
form”):

R#vab: —_ avw#ab _ a“wvab +w a wcb _ w,uacwf'b’

v c%u )
(2.4)
S, =0, —d.e; +0,%€ —n, .. {2.5)
Holonomically, torsion introduces an antisymmetric piece
in the Einstein connection I',,”,, in addition to the symmet-
ric Christoffel symbol,

S =S, =42 —T.0) (2.6)
Considering gravity heuristically as a gauge theory of the
Poincaré group, one would thus have expected to deal with
two gauge fields (both with spin J = 2), i.e., &’ for SL(2,C)
and e;; for the translations. In the Einstein—Cartan version of

gravity, varying the Lagrangian with respect to both yields
the two equations

R, —18,.,RF=KE,, k =8mrc™'G (2.7)
(Einstein’s equation) and, with S, :=S,  +g, S.o
- gva[lZ)

Spvp =kZ,,, (2.8)

(Cartan’s equation), where E, is the energy-momentum
density tensor and 3 ,,, the angular-momentum density ten-
SOr.

Einstein’s (and the Einstein—-Cartan) Lagrangian for the
gravitational field is linear and contains only one derivative
(from 2.4). Ths is why (2.8} is just an algebraic equation and
only implies a substitution of torsion by spin. The Einstein
equation (2.7) contains curvature (2.4) and through it the
connection @ and through (2.6) the torsion S, as can be seen
by writing the holonomic expression for the connection for a
four-dimensional Riemannian differential manifold with
torsion

rpvp = gpaAgfﬁ;' (5 aa gB‘y - gyssag)’

(2.9)
A = 535557 + 526267 — 528887,
with
D,g,:=—0Q,.,=0. (2.10)

The first term in I" is the Riemannian connection, and the
second is the torsion contribution. In fact, Eq. (2.9) results
from substituting (2.6) and (2.8) in (2.5) and solving for I".
Substituting spin for torsion in {2.7) simply adds a term qua-
dratic in spin on the right-hand side.® Here, D,, is the covar-
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iant derivative, with connection I" and @,,,,, is the nonmetri-
city tensor. ‘

Thus, even though we have allowed torsion, it does not
propagate. It is confined to the regions where the spin den-
sity exists. The effective theory is thus still Einstein’s, except
for the spin-spin term to be added to E,,,,.

(iii) The metric-affine theory® allows the most general
differentiable manifold L,, with a connection (allowing par-
allel transfer) and a metric (allowing local measurements of
angles and distances). Expression (2.1) does not vanish, and
I,.” in (2.9) acquires an additional term in the parentheses,
3 Q.5,- The local gauge group on the anholonomic indices is
GL(4,R), deforming the tetrad frames. We use a gravita-
tional Lagrangian in which the connection is now this com-
plete affine connection, and with a new term added,

Z(8,0g.T,0T) = (—det g)'"*(g*"R,, 7 +BQ. 2 ),
B#0, Qu:=10.," (2.11)
(@, is known as the Weyl vector), we get as a third field
equation,
Q. =kY,, (2.12)
where Y, is the scale current, a reducible component of
Y ., the hypermomentum tensor density

L .
a(«w)’1 o

where the A #, are the matrices of the GL(4,R) algebra. Thus
nonmetricity Q does not propagate, and is confined to the
regions of nonvanishing deformation-current or scale-cur-
rent density. The energy momentum tensor density acquires
a new term quadratic in the scale current.

(det — g)'/? Y} = —

Ill. THE DOUBLE COVERING OF GL(4,R)

The anholonomic group acting on the local frames has
thus been enlarged to form SL(2,C) = SO(3,1) in Einstein’s
theory with spinors and in Einstein—Cartan theory, or to
GL(4,R)in the metric-affine theory.® The (erroneous) univer-
sal impression among physicists that GL(4,R ) possesses no
double covering'® seemed to restrict the application of met-
ric-affine gravity to bosonic matter.

The existence of a double covering GL(n,R) was realized
in physics in 1977.!' This implied the existence of spinor-
type fields transforming (whether fermonic or bosonic} as
“bandor”!%!? unitary infinite-dimensional representations
of the (meta-) linear, affine, and diffeomorphism groups; un-
der reduction of these covering groups to the covering group
of the orthogonal subgroup SO(3) the fields decompose into
representations of SU(2) = SO(3). It had been conjectured!?
that hadrons with their Regge excitation bands could be de-
scribed by such bandor irreducible unitary representations
of GL(3,R) C GL(4,R). It was now proposed'® that such a
description should also fit their interaction with gravity. The
physical interpretation of the GL(r,R ) currents was clarified
and it was suggested that in metric-affine gravity, spinor-
matter fields indeed appear as infinite-dimensional unitary
representations of the anholonomic GL(4,R) acting on the
tetrad indices.™
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The term polyfield or manifield was suggested. It was
also pointed out that since the diffeomorphism group is real-
ized through (nonlinear) group coordinates over the linear
GL(n,R) subgroup, manifields could also be considered as
providing for world spinors,'! i.e., holonomic spinors,
whether in Einstein or in affine gravity.!* In this role the
representations correspond physically to the double cover-
ing of the Greek-indexed coordinate (holonomic) linear
group GL(4,R) C A = Diff(4,R), in contradistinction to
the above anholonomic GL(4,R) acting on the tetrad (Latin)
indices, in the metric-affine theory.

We thus have three gravitational roles for such mani-
fields: (a) anholonomic spinor matter fields in the metric-
affine theory," (b) holonomic world spinors in “classical”
Einstein gravity,'! and (c) holonomic world spinors in affine
gravity.'s

Mickelsson'® has constructed a wave equation fitting
case (c). His equation is GL{4,R) invariant; when the gravita-
tional field is extinguished, it preserves global GL(4,R)invar-
iance, i.e., it does not obey the principle of equivalence. On
the other hand, it could fit in an affine theory with a basic
non-Minkowski microscopic structure of the space-time
manifold, perhaps with macroscopic spontaneous break-
down to Minkowski space-time. Such models have only been
discussed qualitatively'’ to date. Another (technical) reason
why we do not favor a GL(4,R) invariant equation is that—as
we shall see—the “bandor” representations do not allow the
construction of such an equation.

In this article, we propose two distinct ways of meeting
case (a). The manifield equations we construct are of the
form (1.1). Although they involve unitary representations of
GL(4,R), they are only SL(2,C) invariant and thus have a
good equivalence-principle limit. They can be used as more
infinite-component field equations in special relativity and
conventional tetrad gravity, or [role (a)] as spinor matter
manifields in metric-affine gravity. Our equations are in
close analogy with the Dirac equation, and, as for the Dirac
case, the gravitational field enters through the inverse-tetrad
fields

VX “3,0—b X Dy =X e )0, + o, (.1)
where D, is the anholonomic covariant derivation and w,, is

the connection. In Einstein gravity with Dirac spinor fields
we have

(3.2)

with A, a finite-dimensional nonunitary matrix representa-
tion of the sl(2,C) algebra. In metric-affine gravity 4, is a
unitary infinite-dimensional matrix representation of the
gl(4,R) algebra. When gravitation is introduced, the 4, take
the six SL(2,C) (nonlinear) values for Riemannian space-
time, or the full 16 (matrix) values for metric-affine gravity.

In the next section we shall summarize the properties of
multiplicity-free representations of SL(4,R); Secs. ¥V and VI
discuss the formation of wave equations according to two
quite distinct approaches. In each case we propose infinite-
component fields. These manifields may thus provide the
correct mode through which the sequences of hadron excita-
tions interact with gravity.'>!* Both fit role (a) but only the
manifield (5.8) may fulfill role (b).

_ be
0, =0, Abes

A. Cantand Y. Ne’eman 3182



IV. SL(4,R) AND ITS REPRESENTATION

The unitary irreducible representations of the group
SL(3,R) have been constructed and listed.'””'® Those of
G = SL(4,R) have been studied'>'""'>?° though a complete
description is still lacking. The representations of G, which
are multiplicity-free on reduction to the maximal compact
subgroup K =SO(4) = SU(2) X SU(2), have a particularly
simple form and were constructed explicitly.'>*®

We use the basis { j¥|y = 1,2; i = 1,2,3} for k, with

[jim’jj(")] = isxneijk JILX) (4.1)

The remaining (noncompact) matrices in sl(4,R) transform as
the irreducible tensor operator Z of type (1,1) under K:

[ Zy ) = i€ jm Zomis
L Zx] = i€im Zyn,
[Zijs Zim] = — iBmEikn J2" + Suk€jmn ).

We also have the spherical basis, given in terms of the above
Cartesian basis by

J§ =je, jE=j £ ij,

Zy=Zs,

4.2)

Z 10 = FUAN2Zys £ iZ5)), (4.3)
Zo, o1 = FUAZs, +iZy),
2,11 = 23 ZuTF Zo) + 120 £ Z1))-
The commutation relations (4.2) become
(/" Zap) =aZopy [ 16" Zag] =BZops
(/0. Zpl=R—ala+ 1)'?Z, 4
=V2Z, 1501 =8 1), (4.4)

[j(jz;)’ ZaB] = \/iza,ﬁj: l,ﬁ(l - 61 I,B) (a»B= 0, + 1)’
with the remaining ones following from the so-called “sl(4,R)
condition”

(Z1Z_,_1] = — (" +id). (4.5)

It is convenient to introduce here too, the basis used by
Mickelsson'® for gl(4,R):

A.=e, +e,, rs=1234 (4.6)

where ¢, is the 4 X 4 matrix with 1 in the 7,s position and all
other elements zero. The L, span k = so{4), and we have

[Lrs’ Ltu ] = 8leru - 6an - ‘SwLn + 5ruLst’

Lrs =€)y — €y,

[Lsdi] =044, — 6,4, + 06,4, —6,,4,, (4.7)
(An» A ] =64 Ly +6,, Ly, +6,L,, +6,L,.
We also put
L, =Lij + Ly, = 2,-]-,((1)’ M, =Lij —L,= 2ij,£2),
{ijk } a cyclic permutation of {123}. (4.8)

To construct multiplicity-free representations we take the
subspace V of L %K ) with orthonormal basis
|1'1

b )= 1@+ 0+ 107D, D 49)
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Then, in the spherical basis,

+(1) .l j2 >= jl j2 >
Jo le m, " m, myl

.

ol ) emts )

A ‘j;;l J;Z) (4.10)
— Ui+ )= mm e i)
= Ui+ D= mfmy 2 22 )

while the noncompact operators Z 4 are given by

<ji 2 z, Y, jz)
mi m; m, m,

=(_1y'|—"'i+ji—"té( i 7 )( 72 lfz)
—mia my/ \—m, Bm

SV ANYARE N2 (4.11)
The reduced matrix elements are

i sV |Z)juda)
= —i(— VR 7 4 1025 + DR+ 1)
X2, + D1 py +ip, ~ § [Ji (i +1)
— AU+ D445 + D =R+ 1])

X(j{ 1 jl) (J'i 1 1'2)
o 00/\0 00

and clearly they are nonzero only for the four possibilities

Ji=hzxl, p=itl

Strictly speaking, from (4.9), the values of j,, j, should
only be 0,1,2,... . But at this stage we can formally continue
(4.10) and (4.11) to half-integer values of j,, j, as well. The
sl{4,R) condition (4.5) must be rechecked. One can proceed to
find the complete set of ¢/l the unitary irreducible multiplic-
ity-free representations SL(4,R) (see Ref. 15 and 19). We shall
only need some of these representations. First, we have that
class, belonging to the discrete series, which is spinorial: i.e.,
double valued for SL(4,R), and quadruple valued for SO(3,3)
[note that SL(4,R) = SO(3,3), but single valued for SL(4,R).
Their K content has the structure of a triangular lattice
(p1» p, are Casimir invariants):

(4.12)

Ddiw”w(j?’ 120) jlozpl +1, j?=0,
or (4.13)
.0 _ .0
J2 =0, J2 =P+ 1

P1 = _iy 5!593""’ P2=0,

|/s—Al>p1+ 1

Second, we want to mention the ladder series'? of tensorial
bandors, i.e., single-valued for SL{4,R), with K content as
follows!®:
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D"90,0; p,):{(0,0),(1,1),(2,2),...},

DN 45 p){ (403 303 3. )
pi=-—1 p,eR.

(4.14)

The second of these, rather surprisingly, turns out to be rel-
evant for manifield equations (see Sec. VI). This representa-
tion was constructed in Ref. 20 in solving the strong-cou-
pling model for the nucleon, for the value p, =0.

V. SL(2,C)-INVARIANT WAVE EQUATIONS

We now turn to a consideration of some wave equations
appropriate for the gravitational interactions of hadrons.
The general type of equation we have in mind is (in momen-
tum space, with no gravitational field yet present)

X*p, —x)¥{p)=0, (5.1)
where 3 takes its values in a Hilbert space ¥ carrying a uni-
tary multiplicity-free representation 7 of SL(4,R), and « is an
SL(2,C)-invariant operator on ¥, possibly a function of
p*=p* P, (this generality is sometimes needed when we
look for realistic mass spectra—see Sec. VI). The X #
(u = 0,1,2,3) are linear operators on V. We demand only
SL(2,C) invariance as discussed in Sec. I1I, so the X # trans-
form as an SL(2,C) vector. Physically, we want an equation
which provides a kind of “extended” Dirac field.

At this stage we are confronted by various choices,
namely, (a) which is the “physical” Lorentz subgroup of
SL(4,R) and (b) how is it embedded? These points are by no
means trivial, as we shall see.

Our embedding of K = SO(4)—as well as SO(3,1)—in
'SL(4,R) has been the natural one, described by the Lie alge-
bra branching rules sl(4,R}—so(4) or sl(2,C):

defining representation— (1, 1),
(5.2)
adjoint representation—(1,0) & (0,1) & (1,1).

Since our representation 7 of SL(4,R) is X finite, i.e., on re-
duction to X it contains the representation ( j;, /,), but a finite
number of times, it is most natural'>!® to take the quantum
numbers ( j,, j,) to refer to the physical Lorentz group. This
means using x* = ix°. The non-Hermiticity of these “phys-
ical” Lorentz generators does not affect the physics, as ex-
plained in Sec. I. For this solution the Lorentz boosts will
again be purely orbital and contribute to the kinetic energy
only. All of this is perfectly respectable, since only finite-
dimensional representations of X are involved. But if we had
taken directly the SL(2,C) subgroup then'® 7 would not con-
tain gny finite-dimensional representations of SL(2,C); this
case is usually ignored.

An important property of embedding (5.2) is that we
must look outside sl(4,R) to find the required X vector X .
This is our first approach to wave equations, which is further
discussed in this section. We refer to (5.2} as the narural
embedding. It is based on an automorphism proved in Ref.
19.

However, there is a second approach, suggested to us by
the case of the Majorana representations of SL(2,C). There is
an embedding of SL(2,C) in SL(4,R) obtained via the Dirac
representation:
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sl(4,R)—sl(2,C),
defining representation—{} ,0) & (0.4), (5.3)
adjoint representation—(1,0) @ (0,1) @ 2(},}) & (0,0).

[We shall show later that SO(4) cannot be so embedded.]
Now everything is quite different: we have two linearly inde-
pendent SL(2,C) vectors #,y* in SL(4,R). So we can obtain
automatically an SL(2,()-invariant equation suitable for our
purpose simply by taking an irreducible representation 7 of
SL(4,R).

It is important to realize that (5.3) does not provide a
direct embedding of SO(3,1) in SL{4,R). Instead, SO(3,1) is
embedded in SO(3,3) and SL(2,C) in SL(4,R) = SO(3,3).

We shall discuss this possibility (the Dirac embedding)
in Sec. VL.

Let us come back to embedding (5.2). The condition that
X ¥ can be a X vector is

[Ls» X, ] =6,X, —6,X,. (5.4)

To express (5.4) in a form convenient for applying angular
momentum algebra, we define the quantities X,

(4,B= +1)by
(X +iX, —X;—iX,
(X45) = ( —X,+iX, —X, +I'X2)' 5.5)

Then we see that the X, transform like the canonical basis
for the K-vector representation (3, 1):

[jé”’ X4 ] =AX,p, [j(()zy’ X4 ] =B X3,
{5.6)
[j(;é)’XAB] =XA1:1,B’ [j(;?rXAB] =XA.8¢1'
It is well known from the theory of Lorentz-invariant wave

e_q_uations”'22 that, in a candidate representation 7 of
SL{4,R), the matrix elements of X, are given by*

ho 5
my m;

s?
= (= )i A (11
_m;

AB

Jr j2>
m, m,

y o
y mx) (5.7)

7 3 jz) YN g
x(_mé B m, (i J75) {hi)-

They are nonzero only for the four possibilities ji =7, +1,
J5 =J, £ 4. Itisimmediately clear that, among the represen-
tations (4.13), the only possible unitary multiplicity-free
spinorial representation 7 of SL(4,R) that admits a K vector
is the (reducible) combination suggested in Ref. 15. We have
that

7= D(,0)  TU(0,) (5.8)

(so in each case p, = —1}, p,=0), with the X content
shown in Fig. 1. Here the dark (white) circles refer to
2*(0,3)(2**(3,0)), and the only nonzero matrix elements
of X,z are between the K representations (j,j+ 1) and
(J+ 47 (j=0,1.2,.), ie., across the diagonal.

We want to remark here that our multiplicity-free repre-
sentations do not allow the existence of a SL(4,R) vector. The
proof is given in Appendix A. Now the operators X * in
Mickelsson’s wave equation'® do transform as SL(4,R) vec-
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FIG. 1. Action of X (3,4} on Z4*(3,0) @ 24*<(0,)).

tor. However, his representations of SL(4,R) are not multi-
plicity-free, and the argument of Appendix A is no longer
valid.

For our equation we write the reduced matrix elements
in (5.7) as®*

g = +3L X [+ 4D,

(5.9)

by=(j+4,Jl1X|1jj+4), j=012,..
The a; and b; can be arbitrary complex numbers. Thus,
strictly speaking, we have a family of wave equations, each
one described by a particular choice of these coupling con-
stants (assumed nonzero). As far as SL(2,C) properties are
concerned, each such system is an infinite set of decoupled
equations for successively higher half-integral spins. Each
constituent (j,j + 4) == (j + 4, /) in general has the 2j + 1
spins: 2j + 4,2 j — 1,...,4. The gravitational field, in the form
of the noncompact shear operators Z 4, will couple between
these constituents, and also throw up new X representations
so that altogether we recover the representation (5.8) of
SL(4,R).

Although we are not concerned here with the Lie alge-
braic properties of the vector operator X #, we note?! that the
Lie algebra generated by the X # and k will be, for almost all

choices of g;, b;,

sp(4,C) @ sp(24,C) ® - & sp(2(27+ 1)(25+2),C) @ --.
Including the Z,; will no doubt generate an infinite-dimen-
sional Lie algebra.

The mass spectrum, too, depends on the choice of a;, b;.
Two equations for which the quantities g;, b;, j = 0,1,2,...,
coincide clearly have the same spectrum. The spectrum is
given by

m=x/A (5.10)
if x in (5.1) is a constant. More realistic mass spectra appear

(A a nonzero eigenvalue of X ),
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possible, as in (6.39) or (6.42). Spins coupled to zero eigenval-
ues of X ® are excluded,?! as they would have (infinite) unphy-
sical masses. This may imply a need for subsidiary con-
straints. _

Since (5.8) belongs to the double-covering SL(4,R), this
manifield, though constructed so as to couple anholonomi-
cally to gravity, may also have a holonomic version.

VI. A WAVE EQUATION BASED ON THE DIRAC
EMBEDDING

In this section we want to study the possible Lorentz-
invariant wave equations obtained by considering suitable
representations 7 of ?I:(4,R), where SL(2,C) is embedded ac-
cording to (5.3). First of all we shall write down the (Lie
algebra) embedding explicitly, directly using results of Ref.
25, where a general study was made of those real Lie algebras
containing sl(2,C) and a vector operator.

The starting point is embedding of the compact algebras

su(4) D su(2) @ su(2),

provided by the Dirac representation (4,0) ® (0,4). We use
the fact that,>?% if g, is a real form of s1(4,C), obtained via the
Weyl “unitary trick” from the involutive automorphism s
(say) of su(4), then sl(2,C) is a subalgebra of g, if and only if

sX,Y)=(Y,X), VX, Y)esu2) o su(2) (6.1)
From Ref. 25 we have the following resulit: sl(2,C) is embed-
ded in sl{4,R), and s is the (outer) automorphism

s:su(4)—su(4),

_ (6.2)
X->NXN~'= —NX'N-L

Note: su(4) consists of skew Hermitian matrices. The

matrix N € SU(4) may be taken to be

0 iaz)
N= ( —i? 0/’
One can check that s satisfies (6.1). But how do we know that

the resulting real form is sl(4,R) [and not su(2,2) or su*(4), for
example]? The reason is that®®

U-NU=1,

where

(6.3)

U=é(l_ o )T

and thus s = @~ '6a, where 0,a ae the automorphisms given
by
0: X—X, a:X—U"'XU. (6.5)

Since s is conjugate to 8, and @ clearly gives the real form
sl(4,R) with the Cartan decomposition

sl4,R)=k’ & p' =so(4)

® {real symmetric matrices],

(6.4)

(6.6)

we see that we indeed have a realization of sl(4,R). Our Car-

tan decomposition is given by
go=kep,

where the maximal compact subalgebra is

(6.7)
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([ ia B y 0\ )
— - B ib 0 L4 . . ¥ A rrr—1

k=1 5 0 - 8 abeR;ByeCt=a %k'=Uk'U (6.8)

L\ O —y —B ia J
[isomorphism to so(4)]; while the noncompact generators are
(fc & T 6 A
i — _

p=1 - ﬁc —ﬂc _; ceR;6,7,0meCt=a p'=Up'U"}, (6.9)

\& -7 -8 ¢ J

which means that our realization is

ABegl(2,C); Re Trid) = o] =a~\(sl(4,R)) = U [sl{4,R)] U~ (6.10)

(L3 )
2= \- B Ao
This realization is somewhat strange, but we can go over to the more familiar one by applying the isomorphism a. We shall al-
ways do this since we want to compare our embedding with the more familiar case of {5.2).
Our embedding proceeds via sp(4,R) as follows. For the compact algebra,

su(2) @ su(2) C usp(4) = u(4) nsp(4,C), (6.11)
where
sp(4,C) = [ X e51(4,C)| BXB ~l, =-XT} (6.12)
and
-0, O
B= ( 0 i 02) ’
Then sl(2,C) is embedded in sp(4,R) (see Ref. 25). We take the automorphism 5 of usp(4) given by
§: X—>MXM !, (6.13)
where
M=i(10 OI)GUSp(4] M?*= —1I). (6.14)
The resulting real form g has Cartan decomposition
g=kop, (6.15)
where
(/—ia B id 0 \
= ;f “0’“ : Z adeR;BeCtCk (6.16)
(\ 0 id ~B —ia
and
(/ b y ic )
=1 :”; :g —51; :’; bceR y8€R} Cp. (6.17)
\-46 ic —y b
r
Here § is a realization of sp(4,R) contained in our realization where B' = U TBU, (6.18)
8o of sl{4,R); the maximal compact subalgebra & is isomor-  {he more familiar realization.
phic to u(2). Clearly s, as given by (6.2), is an extension of §, We notice that so(4) cannot be embedded in sl{4,R) via
because if X € usp(4) the Dirac representation, since any two maximal compact
sX)= —NXYTN"! subalgebras of sl(4,R) are conjugate under some automor-
_ phism, and so(4) is aleady embedded via the natural repre-
= + NBXB~'N !

sentation (4 ,4). It is interesting to see how this result appears
=MXM ! =5X) (since NB=M). if we ask the general question: which real forms g, of sl{4,C)
contain so(4) embedded via the Dirac representation? We
discuss this in Appendix B: it turns out that su(2,2) and su*(4)
sp'(4,R) = (X esl(4,R)|B'XB'~'= — X7}, are the only possibilities.

The isomorphism a given by (6.5) takes g to
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Coming back to our embedding sl(2,C) C sp(4,R)
C sl(4,R), we write the sl(2,C) generators of rotations and
Lorentz boosts as

x_ io* 0) Fk=(—ak 0) 6.19
" ”(o io*)’ 0 ok’ (6.19)
Using the Dirac matrices in the form
0 X (0 —a‘)
= = ) 6.20
7 (1 oI)’ rr={,* o (6.20)
we introduce another vector operator, given by
, 0 iI)
r=-rr="_0)
{6.21)
, 0 ia")
k' __ h___
v =ry (l.a,, 0 )
where

i
Then, for sp(4,R), we see that & has been {H *,i%°] and p has
basis {F *",iy*'}. The remaining generators of sl(4,R) are
i¥”, ¥’ ek, iy* e p. Note that sl(4,R ) contains two vector
operators as expected from (5.3). But only one of these—in
this case /¥ “—belongs to sp(4,R}, once the skew-symmetric
form B is fixed.

Under the isomorphism a:g,—»sl(4,R) we have (in the
notation of Sec. IV)

r=rrrr=" )

H L, Hz—->L3, H3->L,, 6.22)

WM, oMy, V=M, ‘
for the compact generators and

F'SZ,, F’o>—2Zy,, F>—2,,

W' oZy, > —Zy, V> —Zy, (6.23)

iyV—Zy, Yo —Zy, > —2Zy,

for the noncompact ones.

Notice that in our setup the physically relevant su(2)
subalgebra is that spanned by L: in the approach taken in
Refs. 15 and 16 it is that spanned by L + M. Also, the maxi-
mal compact subalgebra k=cso(4) has no physical role;
though it is still mathematically relevant in the study of the
representations of sl(4,R). Again we stress that y#, y* are
not vectors under the so(4} subalgebra, but under the non-
compact subalgebra sl(2,C)=xso(3,1). It is also clear that
sl(3,R) does not fit into our scheme in such a way that its
maximal compact subalgebra so(3) is spanned by L.

The Lie algebra sl(4,R) is isomorphic to so(3,3). We can
easily write the so(3,3) generators in terms of Dirac matrices
as follows. Introducing the notation

Y=y — iy, —il), m=1,2345=0,6,
(6.24)

we put
Q mn p— i 7 m7/ ’l'
Then we have the commutation relations of so(3,3),

[Q™, @ ™) = gwQm — gmQ™ — gmQ™ + gmQ™,
(6.26)

(6.25)
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where the metric is

g =diag(—1,—1, — 1,1,1,1).
The sl(4,R) generators are identified as follows:
QU=3y'y'= —H?* (ijk:cyclic permutation of {12 3}),
Q4 =Livy'=W/2)y)

(6.27)

Q" =47¥ = —}F', (6.28)
QH = —yir",

Q%= — iy =i/ 7",

Q%= —17.

These formulas are analogous to Barut’s?’ four-dimensional
realization of s0(4,2); the only difference is that he takes ¥* to
bey’ and g™ = diag(— 1, — 1, — 1, — 1,1,1).

It is interesting to compare our approach with Barut’s
theory?”?® of the hadron spectrum using SO(4,2): in both
cases sl{2,C) is embedded via the Dirac representation. Barut
was led to so(4,2) by the well-known properties of the hydro-
gen atom, which has a so(4) kinematical symmetry. We have
the spectrum-generating algebra sl(4,R) =so(3,3). Kihlberg®
has, in fact, suggested using so(3,3) for hadrons, with the
maximal compact subalgebra so(3) ® so(3) interpreted as
the sum of spin and isospin algebras. In our approach, how-
ever, using SL(4,R), we have the gauge group of gravity natu-
rally appearing. This is why we can speak of the gravitational
interaction of hadrons.

Now we can produce Lorentz-invariant wave equations
of the form (5.1), suitable for the description of the gravita-
tional interactions of hadrons. One can say that our equa-
tions are extensions of Dirac’s equation, since we used the
Dirac representation of sl(2,C). If we fix the vector operator
to be y#, then the equation is parity invariant. The parity
operator P is essentially?® the M of (6.14); it singles out the
real form sp(4,R). Parity invariance means that iy° € k. In
the same way charge conjugation C is essentially the N of
(6.3); it gives the real form sl(4,R) and charge conjugation
invariance means that iy° € k.

We have enlarged the sp(4,R) algebra—whose ladder re-
presentations give the Majorana equations—to all of sl(4,R),
by taking the algebra generated by all the products of ¥ ma-
trices (not just the commutators [y*, ¥*], which close on
sp(4,R ). Another way® of obtaining sl(4,R ) from Dirac’s
equation

(r*P, —M)¥p)=0

is to let the mass term M be proportional to 9, and then take
commutators of the y* and M.

We can now take one of the unitary irreducible repre-
sentations of SL(4,R) given by (4.13) to obtain the Lorentz-
invariant wave equation

(my* p. — &) ¥(p) =0, (6.30)
where ¢ takes its values in the Hilbert space ¥ of the repre-
sentation 7. We could take « to be 7{}M ) as the simplest ap-
proach, or even a general Lorentz-invariant operator-valued
function of p%.

Since the physical spin su(2) subaligebra is that spanned
by L, the spin content for each representation = is easily

(6.29)
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obtained: for each K representation (/,,/,) appearing, we
have (2/, + 1) copies of the SU(2) representation j,. Clearly,
in the present context of the Dirac embedding (5.3) the ap-
propriate spinorial representations 7 are those that contain
K representations (j,, /,) with half-integer j,.

There are thus two candidate multiplicity-free represen-
tations (the method can, of course, be extended to non-multi-
plicity-free representations as well) with lowest spin 1: (i)
Z**(} ,0) with spin content

(3) @ 33) @ 6(3) ® 10(3) & -, (6.31)
(i) 24 ,4;p,), p, €R, with spin content
2(}) ® 43) ® 6(3) ® . (6.32)

Since i® € k, integer values of j, asin 2 **°(} ,0) may involve
self-charge-conjugate states for zero eigenvalues A of /.
The representation 2'*%(} 1 ; p,) on the other hand is sym-
metric in positive and negative energy states, like Dirac’s
spinor.

The Dirac embedding (5.3) is an embedding
SO(3,1) € SO(3,3) or SL(2,C) C SL(4,R). This is why the
spinor nature of the equation and particles is not correlated
with the single or double valuedness of the SL(4,R) represen-
tation. For gravity, the Dirac embedding produces an anho-
lonomic spinor and cannot be utilized for a holonomic
(“world”) spinor (see our discussion in Secs. I-III).

We would also like to know the SL(2,C) and Sp(4,R)
reduction, but this is not readily available from our infinitesi-
mal approach. Certainly we have a direct sum of (infinite-
dimensional) unitary irreducible representations: for exam-
ple, we conjecture that the SL{2,C) decomposition of
D=} ,0) is

(3,17} @ 2(3.1%} @ 3(3/°) (6.33)

(in the notation of Ref. 21). We do not know what the labels
1™ 1@ are. The first term in (6.33) may be the Majorana
representation {4,0}.

We are primarily interested in the mass spectrum of
(6.3). Since i7° belongs to the maximal compact subalgebra k
of sl(4,R ), there will be a discrete spectrum of rest masses
(i.e., those corresponding to timelike momenta, p®> 0). It is
easy to calculate the mass spectrum in a given case. First, we
observe that, since

M,=T"'MT, (6.34)
where
1 0 0 i
/ 1 0
r= L0 ¢ , (6.35)
21-¢ o 0 -1
0 -1 —i 0
we have, from (4.8),
a(y®) = 2/,? = 2T;,9T . (6.36).

Thus for a unitary multiplicity-free representation 7 of
SL(4,R) we see from (4.1) that the spectrum of 7{y°) is given

by
A=2my, =275 20/, — Do — 2 jins (6.37)

where j, goes over all the su(2) X su(2) representations ( j;, /,)
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that occur in 7. Note that for half-integer j, the equation is
indeed symmetric in positive and negative energy states, like
Dirac’s equation. For integer j,, 7{y°) will have one zero
eigenvalue for each value of j,.

The mass spectrum depends on the form of «. If we take

k=Bl (BeR), (6.38)
then the spectrum of rest masses is given by
m=pB/A

But this decreases as A increases; states of higher m, and thus
higher spins j, have a smaller mass as in the Majorana equa-
tion. It may be more realistic to take instead

[4 a nonzero eigenvalue of 7{°)].

k=(ap*+B)I, a,BeR. (6.39)
So, choosing 1(; = (m,0,0,0}, we have
4]
(m(y")m —am® — B) ¢(p) =0,
i.e., the spectrum of rest masses is given by*’
mlA + (A2 — 4aB8)"?)/2a, (6.40)

which gives a better mass formula; in particular if 8 =0 we
get

(6.41)

and the mass is linear in 4. The observed Regge spectrum
m? ~ j, with daughter trajectories is obtained by taking

k= {alp?P* +B] 1. (6.42)

We observe that of the two ‘“‘spinorial” equations (6.31)
and (6.32), it is the ladder example that has nonsingular
m(y°), symmetric charge-conjugate (or negative-energy)
states and can describe [with (6.42)] the physical mass spec-
trum. Its coupling to gravity is purely anholonomic and does
not involve the double covering of SL(4,R) and A.

m=A/a

APPENDIX A: LIMITATIONS ON X AS SL(4,R) FOUR-
VECTOR

In this appendix we shall show that, for the multiplicity-
free representations other than (4.14), no SL(4,R) vector X ¥
can be constructed (apart from the trivial case X ¥ = 0).

If X ¥ is to be an SL(4,R) vector, then as well as (5.4), we
must have

(4, X, ] =6, X, +6, X,. (A1)

We can calculate the commutators [Z,5, X,5] in the
spherical basis most simply by applying the Wigner-Eckart
theorem for the tensor operator Z acting by commutation on
the vector representation. Then the matrix elements are

<XCD |Zaﬁ IXAB>
oG (4 ) w

so that (A1) becomes
[Zops Xap]1 =2 1P {3 — A4 +a))
XG—BB+BN)" Xy 0nrp (A3)

using the 3j symbols tabulated in Ref. 23. This result can also
be obtained directly from (4.3) and (A1) if we use the relation
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iZ,;=16)(An — Asa) — Aj + €5 Ara)- (Ad)

Now if we take the commutator [Zy, X,
= —iX,,,,, ], for example, we see that the matrix ele-
ments

<j j+1

(A5)

’

i+ g
m n [ZOO’X1/21/2] ‘m 2 n)

are zero because Z never couples ( j,, j,) to itself in the repre-
sentations (4.11) we have constructed except for (4.14) with
P>70. Thus

i+
<m: n: %‘ X1/2 172
and since this is true for each direction of coupling in Fig. 1,

we see that X,;=0: no SL(4,R) vector exists for our wave
equation (5.8).

17y,
n

(A6)

APPENDIX B: DIRAC EMBEDDING OF so(4) C sl(4,C)

Suppose that g, is a real form of sl(4,C) for which the
maximal compact subalgebra k contains so(4) embedded via
the Dirac representation. The g, arises from some involutive
automorphism s of su(4) such that

s(X,Y)=(X,¥), V(X,Y)esu2) & sul2). (B1)

There are two possibilities.
(a) If s:X—~MXM ~! (inner) then (B1) gives

al O)
M= 2_82_1

(o gr)® =P
and so

A 0)
k= [(o B
=su(2) ® su(2) & center of k

and the real form is su(2,2). Since M € USp(4) we have in fact
an embedding so(4) C sp(2,2) with k=usp(2) & usp(2).
(b) If s: X—NXN ~, this gives

N=(gaz ?302

sONN = — |a|> = — I.Clearly k = usp(4) and this time the
real form is su*(4).

So we can embed so(4) in either of these real forms; these
possibilities do not concern us here. [Note that si(4,R) would
have to come from NN = I in (b). This never happens.]

ABeu2; Trd+B)= o}

)eSU(4) @®=B%= —1)
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Fluctuation-dissipation theorem for QCD plasma
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We explore a quantum-chromodynamic (QCD) plasma in stationary nonequilibrium states
assuming that the process of thermalization is governed by Fokker—-Planck dynamics. The
generalized thermodynamic potential appropriate to the state is obtained. A relationship is
developed between the response function and the fluctuations in the stationary state.

I. INTRODUCTION

Recent calculations have suggested that there is a de-
confinement transition that occurs in quantum chromodyn-
amics (QCD) at temperatures of the order of a couple of
hundred MeV. It also appears that such a phase transition is
achievable in the laboratory in high-energy collisions of
heavy nuclei.! It is therefore of interest to study this plasma
state of matter.

Since there is a belief (and also perhaps a proof) that the
colliding heavy nuclei would achieve thermal equilibrium
within a time of about a fm/c, analyses of the plasma have
been made under these equilibrium assumptions. A study of
a QCD plasma away from thermal equilibrium broadens our
appreciation of this state of matter.

It has recently been suggested that the thermalization of
a QCD plasma is governed by the Fokker-Planck equa-
tion.*? Since the coupling constant decreases as the momen-
tum transfers increase, most of the parton collisons involve
small exchanges of momentum. In this sense a parton in a
plasma away from thermal equilibrium undergoes Brownian
motion as it thermalizes. It should be remembered that a
small fraction of collisions are hard and involve large mo-
mentum transfers and that the Fokker—Planck equation for
thermalization of the plasma is, therefore, only a first ap-
proximation.

In this paper we study a QCD plasma away from ther-
mal equilibrium. The phase-space distribution function is
assumed to satisfy a Fokker—Planck equation. The station-
ary solution of the equation.replaces the canonical distribu-
tion function ¢ ~#¥ (H =Hamiltonian) of the equilibrium
theory. We study the linear response theory and obtain a
connection between the response function in terms of the
stationary fluctuations. This is the fluctuation—dissipation
theorem.*

Il. PARTON DISTRIBUTION AND TRANSPORT
EQUATIONS

We briefly review earlier work on the subject? here. Let
us for definiteness assume that two heavy nuclei collide
along the z axis at time ¢ = 0. Instead of using z and ¢ as
coordinates we use 7 and 7 defined as (see Fig. 1)

t=rcoshy and z=r7sinhy. (1)
Now 7 is the proper time measured from the origin of the (£,2)
coordinates. The transverse coordinates will not be used in
our notation as all the effects of the transverse motions will
be taken into account in the transverse mass of the partons.
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Let Y bethe rapidity of one of the nuclei and y the rapidity of
a parton at the moment of collision. The initial parton distri-
bution in a nucleon relevant for low P, is known® and let us
call it Q (x). From x we can go to the rapidity variable by the
use of

x=(ms /M) ?, (2)

where M is the mass of a nucleon and 7, the transverse mass
of a parton. Thus the initial rapidity distribution of the par-
tons at the moment of collision is known.

Let F(7,7,y) be the phase space distribution function at
{7,1). The transport equation for the distribution is

V#3,F(rmy)=L(F), (3)

where L is the collision operator.

The collision operator may be written in terms of the
transportrate T (y,)') that a parton of rapidity y gains y’ to get
to y + y'. Therefore, the collision operator in terms of 7 is
given as

L(F)= f A [Ty -y y)F ey —)

— Ty )F(rmp)]. 4
Expanding the first term inside the integral around y and

making the soft collision approximation we get the transport
equation for F (,7,y) as®

e a,,FE‘-;’; [%’ —A ]F, (5)

t

24

o

r4
FIG. 1. The nuclei collide along the z axis beginning at time ¢ = 0. The
momentum distributions of the partons inside the nucleons prior to the col-
lision are known from present experiments. The distributions evolve ac-
cording to the Fokker-Planck equation subsequent to the collision.
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where
1 N
= — 2 ! 6
B=1 fdy YTy) (6)
and
Ap)= f dyy Ty, ™

Instead of dealing with F (r,7,p), it turns out to be more con-
venient to deal with the quantity f defined as

Flry) =f_ " Pl oy — ¥y, ®)

where P(r,7,)') is the distribution in a collisionless plasma
satisfying V'* d, P = O and o = 7 cosh (y — y'). The function
P(r,m,y') is obtained from Q (y).

Since the function Pis arbitrary, Eq. (5)in F translates to

Ve, flrmy —y) = L{f) 9
Using
g .9
veg, =L, (10)
we get
3 _d[aBy)
2 flod=% [———ay 4 (y)}fw), (11)

which is the Fokker—Planck equation for the function f (o,p).

The elimination of the explicit dependence on the initial
collisionless distribution P makes the equation in f easy to
handle. However, the dependence of P on 7 and y is small
only in the central region and, therefore, the equation in f
also pertains only to this domain.

In the central region® the function B (y) may be approxi-
mated? by a constant B and may be eliminted from Eq. (11)
by using the variables

6 = Bo and a(y) = A (y)/B. (12)
Using these varaibles, we get
J _9[8 _
5e== [ > a(v)]f(ey). (13)

Ill. GENERALIZED THERMODYNAMIC POTENTIAL AND
THE FLUCTUATION-DISSIPATION THEOREM*

The operator 4 (y) may be obtained by assuming that the
Liouville operator L acting on the equilibrium distribution
gives zero. If the equilibrium distribution is assumed to be
Maxwellian, then we get

aly) = mB sinh y, (14)
where 8 = 1/T. The stationary solution f; () satisfies
al
85 _ mpB(sinh ). (15)
dy
Thus,
fo=foem e, (16)
The generalized thermodyanmic potential is obtained from’
fi=e"% (17)
Thus,
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@, ~ —myfB cosh y. (18)

The average value of a dynamic variable X in a station-
ary state is

x) = fdyXf,(v). (19)

The average value of X would change if we add a small per-
turbation as

6y _
36 (L + 8L f(8.y). (20)

It is easy to check that the system defined by Eq. (13) satisfies
irreversibility and the condition of detailed balance.

If the system is disturbed at time 6, by adding a small
perturbation term 8L to the operator L, the distribution f
changes to

so9)={esp [ jde'[L reLen|s, 21)

E[eL“’-"°> + fdo' =51 (9")

8

X ek =% 4 ]f;

=£0) +f9d0’e“‘"9"6L @Y. +... (22
6

The change in the value of a dynamical variable may be ap-
proximated by keeping only the first term in L. Thus,

500 = [ 1/69) - 1,01 X bl 23)

If the external perturbation is written as
a

L= —-K pY (24)
then, the response function R, is defined as

8X) = J-o K(6")R, (0 —06"d6’. (25)
Comparing Eq; 0(022)—(25), we get

R10)= — [ XolespiLo) 2= dp (26

By using the properties of f; () it is now possible to express
the response function in terms of the steady-state fluctu-
ations. The function f; (y) satisfies

Lf, =0 (27)
and
L [y, ] =ab.. (28)
Using these we may rewrite the response function as
R.16)= — [ XlesplL O11L b1y 29)
= — 2 XlexplL0 1,01y (30)
__4d
= -2 (xpo). (1)

This is the fluctuation dissipation theorem relating the re-
sponse function R, to the steady-state fluctuations.
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IV. CONCLUSIONS

Under the assumption that the parton interactions are
mostly soft during the process of thermalization in heavy ion
collision, it has been suggested earlier’ that the transport
properties of a QCD plasma are of the Fokker-Planck var-
iety. We have indicated how for such systems a generalized
thermodynamic potential may be obtained. Also the re-
sponses of the plasma under small perturbations are related
to the stationary fluctuations—the so-called fluctuation—
dissipation theorem.

We believe that there is a rather vast area where these
results may be applied. Propagation of disturbances in a
plasma is a subject on which considerable work has already
been done and more work seems possible. Further, it seems
possible to arrive at the various moment sum rules a /o
Kubo.?
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Simple calculation of Lowdin’s alpha function. |l. Easier procedure for
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This paper subsequent to the one [J. Math. Phys. 25, 1133 (1984)] (referred to as Part I) presents
the following new results: It is found out that for M = L and L — 1 the coefficients b (L M |/}in
Lowdin’s a-function have properties other than manifested in Part I. The expression for

by (L M |1) is shown to be equivalent to the one into which Sharma’s expression, obtained in a
different manner from that in Part I, is simplified by Rashid. The use of Rashid’s expression leads
to the recurrence formula for by, (L M |/) with respect to M only. This formula and the
expression for the by . (L M |/} with M = L provide an easier procedure for successively
evaluating bk, (L M |/) than in Part I. Furthermore, it is proved that the coefficients

hy2n_ (L M |l)in the asymptotic form of the a-function vanish for i </ + M and for n <.

I. INTRODUCTION

In the preceding paper,’ which will be hereafter referred
to as Part I, it is shown that Léwdin’s a-function? derived
from Silverstone and Moats’ expansion formula® is ex-
pressed in a much easier form to calculate than those pre-
sented by several other investigators.>*> In the expression
the coefficients b, (L M |/) defined in Sec. 2 of Part I, which
appear in the a-function, are written in a simple form.
Thanks to the simplicity, some of the properties of
by (L M |I) are manifested, and several recurrence formu-
las necessary for successively evaluating b, (L M |/} are de-
rived. An asymptotic expression for the a-function is also
obtained in a simple form. It is then proved from the proper-
ty of by (LM]|l) with k=0 that the coefficients
h,2n_ L M|l), appearing in the asymptotic expression,
vanish for i = 0 unless / = 0.

The present paper, Part II, will amplify Part I by further
investigating the following points: (i) whether any simplified
expression for b, , (L M |l ) with a special value of M is avail-
able; (ii) whether any recurrence formula for b, (L M |1)
with respect to only M, K| or k is obtainable; (iii) to prove that
our expression for by (L M |/} is equivalent to the one into
which Sharma’s expression,”® obtained in a different manner
from ours in Part I, is simplified by Rashid®; and (iv) to prove
the vanishing of 4, ,, _,(L M |l) for n <, which is only re-
ferred to in Part I.

The following sections will present the useful results ob-
tained through the investigation on the above points. In Sec.
ITit will be shown that by (L M |/)for M = Land L — l are
expressed, respectively, in only one-terms and from their ex-

pressions their properties, other than manifested in Part I,
and the relation between them are found out. Section III will
give the proof of the equivalence of our expression for
bg (L M |l)toRashid’s expression. In Sec. IV it will be dem-
onstrated that the recurrence formula for by (L M |/}, with
respect to M only, is obtained using Rashid’s expression, and
this formula and the expression for by (L M |/ )withM = L
provide a much easier procedure for successively evaluating
by (L M |1) than in Part 1. Section V will give the proof of
the vanishing of 4,,,, _,(L M |!) for i <! + M and for n <.
Finally, in Sec. VI some remarks will be made on what has
led to the resuits given in Part I and to be presented in this
paper, and on the significance of the results.

Il. PROPERTIES OF b, (L M|//)FORM =L AND L — 1

Before starting the discussion in this section, we define
the factorial for a half-integer as

(p—Wp—3---4,

for a positive integer p,
VI(-1)=%—p—1,

for a negative integer p,
with ( — 4)!=1. Thus the following relation holds:

(P—P—p—P=(-1p. 2)
Use is made of this factorial throughout Part II, since it
facilitates all the discussions to be made hereafter. :

The expression for by (L M |I), Eq. (2.6) with Eqs. (2.4),
(2.7), and (2.8) of Part I, is simplified using the above factorial
as

(p—Yi=

bl MIT) = (— 1M UL — MWL + M — M + pyyve L= K==k — j)

L+1!

X 23 (= eI C M —MCLA0 0=
A= Amax

(L — KT — L)l

(L+1—A)2+K+k—1)l
(L+1+4)/2~K—k)

, (3)

withA,,;, =max{|L —!|,2(K+ k) — (L +1)}.Here C(LIA; M — M )and C (LIA;0 0) are the Clebsch—-Gordan coefficients.”
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Throughout Part I1, Eq. (3) is adopted as the expression for bg, (L M [I), and only the b (L M |I) with I>L>M>0 are
taken into consideration because there exist the symmetry relations between them, expressed in Egs. (3.5) and (3.6) of Part I.

In this section it will be shown that b, , (L M |!) for M = L and L — 1 have properties other than manifested in Sec. 3 of
Part I.

First, the properties of by (L M |I) with M = L and their sums over K and over k will be investigated. Introducing into
Eq. (3) the expressions® for C (LIA;L — L) and C(LIA;0 0), we obtain an expression for by, (L L |1) as

b lL L) =(—1)- (L + I\LYL — K — )\ — k — 3!

KW — k!

The summation over A in Eq. (4) is carried out in Appendix A, and its result is given by Eq. (A4). The use of Eq. (A4) reduces
Eq. (4)to

beilL L|I)=(

_ 1)L(L+I)!(L—-K—}‘)!(I—k—5)!(—L +K+k—5)!.
KWW —WYkWL+I1—-K—k)

Replacing k by L +/ — K — k in Eq. (5), we find that
bKL+I—K—k(LL|1)=ka(LL|l)' (6)

This reveals the symmetry property of by, (L L |!). Therefore, evaluation of all b, (L L |/} over the permissible values of X

and k, seen in Eq. (2.12) of Part I, is not necessary. The sum of bx , (L L |I) over K can be obtained by puttingyy =L — k — 4,

p=L+1—k and v—p= — L —}in Eq. (Bl) of Appendix B. Then since k>0, obviously u + v —p= —k — 1<0.

Hence, from the note in Appendix B, ifand only ifu + v =L +1—2k — 1300r k<L + 1 — 1)/2,

(5)

L+l—k
K}_:g bl L|)=0. (7)

On the other hand, the sum of bg,(L L |/) over k can be obtained by setting u=L —K—4, p=L +1/—K, and
v —p= —1—}in Eq. (B1). Then, apparently u + v —p =L — I — K — 1 <0 because /I>L and K>0. Thus, if and only if
p+v=2L—-—K—-1)>00r K<L —},

L+i1-K

> bkl L|l)=0. (8)
k=0

The vanishing of these sums is helpful for checking whether the calculated values of b (L L /) are correct.

Second, the properties of by, (L M|l) with M=L — 1 will be examined. Introduction of the expression for
C(LIAL — 1 — L + 1), obtained from that for C (LIA;L — L )usingtherecurrenceformulafor C (LIA;M — M )inM,Eq.(4.2)
in Part I, into Eq. (3) yields an expression for b, (L L — 1|/} as

(L= WL+ — WL — K — N — k— )

_ —( L
bl L— 1) =(—1) 2 K\ — k!

X :il [AA+ D)+ LL-1)=I{I+1]A+))
A%

{(—=L+1+A)V/2—IW—-(L+I-A)2+K+k—}) . )
(L+I-AV2ML —I4+AVINL +I+A)2+ YL +1+A)/2—K—k)
Separating the sum in Eq. (9) into two sums by utilizing the identity
AA+ )= —(L+14+A—-2K—2k)YL+1—A—-2K—-2k— 1)+ (L+1—-2K—-2k)L+1-2K—-2k—-1), (10)
reducing each of the two sums to a single term by using Eq. (A4), and then combining the two terms, we arrive at

_ — (1 oK (L+I—IWL—-—K—-)Yl—-k—tN—-—L+K+k—1)
by LL—1l)y=(—1"{L+1—2K—2k) K — k'L + 1=K — ) . (11)
From Egq. (11) it can be seen immediately that
by LL—1|1)=0, for K+k=(L+1)/2. (12)

Also, compared with Eq. (5), the relation between by (L L — 1|/) and b, (L L |1) is easily obtained:
b LL—1)=[(L+1—=2K—=2k)/(L+1))-bgr(LL|I). (13)

Needless to say, this relation provides the means of evaluating b, , (L L — 1|/)from by, (L L |I). Further, introduction of the
symmetry relation (6) into Eq. (13) leads to the following relation between by, (L L — 1)/)and by, ., _x_ (L L —1|1):

byriix_wLL—1l)= —[(L+1-2k)/(L+1—2K—2k)]-bg, (LL—1}l). (14)
In particular, for K =0,
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bor 1 w(LL—1|l)= —box(L L—1]l}. (15)
The property shown in Eq. (12) and the relation (14) are helpful for evaluating b, . (L L — 1|/).

1. EQUIVALENCE OF OUR EXPRESSION FOR b, (L M|/} TO RASHID’S

About ten years ago, Sharma derived an expression for b (L M |I) [b, (KILM) in his notation] in the conventional
manner different from ours in Part I, which is written in the form of a quadruple sum.> Recently the expression has been
simplified into the form of a single sum by Rashid® skillfully using Eq. (B1) and relation (2). In fitting Rashid’s expression® to
our definition for by (L M |I) given in Sec. 2 of Part I and then replacing the summation index ¢ in his expression by
L — M — s, we may rewrite Rashid’s expression in our notation as :

(L-—MMNL+MM -—MN+MNW —-K—)(I—k—i)
(L+1—K—FKkNL — 1)K\ — 4)k!
XLiM (=L+K+k+s5s-—1)
Lo SUL—M—sI~L+s)(—L+s—YL+M—s)
In Eq. (16), to distinguish Rashid’s expression from ours, (R } has been attached to the symbol by , as a superscript.

Here a more general recurrence formula for by (L M |1 ), expressed in Eq. (3), than (4.6) or (4.7) of Part I is derived in order
to ascertain that b '¢) (L M |I) satisfies it. It can be obtained by carrying out the same procedure as led to (4.6) of Part I under
the consideration of the identity for 4 (1 + 1), Eq. (10), which may be written as
(L—M) —M)bg LM+ 1|1} + (L + M) +Mbg,(LM—1|l)

= —4{(K+ 1)L —K—4)bg 1« ([LM|I) or (k+ 1) —k—Lbg,.1(LM|])
— L +1—K—k)K+k+1)— HLI+ Moo (L M|1)} (17

Since it can be easily found that for M = Land L — 1, (L M |I)are, respectively, reduced to the same forms as Eqgs. (5)
and (11), the proof of the equivalence of & '§ ) (L M |I)to our by (L M |!)is accomplished by showing that b X) (L M |!) satisfy
the same formula as Eq. (17).

First, the corresponding term (L — M )(/ — M )b f (L M + 1|1) to the first one on the left-hand side of Eq. (17) is taken
into account. In denoting the factor in front of the summation symbol in Eq. (16) by By (L M |I), we may write it as

(L—M)I—MbLLM+1]I)

bEULM|I) =

(16)

-t —~L+K+k+s—))
= LM\ - (L+M+1)I+M+1 ( .
B ) N ) ,;o SHL—M—1—s I ~L+s)(—L+s—IL+M+1—5s)
(18)
Multiplying each term in thissum by 1 =[ — (L + M + 1 —5) — 2( — L + 5 — })J/(L — M — s) to divide this sum into two
sums, and then doing each term in the second sum of the resultingtwoby L 4+ M + 1 =L + M + 1 — s + 5, we arrive at

(L—MY—MbJLUL M+ 1]])

- _ , 5 (—L+K+k+s—
= ~BrlL M) (1+M+1)[(L+M+l) ,go L —M —spI—L+s)(—L+s— L +M—s)
+2[L§:M ' (—L+K+k+s—i)
o NL—M—sWI—L+s—L+s—L+M—s)
LM s (=L+K+k+s—})
+ sgo SM—M—sNI—L+s)—L+s—3L +M+1—s)z”' 19)

In Eq. (19), combination of the first sum and the first one in the brackets and multiplication of each term in the second sum in
the bracketsby /I + M+ 1=L+ M+ 1—5s+1—~L +slead to
(L—M)I-M>bELUL M+ 1|I)
L-M
(—L+M+2)(—L+K+k+s—1})
= — LM|INI+M+1
BrulL M| )[( ),Z'o SML—M—s)I—L+s(—L+s— L +M—s)
L-M o — — 1
'S s (—L+K+k+s—})
o SIL—M—sMI—L+s)(—L+s—L+M—s)

LM (=L+K+k+s—i)
* s; (C—IML—M—W—L—1+s)(—L+s—PL+M+1 —s)!”' 120

Here, replacing the summation index s in the second sum in the brackets by s + 1, then multiplying each term in the sum by
1= (L — M —s)/(L — M — s), and finally combining the three terms, we reach
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(L —M)I—MbTUL M+ 1]I)

B M) S AL+ T— K — k) — (L — M)2L + [+ M — 2K — 2K ]

(—L+K+k+s—3)

Xs!(L—M—s)!(I—L+s)!(——L+s—§)!(L+M—s)! '

In utilizing the fact that the expression in the above
bracketsisequal to 2(L +/— K —k)—L+K+k+5+1})
+L+1—K—k)f2M -2k -2k - )+ (L—M)I—- M)
and returning the expression in Eq. {21) to the one in terms of
b'&L(L M |l), at last we obtain

(L—MW—MpbELLM+1]])
= —2{(K+1L—K—-3b\ (LM|I)
or (k+ 1) —k—}bL, (LM]I)
+{L+!—K—k)M—-K—k—1})
+HL =M —=M)bELL M)} . (22)
Second, the corresponding term (L + M)/ + M)
X b'&)(L M — 1]I)to the second one on the left-hand side of
Eq. (17) is taken into consideration. The same manipulation
as the above yields its expression in terms of b 'S (L M |I) as
(L+M)+MbEULM —1]1)
= —2{(K+ 1)L —-K—4)bi) (LM
or (k+ 14—k — bRl (L M|I)
+[L+!—-K—k)(—M—-—K—k—1))
+UL+ M) +M)bRUL M)} . (23)
Consequently, combination of Egs. {22} and (23) gives
the same formula for b¢}(L M |I) as Eq. (17). Thus it just

has been proven that Eq. (16) is an expression for
by (L M |I) equivalent to Eq. (3).

IV. EASIER PROCEDURE FOR EVALUATING b, (L M}/)

In this section it will be shown, from the results in the
previous sections, that an easier procedure for successively
evaluating by, (L M |I) than in Part I can be found.

At the outset it should be noted that a new recurrence
formula for b (L M |I) with respect to only M can be de-
rived by eliminating the term including 6§, | (L M |I) or
%) . (L M |l)fromboth Eqs. (22) and (23). This formula is
written as

(21)
(L+MN+Mbg,(LM—1]|l)
=2M(L +1— 2K — 2k by (L M |])
(L= M) —Mbg LM+ 1]I). (24)

Here the superscript (R ) on the symbol b4, has been re-
moved. Putting M = L in Eq. (24) leads directly to the rela-
tion (13). The recurrence formula with respect to only K or k
can be also obtained from the same equations (22) and (23).
Its form is, however, rather complicated and thus less useful
for computing by (L M |1).

By the iterative use of Eq. (24) all the by . (L M |!) with
M<L — 1 can be calculated from by (L L |/).

The evaluation of b4 (L L |/) can be made using the
recurrence formulasin K and in & derived immediately from
Eq. (5). These formulas are written as

bx k(L L)
_ _LAI-K—kNL—K—k=}) ,
T Ty s kL L),
(25a)

and

ka+1(LL|I)
_ _MAI-K-kL—K—k=) , rp).
k+ 00—k —}) s

Thus, beginning with b, (L L |/}, we can calculate all
by «(L L |I)over K and k, taking into account the symmetry
relation (6).

Here it should be noted that, because of our definition
for by (L M |l), necessarily

boolLM|l)=1, (26)
independent of the value of M. This is easily ascertained
from Eq. (16) and also by using Egs. (5) and (24) for
K=k=0.

In the above manner all by, (L M |/} are successively
evaluated more easily than in Part L. !

V. VANISHING OF ,,, (L M|/)FORi</-+M AND FOR n</

In the present section it will be proved that the coefficients 4, (L M |/) appearing in the asymptotic form of the a-
function, which are expressed in Eq. (5.6) of Part I,'° vanish under the two independent conditions. Replacing the subscript s
on h, (L M |l) with 2n — i and substituting Eq. (16) for bg,(L M |l) in the expression for h, (L M |l), we may rewrite
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h,(LM|l)as

hn,2n—i(LMIl)
_(L—MNL+ MW MW+ M)
2-(L—=3—4
IEI L+2':-k 5 (n —k — UK — 3!
Ko k=10 tTv21 -k s=0 (n—k+ P[72] — kWG + 1)72] — k — YUK + &k — [(F + 1)/2)NK + k — [i/2] — )t
» (L—K—YU—k——L+K+k+s5—}) )
L+T—K—kkSL —M—s)(I—L+s)(—L+s—L+M—sp’

X

where n runs over all non-negative integers, and / from O to min {2n,2(L + /)}. Here [i/2] denotes the quotient of i/2.
First, it will be shown that 4, ,,, _ ;(L M |l )fori <! + M vanishes. Introducing into Eq. (27) the following relation, derived
from Eq. (B1) by settingu =L,v= —K —4,andp=k +35,

KWL —K - —L+K+k+s—}
= (= JE+R+ LYk 4 5! m"’z’k“} [PL — Wk +s— e —K —k—s+t—p1]-", (28)

t=0
and then extracting only the sum S; over K from the resulting equation, we may write S, as

s= S [(K+k [l+l)!(K+k—[§]—%)!(L+I—K—k)!(—K—k—s+t——;—)!]_l. (29)

K=[i+1)2] -k

Further, replacement of K with « — k + [(i + 1)/2] leads to

A L L e R RO ae

Putting p= —[((+ 1)/2] —s+t—L p=L+1 —[(i+1)/2], and v — p = [(i + 1)/2] — [i/2] — } in Eq. (B1) yields the
result of the summation over x in Eq. (30). Then it can be easily seen that 4 +v —p = — [i/2] — 1 — s+ <0 because
— s+ t<min {L,[i/2]}. From the note in Appendix B, if and only if u +v=L +/—i—s+¢t — 10 or —s+1¢
> —L—1+i+ 1, S, vanishes. Thus, since — L — !+ i<[i/2], only for —s + ¢t <min {L, — L — [ + i}, S, remains non-
zero. Ontheotherhand, y +v=L +/—i—s+t— 13+ M —i— 1because — s + t> — L + M. Therefore, if i < + M,
thenu + v>O0 for any permissible value of — s + z. Then S| vanishes, and accordingly 4, ,, _ ;(L M |I)does. Here it should be
noted that the condition i/ </ + M involves the one for Eq. (5.8) of Part I to vanish. Consequently, only when / + M <i
<min {2n, 2(L + 1)}, S, takes a nonzero value, which, according to Eq. (B1), is written as

([i/2] +5—1)
(—[E+1D)2)—s+t—WL+I—-[i/2) =4 —L—1+i+s—t L +1—[(i+ 1)/2]{!3'1)

S| — ( _ 1)L+I—[(i+l)/2]

Second, it will be shown that 4, ,, _ (L M |I)for n < vanishes. This vanishing is referred to in Part I, but has not yet been
proven. Here the two relations

(n— Kk — )
([G+ 1)/2] — k — 4([i72] — k)1
=(n— [+ 1)2])n — [i/2] —})!
min {n — [({ + 1)/2],(i/2) — k]

X > [pln — [ + 1)/2] — pM([i/2) — k — pI([(i + 1)/2] — [i/2] =4 +pN] 71, (32)

p=0

and

{fe + i ! it — gtk — q)lis — ¢ -
= It — — —t+q)l1t, 33
TR [t — q)i(k — ) gl (33)
obtained using Eq. (B1), are introduced into the expression for 4,,,, _ ;(L M |/) derived by inserting Eq. (31) into Eq. (27), and
then, from the resulting expression, is extracted only the sum S, over k. It is written as

lir21 — p (l_k_‘i)!
= — 1)k
5 ,Z,, (=1 (n— k + YN[i/2] — k — p)lik — g)!

=(—1)’Z[(k-q)l([-—;—]—k—p)!(n—k+—;—)!(-—1+k-—%)!]_l. (34
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Further the replacement of & — g with « leads to

S =(— 1)'“/2122_" x([é] —p—q—x)!(n—q+%—x)!(—l+q——;—+lf)!]—l- (35)

Puttingu =n—q+4,p=1[/2] —p—g,andv —p = — 1+ g —}in Eq. (B1), we can obtain the result of the summation
over « in Eq. (35). Then it can be seen immediately that u +v=n—1+[i/2]—p—q and p +v —p=n—I. Here
n—1+[i/2] —p —g>max { — I +i—1t,n—1} becausep + g<[i/2] + min {n — i + ¢, 0}. Further, since t< — I/ — M + i,

p+v=n—1+4+1[i/2] —p—q>max {M,n—1}30. (36)
The last equality or inequality in (36) arises from the restriction M>0 taken in Sec. II. Because (36) holds for any set of the

permissible values of p, ¢, and ¢, S, vanishes if u + v — p = n — 1 <0. Accordingly, then 4, ,, (L M |l) disappears.
Thus the vanishing of 4,,,, _;(L M |l)for i <! + M and for n <! has just been proven.

VI. CONCLUDING REMARKS

In Part I, the coefficients in the a-function were factorized into Y{L M |/ )expressedin Eq. (2.9)of Part Iand b, . (L M |I)so
by olL M |l )may equal a unity, and then, with respectto by , (L M |I), notthe product YL M |I) X bk (L M |I), their properties
and the existence of some procedure for successively computing them were investigated. Consequently, several desirable
results were obtained. Here in Part 11, further investigation on the same subjects has been made, and some useful results have
been obtained as given in the previous sections. It is noteworthy that the manipulation of by, (L M|l), not
UL M |1)- by (L M |]), has yielded all of those results.

From a practical point of view, it is to be emphasized that, since the products y(L M |l}-bg . (L M|l) and
VLM|l)-h,,,_ (L M|l)areindependent of the form of the radial part of a function to be expanded, they, once evaluated, can
be used for any function as long as its angular part is expressed by a spherical harmonics. In this context, it is important that in
Part I and especially in the present paper the procedure for successively evaluating b, (L M |/) has been equipped.

Any procedure for directly evaluating h,, ,, _;(L M |I) by no use of by . (L M |I), however, has not yet been found. It is
necessary to seek it further. :

APPENDIX A: PERFORMANCE OF THE SUMMATION IN EQ. (4)
The sum in Eq. (4), denoted by S, may be rewritten as below by replacing L + / — A and K + & by 2u andj, respectively:

S=#m L+l_2.u+£ (l—.u_i)'(]_:u'_i)‘, (Al)
oL+ T—p+ ) (L+1—j—plL—p)
where fi,,,,, = min {L + ! —j, L }. Now we perform the summation over x in Eq. (A1). Separating the sum into two sums by
using the identity L +/ — 2u +§ = (L + ! — pu + }) — p, replacing the summation index y in the resulting second sum by
4 + 1, and then combining the two sums, we obtain
et Lypl—ou—y U—p—Pi—p—3

S=U=L-9 2 Tal-p—iw L+I—)— @il —p

(l —Hmax — %)!(.] —Hmax — %)!

+ o (A2
(L + 1 = Mmax — i)!”max!(l‘ + l ~J = Hmax )(L — Mmax )
{
Further, repeating the same procedure for the sum over u as Consequently, Eq. (A3) is reduced to
the above until all the terms in the sum disappear, we arrive
at S=(j—L—YIL\L+I-))]. (A4)
) (L+71— e — ) APPENDIX B: ADDITION THEOREM FOR BINOMIAL
s COEFFICIENTS
XY [(—L—Hmax — 3 +5)! The addition theorem for the binomial coefficients , C,
x=0 is expressed by
XL +1—j~ kL —&f] " (A3)
Then oputting pg=L, p=L+I!/—j, and v—p C.-.C,_. .= C . C = C . Bl
=j—L—fime —} in Eq. (Bl) of Appendix B if 2l Goe = 2 pComn Cem G (B

Uax = L + I —j, and otherwise interchanging z and p in

doing so, we find that the sum over « is equal to In Eq. (B1), p and x must be non-negative integers with the

. restriction that p>«, while each of x and v, irrespective of
(L +1—prgax — IWILW — ey — INL +1—j)! being non-negative or not, may be an integer or a half-in-
X{J — Mmax — 3. teger. Here it should be noted that, if and only if 2 + vis a
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non-negative integer and less than p, the sums in Eq. (Bl)
vanish because , , ,C, = 0. For a non-negative integer or a
half-integer u, , C, may be written as

WCo=nV/ [kl — ], (B2)
while for a negative integer u,

pCe=(—1{—p+c—)I(—-p-1)]. (B3
Here it is to be stressed that the expression (B2) is valid even
for a half-integer, regardless of being non-negative or not,
provided the definition (1) in the text is adopted. Substituting
the expressions (B2) and/or (B3) for the binomial coefficients
in Eq. (B1) according as the types of integers i, v, and . + v
take, we can obtain several formulas expressing the addition
theorem for the respective cases.
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Hamiltonian picture of the free electron laser and unitary symmetries
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It is shown that—in analogy to what has been recently suggested for a quantum n-level system—
in a multimode analysis of the free electron laser (FEL) Hamiltonian picture, one can use the
(n* — 1)-dimensional vector Fof SU(n) to describe the main FEL dynamics. The FEL coherence
properties are discussed by this group-theoretical approach, and a critical analysis of related

Casimir invariants and conservation laws is given.

I. INTRODUCTION

It happens sometimes in physics that seemingly unrelat-
ed fields or techniques show unexpected connections. In
most cases, this leads to a better understanding or to a clever
mathematical formulation of the physical fields involved.
An illuminating example is provided by the application of
unitary symmetry schemes first to nuclear physics' and then
to high-energy physics.?

More recently, the tools of unitary symmetries have
been applied to the dynamics of an atomic n-level quantum
system.> This kind of approach has allowed one to genera-
lize the Bloch-like equations describing the interaction of a
two-level system with radiation® to the case of multilevel
systems—a problem long thought impossible to solve.’
Moreover, a set of new, unforeseen constants of motion, able
to give a deeper insight into the system’s dynamics, have
been found in this way.>*

In recent times, the physics of the free electron laser
(FEL) has gained more and more attention, both on the ex-
perimental and theoretical side.?

The FEL provides one more example of unsuspected
connections among apparently remote branches of physics.
Indeed, it has been shown by one of the present authors that,
in the framework of the single-mode Hamiltonian picture,'°
the main features of the FEL dynamics are described by
Bloch-like equations, in analogy with the case of a two-level
system.

In this paper, we want to show that, in the hypothesis of
a multimode FEL operation,'! the FEL dynamical behavior
can be accounted for by introducing a suitable (n> — 1)-di-
mensional vector, in full analogy with the results obtained
for the n-level atomic dynamics.* A preliminary suggestion
in this direction was put forward in Ref. 12, where the FEL
coherence properties are studied in the multimode picture by
exploiting the SU(n) invariance of the FEL Hamiltonian. In-
deed, besides coherence, this group-theoretical approach
will enable us to critically discuss the FEL constants of mo-
tion.

The paper is organized as follows: The explicit construc-
tion of the SU(3) vector, in the illustrative example of two
laser beams, is presented in Sec. IT; Sec. Il is concerned with

* Permanent address: Dipartimento di Fisica, I Universita di Roma “La
Sapienza”, P. le A. Moro, 2-00185 Rome, Italy; Istituto Nazionale di Fi-
sica Nucleare, Sezione di Roma, Rome, Italy; and Division of Physics,
Institute for Basic Research, 96 Prescott Street, Cambridge, Massachu-
setts 02138.
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the vector picture of the FEL dynamics and its implications
on coherence and conservation laws; the generalization to
the SU(n) case and the classical limit are outlined in Sec. IV
and a brief summary is given in Sec. V.,

Il. FEL QUANTUM HAMILTONIAN AND SU(3)

Let us start by considering the simplified case of two
copropagating laser beams, with different wave vectors and
intensities, undergoing FEL amplification. The quantum
nonrelativistic Hamiltonian describing this process can be
written as'!

2 3
2m j=1

X [aira,e =¥ —** 4 he.]
+ 7, s [ataze =t R 4 he. ]
+ 7,5 [a;t ae "t Rl L hel] . (2.1)

Here, a;* and q, (I = 1,2) are the creation and annihilation
operators for the laser fields (assumed propagating in the
positive z direction), while a;t and a, refer to the undulator
field—treated as a radiation field in the Weizsacker-Wil-
liams approximation'>—moving in the negative z direction;
the k; are the wave vectors of the laser beams ( = 1,2) and of
the undulator (i = 3), and @, = |k, |c the corresponding fre-
quencies. Moreover, we have put

O, = 2wc?ry/(w,0;)' 7V,
where r, = e*/mc? is the classical electron radius and ¥ the
mode volume.

The first two terms in H describe the electron and the
free field energy, respectively (the electron motion is as-
sumed nonrelativistic in the chosen frame), while the other
terms represent the interaction between electron and fields.

In comparison with the single-mode case,’ the Hamil-
tonian in Eq. (2.1) contains two more interaction terms.
However, we can see that a similar group-theoretical ap-
proach can be used, if one defines the following pseudospin
vector operators R; (/< j = 1,2,3):

+
a; a;Sy

Ry = +h.c,

RP=H DS Ly 2.2)

z

+ +
R(g)_(al al_aj aj)
e
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where
Sy = exp ( — iKz) (2.3)
and
S A 2.4
kK, J=3.
Moreover, let us put
R,=T, R;=V, R;=U, (2.5)

on analogy of the usual definitions of isospin, ¥ spin, and U
spin in the standard SU(3) scheme (see Ref. 2).
Then, the Hamiltonian (2.1) becomes

2
H ={i’;+ﬁ;wjaj+aj

+25(Qy, Ty + D15V, + QU - (2.6)

It is easy to realize that the dynamics of the system de-
scribed by the Hamiltonian (2.6) can be specified by the time
evolution of the pseudospin vectors T, U, and V. However,
such a description is redundant, since—as we shall see—the
FEL dynamics is fully determined by the equation of motion
of a single, eight-component vector F [as it trivially follows
by embedding the three SU(2) algebras (2.5) in a single SU(3)
algebra]. .

The vector F we are concerned with can be written, e.g.,
in the form

F=(F)=(TuTouTo, Vi Vo U UpM) (@ =1,..8),

(2.7)
where M is linked to the standard hypercharge by
M=(3/2)Y = (a;"a, +a;-a, — 2a;"a;)/2/3. (2.8)

Needless to say, the commutation rules of the components of
F specify an SU(3) algebra:

[Fys Fg) =ifop, F, (2.9)
[ fus, being the usual structure constants of SU(3)]. How-
ever, let us notice that, according to the definitions (2.2), the
SU(3) generators F, also contain the electron variables
(through the factors S;;). Therefore, we also have to consider
the commutator of the electron momentum p with F, , which
explicitly reads

_lﬁK(I:I [Fa+l(6al +5a4 +8a6)

[pF, )= —F,_ 1802 + 005 +6,9)], a#3,8,
0, =338,
(2.10)
where
K, a=12,
K@ =1K,;, a=4,5, (2.11)
K,,, a=6,7,

and 6,4 is the Kronecker delta. Thus, strictly speaking, the
total invariance group of our system is not SU(3), but rather
its semidirect product by U(1), SU(3) & U(1).

lil. VECTOR PICTURE OF FEL DYNAMICS,
COHERENCE AND CONSERVATION LAWS

It is now straightforward to get the Heisenberg equa-
tions of motion of the vector F, which specify the dynamics
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of the FEL process under study. By taking the commutators
of F with the Hamiltonian (2.6), we have

F,, = fop,sF, —i€,p Fp , (3.1)
where the prime denotes derivative with respect to the

dimensionless time 7 = ¢ /At (At being the interaction time);
the vector {) and the matrix €., are given, respectively, by

G=(@,)
= (2“12At,0, - w12,2013At,0,2023At,0,£ wlz o w13)

[w; = (w; pAt/mc) + Ay, o; =K;e,

Ay=0,—a], (3.2)
and

€op = 5{;'(5«5 — 843 — 84s), (3-3)

where € is defined in a way analogous to X { of Eq. (2.11),
with the matrix €; given by

€; = (At /mcP)w}

and connected to the recoil of the electron.

Equation (3.1) consists of two parts. The first is a gener-
alized rotation in SU(3) space, in full analogy with the results
of Refs. 3 and 4. The second part plays the role of a dephas-
ing term and is due to the noncommutativity of the electron
variables. As it is easy to realize, such a term causes coherent
states of the system to evolve into noncoherent ones. There-
fore, we recover in a straightforward way the result'* that
Glauber coherence'’ is not preserved in the FEL quantum
operation, and that this effect is strictly connected to the
electron recoil. ’

Let us now discuss the conservation laws. First of all,
the global symmetry SU(3) & U(1) of the system implies the
(obvious) conservation of the total momentum of electron
and fields:

(3.4)

3
P+ 2 k;ata; = const
ji=1
{for further comments, see Ref. 11.) However, the most di-
rect constants of motion deducible from our formalism are
those related to the Casimir operators of the unitary group
concerned. In this connection, let us notice that actually the
invariance group of the Hamiltonian (2.6) is U(3), rather than
SU(3), and, therefore, we have to consider three Casimir in-
variants, which can be comprised in the single formula'®
3

(3.5)

CP = Y Audy Ay (p=123), (3.6)
where
A;=a%a, i#], (3.7
a*a;, for U(3),
T P ,;; aa,, forSUR) >

(or suitable linear combinations of the above operators'”).
The first Casimir invariant [linked to the U(3) group] is thus
given by

3
cl= 3 ata, (3.9)

k=1
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and yields the FEL Manley-Rowe pseudoquantum rule

2
S nj +ny =const, (3.10)
i=1

where n%, n,, are the laser and undulator photon numbers,
respectively (i.e., C'" accounts for the conservation of the
total number of photons). The second Casimir invariant is
nothing but the length of the vector F. If  and b are the two
non-negative integers labeling the irreducible representa-

tions of SU(3), the eigenvalues of C® explicitly read*®
CO=pla—bP+ Ya+b)a+b—4). (3.11)

Finally, the eigenvalues of the third Casimir invariant for
any SU(3) irreducible representation are given by!'®

CO=4la—b)2a+b+3)2b+a+3). (3.12)

Although the two nonlinear Casimir operators C® and C*®
correspond, in principle, to new constants of motion, it is
easy to see that, in the present case, they do not provide any
new conservation law and simply restate Eq. (3.10). Indeed,
all physically realizable states of our system must belongtoa
totally symmetric representation of SU(3), and it is well
known'® that, in this case [as immediately follows from Eqgs.
(3.11) and (3.12) for b = 0], the two Casimir operators of
SU(3) are related to each other and to the total number of
photons. By the way, let us underline that, even in the case of
the atomic n-level system considered in Refs. 3 and 4, the
“new, nonlinear” constants of motion derived therein may
no longer be considered as independent if one assumes that
the initial state has a definite permutation symmetry. How-
ever, let us notice that there is (at least in principle) some
difference between the conserved quantities defined in Refs.
3 and 4 and the Casimir invariants (3.11) and (3.12). Indeed,
as pointed out recently,'® the constants of motion expressed
in terms of the elements of the density matrix do not coin-
cide, in general, with the Casimir operators of U(n). To re-
store a complete analogy between the n-level atomic system
and the multimode FEL operation would therefore require
us to consider a multielectron theory of FEL and define a
suitable density matrix by averaging on the electron and field
variables.

V. GENERALIZATION TO THE SU(n) CASE

The group-theoretical formalism developed in the pre-
vious sections for the three-mode FEL system is easily gener-
alized to the n-mode case. The quantum nonrelativistic FEL
Hamiltonian now reads"’

n

H=2—+Zwa aﬁ

i=1 I<j=1
Y Qyaia; exp(—iK;z)+he, (4.1)
l<j=1
where
ki Jj#n,
Ky = 42
v [k1+k, j=n, (4.2)

and the index » refers to the undulator field.

In terms of the pseudospin vector operators R,
(I < j = 1,...,n) [still defined by Egs. (2.2)], (4.1) can be writ-
ten as
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2 n n
H=Z Y oa7a;+2 Y QR
2m j=1 l<j=1

The (n2 — 1)-dimensional vector F describing the FEL dy-
namics may be chosen as follows:

=(F,)
=(R(112)’R(122)’- ’R(nl)—l ’Rn—ln’ Wl""’Wn—l)
@=1,.,n2 = 1),

where we have assumed the standard form of the SU(n) diag-
onal generators W, (j = 1,...,n — 1):

= [+ D~"ai*a, +

(4.3)

(4.4)

v +a;va; — jata)).
(4.5)

The components of F still satisfy the commutation rules
(2.9), with £, 5, being now the SU(n) structure constants. As
to their commutators with the electron momentum p, they
are given by a suitable generalization of Eq. (2.10), which is
easily evaluated by taking into account that

[p’R(I:p;Z)] = :FiﬁKlmR ﬁr’:”’ [P’ W]] =0 (46)

Then, it is easy to see that Eq. (3.1) still describes the
dynamics of the system, with suitable generalizations of the
definitions (3.2) and (3.3) of the [now (n® — 1)-dimensional]
vector {2 and of the matrix €, . Obviously, the implications
on Glauber coherence remain unchanged.

The constants of motion are given (apart from the con-
servation of total momentum and number of photons) by the
Casimir invariants of SU(n):

CP= N A4, ~A,4,
k=1
P

(p=2,.,n), 4.7)

ji ..

where the operators 4,; are still defined by Eqs. (3.7) and (3.8)
(with 3—n).

Asin the SU(3) case, the invariants C '» give rise to a set
of (n — 1) nonlinear conserved quantities, which are in prin-
ciple independent, as long as one does not take explicitly into
account the permutation symmetry of the system states. In
fact, they all collapse into the single law of photon number
conservation for totally symmetric SU(rn) representations.

Eventually, we want to stress that the analysis we have
carried out within a quantum framework can be also per-
formed from a classical viewpoint. To this aim, one has
merely to substitute everywhere the commutators by the
Poisson brackets; e.g., by Eq. (2.9) one gets

[Fy, Fg]=ifsF, . (4.8)

Moreover, one needs to take the classical image of the SU(n)
generators, namely, for instance

F =RQ—(1,)"*cos [Kyz+ (@1 — @a)],

where I; and g, are the action and phase, respectively, of the
Jjth field.

The equation of motion (3.1) in the classical case be-
comes simply

F,= f50sF, (4.10)
since no extra term due to the noncommutativity of the elec-

tron variables appears. Therefore, the effect of the FEL in-
teraction in this case amounts to a mere rotation of the vector

(4.9)
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Fin the SU(n) space. In other words, the absence of the de-
phasing term causes coherent SU(n) states of the system to
evolve into coherent states. Let us stress that this result holds
true also in a “semiclassical” framework, i.e. when treating
the electron classically (see Ref. 12).

We also want to notice that, according to Mukunda’s
theorem,?® in the classical limit the FEL system under consi-
deration possess invariance not only under SU(n), but also
under O(n + 1).

As for the constants of motion, they are obtained by the
Casimir operators by taking the limit (4.9). However, at the
light of the considerations made in this section and in Sec.
II1, it is easy to see that in the classical limit, too, they do not
provide any new physical conservation law.

V. SUMMARY

It has been shown that the invariance of the FEL quan-
tum Hamiltonian in a multimode picture under U(n) & U(1)
permits the description of the FEL dynamics in terms of the
(n? — 1)-dimensional vector F, built up by the SU(n) genera-
tors (in analogy to what has been recently done for an n-level
atomic system). The equation of motion for F amounts to a
rotation in SU(n) space plus a dephasing term (due to the
noncommutativity of the electron variables). Then, one re-
covers in a straightforward way (without any recourse to
explicit solutions) the result that coherence is not preserved
under quantum FEL operation. Coherence is obviously re-
gained in the classical and in the semiclassical limit (namely,
when treating only the electron classically). The constants of
motion [apart from the total momentum conservation), con-
nected to the U(1) group] are given by the Casimir operators
of U(n). However, it has been stressed that—if one takes into
account the permutation symmetry of the system states—
they do not provide any new physical conservation law and
merely restate the FEL Manley—Rowe pseudoquantum rule
(i.e., the conservation of the total number of photons). The
way of performing the transition to the classical limit of the
present group-theoretical approach has been explicitly out-
lined.
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ERRATUM

Erratum: Lie transformation group solutions of the nonlinear one-
dimensional Vlasov equation [J. Math Phys. 26, 1428 (1985)]

B. Abraham-Shrauner
Department of Electrical Engineering, Washington University, St. Louis, Missouri 63130

(Received 10 July 1985; accepted for publication 29 August 1985)
A parenthesis is missing to the right of the equal sign in (sin 7). The bar over x in the partial derivative of f in Eq. (59)

front of p in Eq. (34). The functions sin # (cos z) in the time  should be moved one space to the right. The term (¥ 2/2)in
derivative in Eq. (58) for I, (/,) should be changed to cos ¢ the first and second lines below Eq. (59) should be N 2 only.
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